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ABSTRACT

We study the extent to which the cosmological fine-tuning problem - why the relic density of
neutralino cold dark matter particles χ is similar to that of baryons - is related to the fine-tuning
aspect of the gauge hierarchy problem - how one arranges that MW � MP without unnatural
choices of MSSM parameters. Working in the minimal supergravity framework with universal
soft supersymmetry-breaking parameters as inputs, we find that the hierarchical fine tuning is
minimized for Ωχh2 ∼ 0.1. Conversely, imposing Ωχh2 < 1 does not require small hierarchical
fine tuning, but the exceptions to this rule are rather special, with parameters chosen such that
mχ ∼ MZ/2 or Mh/2, or else mχ

>∼ mt. In the first two cases, neutralino annihilation receives
a large contribution from a direct-channel pole, whereas in the third case it is enhanced by the
large top Yukawa coupling.
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One of the important philosophical issues to be addressed by any dark matter candidate is
the extent to which a relic density of interest to astrophysicists and cosmologists, 0.01 < Ωh2 <
1, is natural. Indeed, this question is often posed to proponents of favoured candidates such
as a neutrino, the axion and the lightest supersymmetric particle, assumed to be the lightest
neutralino χ [1]. In the case of a neutrino, the see-saw mechanism explains in a natural way
why mν � mq or m`, but does not lead inexorably to Ων in the interesting range. In the
case of the axion, experimental and astrophysical constraints restrict its relic density to the
interesting range, but this is not yet predicted by any deeper theoretical argument, although
such an argument may yet be found [2]. In the case of supersymmetry on the other hand, it
is well known and will be emphasized below that there are indeed good physical reasons for
expecting cosmologically significant relic densities [3].

The essential motivation for supersymmetric particles to appear below the TeV scale is
provided by the gauge hierarchy problem. Supersymmetry by itself does not explain why
MW �MP , but it does enable such a hierarchy to be stabilized against the effects of radiative
corrections, averting the need for fine tuning and rendering the gauge hierarchy technically
natural [4]. The appearance of supersymmetric particles at the TeV scale is also supported
[5, 6] by the experimental value of sin2 θW , in accord with supersymmetric grand unified theories,
and by the indications that the Higgs boson may weigh around 100 GeV [7], in agreement with
supersymmetric model calculations if sparticles weigh < 1 TeV [8].

The TeV scale also arises as a possible characteristic mass scale for a cold dark matter can-
didate. Particles that annihilate via conventional point-like interactions generically have Ω ∼ 1
if their masses m ∼ √

MP × TCMBR, where the cosmic microwave background temperature
TCMBR = 2.73 K [9]. It so happens that

√
MP × TCMBR ∼ 1 TeV, making it plausible that any

relic with mass around the electroweak scale might have a cosmological density of astrophysical
interest.

In the case of the supersymmetric relic χ, detailed calculations have been performed [10],
and it has often been observed that 0.01 < Ωχ < 1 is a generic feature of parameter choices in
the minimal supersymmetric extension of the Standard Model (MSSM). Moreover, it has also
often been argued that restricting Ωχh2 < 1 suggests very strongly that mχ is at most a few
hundred GeV [11]. However, it is known that there are rays in parameter space along which
Ωχh2 may be kept small even though sparticle masses grow large. The purpose of this paper
is to bring together and complete these observations, with the aim of clarifying the extent to
which the supersymmetric resolution of the fine-tuning problem is related to the cosmological
fine-tuning problem.

The criterion for hierarchical fine tuning that we use is that championed in [12, 13], namely
the logarithmic sensitivity ∆0 of MZ to variations in MSSM input parameters ai:

∆0 ≡ max|∆ai
| : ∆ai

=
ai

MZ

∂MZ

∂ai
(1)

The lower bounds imposed on ∆0 by experiments at LEP and elsewhere have been discussed
previously by several authors. There have been extensive discussions how this price varies as
a function of tan β, the ratio of Higgs vacuum expectation values (vev’s), and how the price
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may be reduced if some underlying theory imposes relations between some MSSM parameters
[14, 15, 16]. Here we extend these discussions to include a cosmological dimension.

