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NTRODUCT 0 IN SCATTERING

A.H. Sdrensen

Institute of Physics, University of Aarhus, Denmark

1. PRELUDE

The purpose of the present report is to give an introductory discussion of the
influence of internal scattering events on the evolution of the phase-space density of a
charged particle beam. This topic is commonly known as intrabeam scattering. To initiate
our studies and obtain a background for understanding the specific case of a beam, we

consider at first in general the role played by collisions in a plasma (an ionized gas).

For a system containing a total of N particles we construct a 6N-dimensional phase
space. A continuity argument proves the Liouville theorem, which states that the density
in this space remains a constant when measured along phase-space trajectories provided all
forces acting are Hamiltonian. It is stressed that interparticle forces, which are indeed
Hamiltonian, enter on equal footing with external forces. The multi-dimensional space is
very impractical, however, and a reduction to everyday 6-dimensional phase space is
requested. In the course of this reduction, problems pop up with the interparticle
interactions. They turn out to be separable into a Liouvillian "space-charge" force,
associated with the collective action on a given "test particle" of the rest of the gas,
and scattering events. The collisions, which add a term to the Liouvillian part of the
equation governing the evolution of the distribution function in 6-dimensional phase
space, are responsible for relaxation towards equilibrium. Assuming dominance of soft
multiple collisions, the Fokker-Planck equation emerges and further introduction of a
naive model for the encounters leads to determination of the friction and diffusion
coefficients. To complete the general discussion, we evaluate rates of diffusion for the
specific cases of spatially homogeneous plasmas having isotropic and collapsed Maxwellian

velocity distributions, respectively.

When we turn to the case of a charged particle beam, the question immediately appears
what may be different from the general plasma case? When the average longitudinal motion
is transformed away - by working in the "particle frame" moving along the storage ring at
the nominal beam velocity - the answer is: very little. Scattering events appear as in the
plasma, only the distribution function is given in another set of generalized coordinates
(xB,xé,...) than the usual rectangular ones (x,px,...). In the beam case we encounter
couplings, for instance between longitudinal and horizontal motion. We shall outline
practical calculations, which account for such couplings. Among these we mention the

)

cal details at this point, we choose to show some theoretical results for coasting proton

treatment of Piwinski' with later improvements ? However, instead of going into mathemati-

beams obtained by means of existing computer codes. The numerically obtained rates help to

single out where the aforementioned couplings are essential for the scattering processes
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and where not.Furthermore,the data bring us in a natural way towards a discussion of the
possible existence of a set of reduced variables, which would allow for a compact repre-
sentation of results over a wide range of initial conditions. The question appears,
whether we may create some reasonably general and simple curves, which could provide quick
and reliable estimates of beam blow-up rates - without the computer? The study of the

plasma gives some hints.

2. GENERAL DESCRIPTION

2.1 Liouville in 6N-dimensions

Consider a non-relativistic gas consisting of N interacting charged particles. Most
generally, such a system possesses 3N degrees of freedom. A canonical representation
therefore requires 3N generalized coordinates, qi, and 3N conjugate momenta, pi. In 6N-
dimensional phase space (q1,..., Qyge Pyre-eo p3N), the full system is represented by a
single point at a given time, Fig. 1a. Often, for q; we shall take the rectangular
coordinates (x,y,z) of the positions of the individual particles and for Py the
corresponding linear momenta. In this case the coordinates 3n-2, 3n-1, 3n of the phase-
space point define the position of particle number n whereas the coordinates 3(N+n)-2,
3(N+n)-1, 3(N+n) fix the momentum of that particle. In general, the conjugate momenta are

obtained from the Lagrangian, L, according to the relation

pi = a[‘/aql ' L(q,q,t) =T -U . (1)

Here the dot represents the total time derivative d/dt and T denotes the kinetic energy of
the system. The quantity U is the potential energy. As an example, if we choose the q's as
the spherical coordinates (r,8,¢) to the individual positions of the particles, one third
of the pi's correspond to the radial momenta of the particles, the remaining pi's reflect
the ¢- and 8-components of the angular momenta.

To determine the path followed in time by the phase-space point, Fig. 1a, we need
some equations of motion. These may be expressed as differential relations involving the
Lagrangian. Alternat;vely, one may introduce a Hamiltonian,

H(q,p,t) = L p;q; - L . (2)
i

We recall that in case only time-independent conservative forces are acting, H is a
constant of motion, the total energy. In general, the total force active divides into a
conservative, or Hamiltonian, part and a non-conservative contribution. The former corres-
ponds to the part of the force which is derivable from a potential U, where U=U(q,q,t)
appears as a sum of the usual scalar potential gnd a term accounting for electromagnetic
forces on moving charges Q The non-Hamiltonian part Qi represents friction and inelastic

processes. By means of the Hamiltonian, the 6N equations of motion then take the form

5o o OH g, = O
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Figure 1: The 6N-dimensional phase space

Through specification of initial conditions, 1i.e., the 6N phase-space coordinates
pertaining to the system at t=0, the 6N first-order differential equations (3) fix in a
unique manner the phase-space trajectory, Fig. 1b.

In practice, N is a large number and there is a lack of complete information on the
initial conditions. Consequently, a statistical description is introduced. We define a
phase-space distribution p(q,p,t) such that

e(a,p,t)dadp , dqdp = T dq,dp; , (4)
i
gives the probability for finding the particle system within a volume dqdp near the point
(gq,p) at time t, Fig. f1c.

Liouville's theorem now states that: Provided solely Hamiltonian forces are acting,
the phase-space density ¢ remains unchanged along a phase-space trajectory, i.e., p 1is
constant when measured at the variable position of a particle system moving through phase
space, Fig. 2a. We may rephrase the theorem by stating that when QiEO, the volume enclosed

by a given contour is conserved under the transformation (3), Fig. 2b.

In order to prove Liouville's theorem, consider a domain Q@ in phase space, Fig. 2c.
Due to continuity, the speed, by which the total probability for finding the particle
system within Q changes, equals the total influx of probability per unit time through
S(Q), the surface of Q,

& fodwp=-¢ Jad, F-oap - (5)
Q S(Q)

Here, 3 is the 6N dimensional probability current density and a¢ is an outward directed
surface element, as=nds. By means of the divergence theorem we may rewrite Eq. (5) as

% L r (0 ey 4+ =2 (of )
IQ[ at i (aqi (eq;) + 3, (QPi))] dgdp = 0 . (6)

Since Eq. (6) holds for any choice of @, the quantity in square brackets itself vanishes
identically. By differentiation of the products and collection of the terms which contain
derivatives of p, we then obtain the relation
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Figure 2: Liouville's theorem

a% =-el (77 + 557) . (7)

When we now decide to follow the particle system in its motion through phase space, bi and

qi are given by Eq. (3). Consequently, we arrive at the final result

at - " ey (8)

Evidently, if only Hamiltonian forces are acting, Qiso, the phase-space density remains
constant, dp/dt=0. This is the Liouville theorem. The relation (8) provides a

generalization to cases where also non-Hamiltonian forces are acting, Qi#O.

It is worthwhile stressing at this point that interparticle forces are Hamiltonian as
they are derivable from potentials like

' nm , (9)

where ;n denotes the position in direct space of particle number n. Consequently, in the
6N-dimensional phase space the introduction of interparticle interactions does not change
the validity of the Liouville theorem as long as we do not consider inelastic processes
like atomic excitation and ionization, charge transfer, or emission of radiation during

collisions.

2.2 Reduction to 6 dimensions

The 6N-dimensional phase space is clearly not very suitable for practical purposes.
Therefore, it is customary to introduce an alternative description based on 6 dimensions
only, three spatial ones and three momentum coordinates. Each single particle of the
system is represented by a point, Fig. 3a, so instead of one point in a 6N-dimensional
space as in Fig. 1a we shall be working with N points in a 6-dimensional space. We

introduce a particle density f(a,ﬁ) in such a way that

N < £(q,p)a’qd’p (10)
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Figure 3: Distribution and motion in 6 dimensions

gives the number of particles within the volume d3a,d33 around the phase-space point
(a,s). The basic question to be answered is then: What may be said about the evolution of
f?