We study the extent to which the cosmological fine-tuning problem is related to the fine
tuning of the gauge hierarchy, as measured by the quantity ∆0 (1). Making an extensive search
of the MSSM parameter space, we find that minimizing ∆0 leads to Ωχh2 ∼ 0.1. Moreover,
we find a general correlation between those parameter choices with larger Ωχh2 and those with
larger ∆0. On the other hand, imposing Ωχh2 < 1 does not exclude all models with large
∆0. We can distinguish three regions in the neutralino mass mχ (or, correspondingly, in the
GUT scale gaugino mass parameter M1/2) in which Ωχh2 < 1 with large ∆0 are possible. For
mχ ≈ MZ/2 or mχ ≈ Mh/2 (that is for M1/2

<∼ 150 GeV) large pole-dominated s−channel
annihilation cross sections give a low relic density in ways unrelated to the value of ∆0. In the
intermediate region, MZ/2, Mh/2 <∼ mχ

<∼ mt neutralino annihilation proceeds mainly through
slepton exchange, and Ωχh2 < 1 then implies m0/M1/2

<∼ O(1) and small ∆0. For mχ
>∼ mt,

Ωχh2 < 1 is also possible in models with relatively light stop, so that the t−channel annihilation
into tt̄ pair is enhanced again leading to a lower relic density. Within the minimal SUGRA
framework such models require large left-right mixing in the stop sector and hence, in addition
to a large top Yukawa coupling, a large value of A0. Thus, models with Ωχh2 < 1 and large
fine-tuning are rather special: some have mχ ≈ MZ/2 or Mh/2 whilst others have mχ

>∼ mt

and relatively light stop. The former class of special solutions can be exhaustively explored
by chargino searches at LEP 200, whilst the latter would be absent if |A0| <∼ 1 TeV. Our
study does not find that the cosmological and hierarchical fine-tuning problems are equivalent,
but it does confirm that an interesting cosmological relic density is indeed to be expected in
supersymmetric models that do not exhibit extreme fine tuning.

Our study of these issues is based on the survey of MSSM parameter space made in [14, 16],
which we review briefly here. As usual, we denote the Higgs mixing parameter by µ, and
we assume the conventional minimal parameterization of soft supersymmetry breaking in the
MSSM, via a universal scalar mass parameter m0, a universal gaugino mass parameter M1/2,
and a trilinear (bilinear) coupling A0 (B0). We assume that µ0, m0, M1/2, A0 and B0 are
the appropriate inputs ai at the GUT scale MGUT = 2 × 1016 GeV which should be used
in the hierarchical fine-tuning criterion (1). These parameters are renormalized down to the
electroweak scale in the standard way, leading to an effective potential that breaks electroweak
gauge symmetry spontaneously, with a calculable value of tan β.

Our procedure for surveying the MSSM parameter space is, for reasons of convenience,
to choose low-energy parameter sets that respect the experimental constraints and yield an
appropriate electroweak vacuum, as determined using the full one-loop effective potential in
the MSSM [17]. Specifically, using the measured value of MZ , for each value of tan β and a
given sgn(µ), we scan low-energy values of the left-handed doublet squark mass mQ, the right-
handed singlet up-squark mass mU and the CP-odd MSSM Higgs mass MA that are allowed
by the experimental constraints [17]. We then use the renormalization-group equations to find
the corresponding allowed values of the GUT input parameters.

As experimental constraints, we take into account the precision electroweak data published
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at the Moriond conference [18], and require ∆χ2 < 4 in a global MSSM fit. We also in-
corporate LEP lower limits on the masses of sparticles and Higgs bosons [19]. Another im-
portant accelerator constraint is provided by the recently measured b → sγ branching ratio
2× 10−4 < Br(B → Xsγ) < 4.5 × 10−4 [20], which we treat as described in [14]. We find that
the GUT-scale parameters corresponding to successful choices with an upper cut of 1.2 TeV on
the soft masses MA and the squark masses, vary over the ranges |µ0| <∼ 2 TeV, m0

<∼ 1.7 TeV,
M1/2

<∼ 600 GeV, |A0| <∼ 5 TeV and |B0| <∼ 3 TeV. Note, in particular, that the upper bound
on M1/2 (and, in consequence, on the chargino mass) visible on the plots follows simply from
the cut imposed on the scanning procedure.

Finally, we note that the range of the relic neutralino density favoured by astrophysics and
cosmology is Ωχh2 ∼ 0.1 (see, e.g., [21]), but we do not use this as a constraint in our analysis.
Rather, our aim will be to explore the extent to which this is a natural outcome for successful
MSSM parameter choices with small values of the hierarchical fine-tuning measure ∆0 (1). To
this end, within the context of the supergravity-based MSSM, we calculate the relic density for
each of the models considered in the fine-tuning analysis of [14, 16]. Thus, for every allowed
set of the GUT-scale parameters obtained by our scanning procedure, we have a calculation
of the relic density Ωχh2 in terms of all of the low-energy masses, which are determined from
M1/2, m0 and A0 for the same fixed values of tan β and sgn(µ).