A formal reduction from 6N dimensions to 6 is described elsewhere "5{ We shall not
embark on a discussion of this matter here. Instead, we shall be content by making a few
simple observations. Consider first a situation where there is no inter-particle
interaction. In this case, the single-particle Hamiltonian depends solely on a and B - and
not on the phase-space coordinates 3' and B‘ of other particles. Hence, the individual
particle trajectories are independent and determined by the single-particle Hamiltonian
H(&,B) and, if active, by the non-conservative force 6(&,5). We may therefore repeat the
continuiEy argument, Eq. (5), with f substituted for g and a 6-dimensional current density
of }=f-(&,3), Fig. 3b. In analogy to Eq. (8) we obtain as a result

af _

. >
FT £ leB Q (11)

i.e., a 6-dimensional version of Liouville's theorem holds for 550.

Allow now for interactions between the N particles. In this situation the 6-d
continuity argument goes wrong! Besides streaming smoothly through the surface S(Q) of the
phase-space volume according to the current density } (as determined by H,a(&,s)), Fig.
3b, there is the chance that a particle in its motion throughout phase space encounters
closely another particle whereby it gets scattered, or kicked, into Q, Fig. 3c. We may
therefore write
. -+ of
Frialie f dlvs Q + (SE)C (12)
where the last term on the right-hand side symbolizes the change in f due to collisions.
The "soft" part of the interparticle interaction, the collective “space charge" force due

to all other particles, may be included in the single-particle Hamiltonian t,s{
In the special case 650, Eq. (12) takes in (f,?)—space the form
of -+ 09f 1 = * of of
4V 4o (F  +F_ ) == (37) (13)
ot a2 M ext sc’ a3 ot c

with vzr and ﬁext(;';) denoting the external force. The space-charge force fsc depends on
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the distribution function f(f,?) and thereby the equation (13) is seen to be highly non-
linear. However, we stress that a 6-d version of the Liouville theorem holds even with
inclusion of this interaction term provided only that the collision term (aflat)c may be

neglected.

To see the significance of the collision term, consider the simple example of a free,
neutralized, spatially homogeneous gas; fext=§sc=af/6;§0. In this case Eq. (13) simply
takes the form

== () . (14)

If collisions are absent, f clearly remains unchanged relative to its initial value -
which could be anything that does not depend explicitly on time. On the other hand, if
collisions are present, the collision term assures that the distribution function relaxes
towards thermal equilibrium. Natural questions, which appear in this context, are: How

fast is the relaxation and what is the final equilibrium?

2.3 Evaluation of collision term

In order to answer questions on the trend towards equilibrium, we need an expression
for the collision term. Our strategy is to adopt some physical model for collisions which
links (3£/3t) to £(2,V).

Define w(G,AG) as the probability that a particle of velocity v acquires an increment
AV (due to collisions) within a time interval At. The value of the distribution function f
in the phase-space point (;,;) at time t may then be expressed in terms of the value of f
in all points (f,;-A;) at the slightly earlier time t-At as

£(T,V,t) = [E(L,V-AV,t-At)p(V-AV,AV)d AV . (15)

We note that the function y is assumed to be time-independent, the process is assumed to

be a so-called Markoff process. Upon expansion of Eq. (15) to second order, the collision

term takes the formﬂ

of 1 + 4 + @
(a—t')c = iE (f(r,v,t) - f(r,v,t-At))
(16)

|o

2
1 [ 1 3

= - - r (f<Av.>) + 5 [ +——5— (f(Av.Av.))] '
At i ov i 2 ij aviavj i)

Q|

with f evaluated in the phase-space point (2,3). The symbol < > indicates an average over
increments AV with the weight function w($,A3),

CE(AV)> = JE(AV)G(V,AV)d AV . (17)

Consequently, <AV> denotes the average velocity increment due to collisions within the
* time interval At, i.e., the quantity

-» >
At <Av> = F(v) (18a)
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may be interpreted as a dynamical friction force experienced by a particle penetrating the
gas (of other particles) at velocity v. Similarly,

1
(AviAv.>

D ad
At . (V) (18b)

] 1]

are diffusion coefficients. Substitution of Eqs. (16) and (18) into Eq. (13) leads to the
Fokker-Planck equation.

In a plasma, collisions involve in general many particles. However, in the following
we shall assume that such multiple collisions may simply be treated as sequences of binary
encounters. We sometimes refer to this picture as a binary-encounter model. Consider

therefore two identical particles of velocities 31 and 37, charge Ze and mass m. We may
describe their collision in the centre-of-mass system as the scattering through some angle
8 of a particle (number 2) of velocity 5532—;1 and mass m/2 on a fixed centre, Fig. 4. To
determine the averages fixing the friction and diffusion coefficients, Eq. (18), we have
to average over all scattering events involving a given 'test-particle' velocity, 3531.

-1

The influx of particles (number 2's) amounts to f(zz)wd?rZ (cm'zs ) and with a cross

section do(w,8) for scattering into an element d2 of solid angle we may write
1 e + do(w,8)
X By = Idvdef(vz)w 30 | . (19)

Egqs. (18) then take the form

do(1¥,-V],8)

-+ » > > >
F(v) = nfdv,def (v, ) |V, -V 5 AV
(20)
> >
da(|v_-v},9)
> -+ -+ 2 2 2
Dij(v) = Idvdef(vz)Iv2 v] a3 AviAvj .

where the change in test-particle velocity depends on scattering angle and initial

. +> L d
velocities, Av=Av(0,v,v2).

To proceed, we need an expression for the differential scattering cross section. For

pure Coulomb interaction, the Rutherford cross section applies, i.e.,

2

do _ (ze)* _ d
aQ ~ 2 & . 4 - . & ! (21

mw sin (8/2) 16sin (8/2)
where ds4(Ze)2/mw2 denotes the collision diameter. Upon insertion into Eq. (20) and

integration over scattering angles, the friction and diffusion coefficients take the form

4 -+
+.  _ 8u(Ze) - - w
Py = S L AV, (V) 5o
(22)
4 Wo, . w.w
+. _ 4u(Ze) + ij "ij
Dij(V) = ——— L Idvzf(vz) —

m w
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Figure 4: Diagram of binary collision

The "Coulomb logarithm" L is approximately given as Lzln(Z/Bmin)=1n(2bmax/d), where Bmin
denotes an effective minimum scattering angle corresponding to an effective maximum impact

parameter bma , which may result from, for example, screening by other ions in the gas or

X
from the spatial extension of the gas container. Typically, L attains values of the order
of 10 and its variation with w is thereby very slow. In consequence, L has been taken
outside the integrals in (22). We leave it as an exercise for the reader to prove the

relations (22). Ref. 5 or a similar textbook on plasma dynamics may be helpful.

2.4 Rates of diffusion

To estimate the rate of change of a non-equilibrium distribution f(z) in its trend
towards equilibrium, consider Eq. (16), which takes the form
2
B, _ 1. 8 eiradyy sl p L0 T
Ge)_ = " mlay, HWF M)+ 5 I 5oy, (EWD(v)) (23)
c i i ij ity

with the definitions (18). To characterize the distribution, let us compute various
moments. The first moment defines the average value of the velocity ;, the second 1is
related to the width of the distribution. To determine the n'th moment, multiply Eq. (23)
through by vx, where x signifies a fixed but otherwise arbitrary direction. Under the
assumption that f vanishes rapidly at infinity, integration over all velocities (partial

over Vx) yields for n=1,2 the results

0 — 1=
2 Yx “mFx
(24)
d 2 _2 o
3 Vx “n Txx tDxx v
where the bar indicates an average over the distribution function f,
V) = fav £(V) 2(V) . (25)

Note that f enters both in the averaging in Egs. (24) and in the determination of the
friction and diffusion coefficients.
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Leﬁ us now pose the question: How quickly do particles immersed into the gas
randomize? Or, in other words, how fast may we expect such particles to loose orientation?
If we choose particles of the same type as the gas particles and with comparable speed,
the answer clearly will provide information on the trend of the distribution f(z) towards
isotropy. Therefore, consider a single “"test particle' of velocity ﬁ, i.e., with a

distribution function

ft(G) = 5(v-0) (26)

penetrating a "background" gas characterized by the usual distribution f(22;32). The
development with time of the test-particle distribution is governed by Eqs. (24), where
the averages now are taken over ft' whereas F and Dij are determined by f. The first of
Eqs. (24) determines the slowing-down on average of the test particle towards the "centre-
of-gravity" of the gas distribution f. The second determines the noise or fluctuations in
test-particle velocity acquired during slowing down. Randomization is inherent in this
diffusion equation. To estimate the rate of loss of test—parficle orientation, consider
the blow-up of the square of the test-particle velocity in directions transverse to i
With the distribution (26) inserted into the second of Eqs. (24), we obtain
3 2
s

= @ (27)

N
= Duu(u) + DBa

where a and B denote mutually perpendicular directions transverse to u.

By means of the result (27), let us now estimate the time constant t for relaxation
towards isotropy for a few specific distributions f(z). For a spatially uniform gas of
density n and isotropical Maxwellian velocity distribution, the rate at which a test

particle randomizes assumes the value

Y 4
-1 _ -29 2 . 4wn(Ze) -3
Tosul gV, T/ LA (28)

m
when u is chosen as the root-mean-square velocity A of the gas (in one dimension) and the
diffusion coefficients (22) are used. Ref. 5 or a similar textbook may be consulted during

derivation of the relation (28). Alternatively, through introduction of a measure p for

the phase-space density of the gas, we may express the relaxation rate as

' = anze)'nL oy, ¥ : 3

mA

(29)

We prefer this representation when we later turn to the case of a beam. (Note that the
actual phase-space density of the gas varies from point to point according to f(a) - the
quantity p introduced in Eq. (29) only reflects the scale.)

Another example is that of a spatially uniform gas with an anisotropical Maxwellian
velocity distribution,

n

2, 2 2 2 2
_ . (Vx+VY)/A; v, /28,
nmAi_A I

£(r,V) = nf(V) e . (30)
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where we assume A"<<AL. To estimate the rate of relaxation towards isotropy of this dis-
tribution, take a test particle with a velocity in the disc of gas velocities, U=uk with
u=A,, and consider the diffusion to z-velocity space. This is determined by the coeffi-
cient Dzz(ﬁ)=Dzz(ui). Clearly, the distribution (30) factorizes into a transverse and a
longitudinal velocity distribution, f(3)=fz(vz)fL(vL). A relevant quantity to compute
would therefore be the blow-up rate for the longitudinal distribution,

S _ 28 2 _ -
TOEA Y

@

znzz(ux) ) (31)

With the distribution (30) inserted into Eq. (22) we obtain, upon integration over all gas

velocities, the result
Ay
' me)tnry — ,  w=—2 . (32)
A 3,2
" LYY

for u-A;, cf. the Appendix. Again, p provides a measure of the phase-space density of the

gas.

With this example, we close the discussion of the general description of relaxation
towards isotropy of a non-equilibrium plasma. We are ready for the beam case!

3. SCATTERING WITHIN BEAM

3.1 What is special?

At first sight, the beam looks very different from the gas discussed above. However,
if we transform away the drift 30 by working in a reference frame, the so-called particle
frame (PF), which moves along with the average beam particle, scattering processes appear
exactly as in the gas case. In particular, the motion in PF is non-relativistic and the
scattering processes classical (i.e., non-quantal). The only complication to be
encountered is that while the scattering naturally is described in physical space, the
distribution functions, whose change we are interested in estimating (emittances, etc.),
are given in a different set of generalized coordinates. In the accelerator we encounter

couplings between the motion in x, y and z directions.

To illustrate the importance of such couplings, let us consider the following simple
example, which is due to Derbenev G{ At a given instant, two beam particles move
transversely to the beam axis in PF in the horizontal plane at equal but opposite momenta,
1px. Then, they perform a 90° collision whereby they are turned parallel to the beam
axis, the momenta being conserved in magnitude. In the laboratory frame, the transverse
components of the momenta of the two particles remain unchanged from their PF-values.
However, the gain in longitudinal momentum during the collision, Ap“, is magnified by a

-1/2

factor of vy, where Ys(1—v02/c2) is related to the total relativistic energy E of the

average beam particle as E=1mc2. The situation is sketched in Fig. 5, for the laboratory
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we have only shown the deviation in momentum from the average Ssymso. In PF, the sum of
the momentum squares clearly is unchanged by the collision - the longitudinal blow-up is
compensated by a transverse collapse. However, what happens to the single-particle emit-

tances and Ap/p?

The collision illustrated in Fig. 5 leads to a growth in longitudinal phase space
because, initially, the longitudinal momentum components vanished. Consider now the trans-
verse phase space. For simplicity, we shall neglect derivatives of the lattice functions,
B'=D'=0, whereby the horizontal (single-particle) emittance takes the form

w 2 2 2 Ap
= — |x, + X, X, =x-D—. 33
Tl R P (33)
The physical point of scattering x remains unchanged by the collision. In terms of the be-

tatron amplitude x, and its derivative xé, the scattering event is mapped by Table 1. Here

B
the sign on terms containing P, varies according to the particle considered. Insertion

into Eq. (33) leads to a change of the sum of emittances for the two particles of

P
_ o, X,2 2 _ 2
Ale + exlz) =2 — (p—) [(Dy) g1 . (34)

] X

X, 1
X

Evidently, the sign of the square-bracket factor in Eq. (34) decides whether the total
emittance de- or increases. For (Dy/Bx)2>1, we encounter simultaneous longitudinal and

transverse growth!

167 -17
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Figure 5: Sketch of Derbenev's collision of two beam particles

Table 1

Map of xB and xé in Derbenev's collision

Time X X!

Before X +p/p

After X+ Dyp, /P 0
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3.2 Practical IBS calculation

Descriptions of practical - calculations of intrabeam scattering (IBS) may be found
elsewhere 1'2'7'01 The classical reference is Piwinski's paper Q Here, derivatives of the
lattice functions are neglected, which strongly limits the applicability. Improvements of
Piwinski's treatment to account for the derivatives have been reported, for instance by

Martini 21

In general, the procedure used in the IBS-calculations is quite similar to that for
the plasma case, Section 2, only are the formulas more complicated. We may sketch a

typical calculation by the following succession of steps:

i) go to PF; here we have classical Rutherford scattering between pairs of
identical particles;

ii) compute the change of single-particle emittances etc. (as defined in
the laboratory frame) in a given binary (PF-) collision;

iii) assume simple phase-space distribution functions (Gaussians);

iv) average over all collisions (scattering angles, incidence and exit mo-

menta, place of scattering).
These are the ingredients - practical performance is 'only' a question of technique!

Various IBS-computer codes are available on the market. Inputs are storage-ring
lattice and beam (type and number of particles, momentum, emittances and Ap/p) and the
output consists of heating rates for vertical and horizontal emittances and longitudinal
momentum spread. We advocate Martini's version since this is written in a transparent way

and appears well documented 2'9{

3.3 Examples of IBS rates

Rather than dwell on technical details of the IBS-calculations, let us play around
a bit with some of the available computer codes. In doing so, the question immediately

appears how to represent the data in a reasonably compact manner?

Let us for a moment assume that the velocity distribution of the beam in PF is a
Maxwellian and the spatial density a constant. In this case the diffusion rate in PF is
defined by Eq. (29). To transform to the laboratory frame, we note that the spatial
density n and the longitudinal momentum spread Ap" is magnified by a factor of vy, whereas
the transverse component of the momentum p, is unaffected upon transformalion. This leads

to a conserved phase-space density,

nb = ynPF
Apﬁ' = YP:,F ====) uL = uPF . (35a)
L PF

Py = Py
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Accounting for time dilation

L PF

o=yt , (35b)
we obtain for the Maxwellian PF-distribution a rate of
r; =y ' trze)'mpn . (36)

To represent IBS-data for a realistic beam, our first suggestion could therefore be to
plot r"y/u or, rather, (Ir'1)y/u as a function of emittance and longitudinal momentum
spread. Here, the summation sign indicates the sum over blow-up rates for horizontal and

vertical emittances and longitudinal momentum spread, [r"srﬁ'+r&1+rbl.

TFigure 6 shows examples of such plots for coasting proton beams of equal horizontal and
vertical emittances circulating in two different CERN storage rings, the former ICE-ring
(yt=1.3) at p=0.3GeV/c and LEAR (1i=—(14.5)2) at p=0.6GeV/c. For ICE we have used
Martini's code, for LEAR a code written by Mohl 1Q Corrections have not been made for the
slightly different definitions of beam emittances and Ap/p (relations to widths of
Gaussians) applied in the two programs. For the measure p of the phase-space density
entering the ordinate in Fig. 6, we have substituted the expression

-1 -1.3
g =N'p eHevCAp/p ' (37)
where N denotes the total number of beam particles and C is the circumference of the ring
in question; our unit of emittance is wmrad, of momentum GeV/c and of length and time m
and sec, respectively. Note that only the points are calculated - curves are drawn to

‘quide the eye'.
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Figure 6: Intrabeam scattering in ICE and LEAR
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Let us stress some of the main observations to be made from Fig. 6: First of all, we
note that there is always growth, i.e., the ordinate in the figure is always positive (the
individual blow-up or ‘'heating' rates may be negative as well as positive). This implies
that, in general, the beam never reaches an equilibrium. Secondly, we encounter for any
fixed value of Ap/p a smooth behaviour, that is, a slow increase in the normalized rate
with increasing emittance up to a certain point where a more rapid dependence sets in. To
the left of the point (the flat portion of the curve) the blow-up rate is dominated by
ré', to the right (steep portion of the curve) ré‘ dominates. Throughout, r%‘ plays a
minor réle. Thirdly, the break-up point is positioned exactly in the region where coupling
in the horizontal plane becomes important. Since the (Gaussian) width of the beam in this
direction is composed by two contributions, one, OHB' which is due to betatron oscillation
and another, Dop, which appears because of the coupling via the dispersion to the momentum

spread ap, that is, since

2 _ 2 2 2
oy = OHB +D op , (38)
the point in question appears for O;B“DZO; or, equivalently, for
D2 Ap,2
- (> (ZF . 39
ey B ) (39)

A typical value for the average < > around the storage ring of DZ/SH could be in the range

1-10m. Finally, the patterns observed for different machines are similar.

3.4 Representation of IBS-data by reduced variables

The study of Fig. 6 immediately suggests further condensation of the IBS-data by
plotting the curves as functions of the reduced variable e/(Ap/p)z, cf. Eq. (39). The only
question which remains is then what the optimal choice for the second axis may be? To the
right of the break-up (or, perhaps, "break-even") point, couplings between the three
planes of motion may be neglected. In the same region, the beam has collapsed
longitudinally in momentum space, in PF even with an additional factor of y. Consequently,
the steep portion of the curve corresponds to a PF-rate similar to (32). Transformation to
the laboratory frame proceeds via Eqs. (35). Since the phase-space density is conserved,
while the y-factors from time dilation and longitudinal momentum spread cancel, we obtain

1/2
-1 . 4 <pi> 4 [e
tL = 4w (Ze) muL > « 2 mpL Ap/p '
(Ap")

(40)
L

which is independent of .

Biased by the result (40), we show in Fig. 7 a plot of (v "y "<y as a function
of e/(Ap/p)2 for a coasting proton beam circulating in ICE. The conditions are the same as
in Fig. 6 and for p we have again substituted the measure (37). Through the points
computed for Ap/p=10" we have drawn a curve to guide the eye. To our great satisfaction
we observe that the normalized rates corresponding to the three remaining ICE-curves of

Fig. 6 fall very close to the 10" curve. For the storage ring given, the intrabeam
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Figure 7: IBS-rates for ICE in reduced variables

scattering may to a very good approximation be represented by a single universal curve!
Scaling to particles of different charge and mass is straightforward, cf. expressions like
(36) and (40). It may be noted that to obtain a single curve with as high accuracy as in
Fig. 7, it is essential to include in the ordinate the average <L> around the ring of the
Coulomb logarithm.

The patterns observed for other storage rings - from the low-energy ring ASTRID in
Aarhus to the high-energy antiproton accumulator at Fermilab - are quite similar to the
ICE case shown in Fig. 7. Even the absolute numbers are similar, indeed, we have never for
any lattice tested encountered normalized rates which have been more than approximately a
factor of four off the curve displayed in Fig. 7. To the right of the break-up point, the

agreement is even within a factor of two.

Clearly, one may think of rescaling once more the IBS results for the purpose of
producing a universal curve which could represent the data obtained with any given
lattice. The first one could imagine to do could be, for example, to include in the
horizontal scale a factor of (Dz/ﬁH)'1 to account for the variation in the break-up point,
Eq. (39). Next, one could consider if the phase-space measure p is expressed in a
sufficiently machine-independent manner by Eq. (37). Also the dependence of the constant
of proportionality in the last relation in Eq. (40) on lattice parameters should be
considered. Whether further rescaling could be successful appears doubtful, however. It is

clear that while the steep part of the curve in Fig. 7 has a simple interpretation, Eq.
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(40), the flat part is strongly dominated by the couplings in the transverse plane, i.e.,
we shall expect this part of the curve to be more machine-dependent than the former. Our
recommendation should therefore be: For the lattice of interest, compute once and for all
the universal curve, cf. Fig. 7, and trust this within typically 50%.

4. CONCLUDING REMARKS

Through the previous paragraphs we have intended to give a transparent introduction to
the phenomenon of intrabeam scattering. We have emphasized the close analogy between IBS
and the trend towardé isotropy in velocity space of a plasﬁa and, at the same time,
stressed the differences which are due to the couplings of the degrees of freedom in the
accelerator. Rather than going through all the technical details of IBS calculations, we
have chosen to show results of numerically computed rates. A study of such data, combined
with the general considerations for the plasma case, led to the production of a strongly
reduced representation of IBS-rates: For a given lattice a single, universal curve may be
created, which allows for a quick read-off of heating rates in any situation. Furthermore,
the universal curves corresponding to even very different machines (as far as tested)
differ by less than an order of magnitude.

Finally, let us mention that a few experimental measurements of IBS heating rates
exist. These all seem to agree with the results obtained from the computer codes, cf.
Refs. 2 and 7.
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APPENDIX

In order to derive the expression (32) for the blow-up rate in the axial direction of
a flattened Maxwellian velocity distribution, Eq. (30), we need an expression for Dzz’ cf.
Eq. (31). With a transverse test-particle velocity, ﬁ=uﬁ, this component of the diffusion

tensor reads

2 2
4 W -W
D - 4wn(Ze) L Id3; f(;) . ; = ;; - uk ' (A1)
zZZ m2 W

according to Eq. (22). A change of integration variable gives

‘ R R SR I e TS
4n(Ze) 2 P2 |
22 =S — L fd WJ_sz -3 e e . (A2)
/2m 8,8, W

where GL and wzi denote the components of the relative velocity transverse and parallel to
the axis, respectively. When the velocity distribution is assumed excessively flattened,
A <<y, the factor w? may be replaced by w;?. The diffusion coefficient (A2) then reduces
to

4n(ze)" - '(Wi+uz)/Ai 2w -2wlucos¢/Ai
DZZ = ——-———Z > L IodW_L e Iod‘P e . (a3)
mA,

Integration over the azimuthal angle ¢ yields the modified Bessel function Iu’

2,2, ,,2
_ 8nn(Ze)4 - (w,+u ) /b, 2w,u
D_=———0L /] du, e I ( ) . (24)
YAA 2.2 0 0 2
n’ A% 22
cf. Ref. 11. In turn, the w, integration may be performed to give'ﬂ
2 2
' il 2
Dy = 4wn§Ze)_ /e IO(E~;) . (A5)
mAL ZA_L

The function e_xIO(x) decreases slowly with x; at x=0 it equals 1, for x>>1 it approaches

(211)()'1/2 and for xz% we have Jw e_xID(x):1 (Ref. 11). In consequence, we may write

arn(ze)"

mZAL

Dzz(ui) = L , u>a, . (a6)

Insertion of this result into Eq. (31) leads to the rate (32).