We note that there are two recent refinements of the analysis of the MSSM parameter space
and the dark matter density that have not been included in this survey. One is the latest
implementation [22] of the requirement that our electroweak vacuum be stable against possible
transitions to vacua that violate charge and/or color conservation. This requirement tends to
exclude parameter choices with m0/M1/2

<∼ 1/2, which do not have exceptional values of either
∆0 or Ωχh2. We have also omitted the possibility of coannihilation [23] between χ and the τ̃R,
which is the next-to-lightest supersymmetric particle in a generic domain of parameter space.
This is important when mχ

<∼ 1.1mτ̃R
, which is the case only for a very small number of the

parameter choices in our survey. When it is significant, it tends to enable points with larger
hierarchical fine tuning ∆0 to have a cosmologically interesting value of Ωχh2.

Results for the case tanβ = 2.5 are shown in Fig. 1. The top left panel displays directly
the correlation we find between the hierarchical fine-tuning parameter ∆0 and the neutralino
relic density. Here and elsewhere, the eight-pointed stars represent parameter choices where no
specific direct-channel annihilation mechanism is dominant. The five-pointed stars represent
parameter choices where mχ ∼MZ/2, so that χχ annihilation via the direct-channel Z0 pole is
dominant. Because the width of the Z0 is relatively large, the effect of s-channel annihilation
through Z0’s occurs only in a small patch of the parameter space. The open circles represent
parameter choices where mχ ∼Mh/2, so that χχ annihilation via the direct-channel pole of the
lightest MSSM Higgs boson h0 is dominant. In this case, because of the very small width for
h0, the suppression of the relic density actually begins even when 2mχ ∼ 0.8Mh [24] and thus
can cover a broader parameter volume. Finally, the dots represent parameter choices where
mχ

>∼ mt, so that χχ → t̄t annihilation is important.

We see in the top left panel of Fig. 1 that (i) the minimum value of ∆0 ∼ 13 is attained for
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Ωχh2 ∼ 0.1, (ii) the minimum value of ∆0 increases gradually for larger values of Ωχh2, (iii)
apart from a few exceptional points, mainly with mχ > mt, all choices with Ωχh2 < 1 have
∆0 < 100, and (iv) apart from choices where χχ → t̄t dominates, when Ωχh2 > 1 there is a
clear tendency for its value to be correlated with that of ∆0. The origins of the exceptional
choices with low Ωχh2 and large ∆0 are seen in the top right panel of Fig. 1. They have values
of M1/2 ∼ 100 to 150 GeV, corresponding to mχ ∼ MZ/2 and/or Mh/2. We also see in this
panel that the choices with annihilation into t̄t correspond to M1/2

>∼ 400 GeV, which are the
largest in our sample. It is therefore not surprising that these correspond to some of the largest
values of ∆0, as we see in the top left panel.

The remaining panels of Fig. 1 show how the value of Ωχh2 is correlated with the values
of other MSSM parameters. In the middle left panel, we see a clear correlation between Ωχh2

and the ratio m0/M1/2, again apart from a few choices where χχ → Z0 or h0 or χχ → tt̄
dominates. Apart from these choices, we see that Ωχh2 is minimized for m0/M1/2

<∼ 1. In the
middle right panel, we see that Ωχh2 < 1 is consistent with relatively small values of |A0| for
the mχ ≈ MZ/2 or Mh/2 points and the points with no dominant annihilation channel, whereas
large A0 is required when mχ > mt. This effect is even more pronounced for larger values of
tan β (see Fig. 2 and related comments below).

It is worth emphasizing that the parameter choices dominated by χχ → Z0 annihilation
will soon be explored directly by LEP, as will to a large extent those parameters which lead to
annihilation via the light Higgs pole. These choices have mχ± <∼ 100 GeV, and hence should
reveal their secrets when the LEP center-of-mass energy is increased to ∼ 200 GeV in the years
1999 and 2000.

We have carried out similar parameter studies for several larger values of tan β ≤ 30, as
well as for tan β = 1.65, and now discuss some similarities and differences in these cases. As
a general rule, the cases with tan β > 2.5 are qualitatively similar to the tan β = 2.5 case.
In particular, it is always true that minimizing ∆0 favours Ωχh2 ∼ 0.1, as seen in Fig. 2 for
tan β = 10, for example. On the other hand there is no trend for the upper bound on ∆0

to be improved if one selects Ωχh2 < 1. We see again in the top left panel of Fig. 2 three
distinctive sets of parameter choices which satisfy this condition. The one with χχ → Z0 or h0

annihilation, is unrelated to the values of ∆0, as seen in the top left panel. The case with no
dominant annihilation channel has small ∆0. We also see there that the χχ → t̄t cases have
distinctively larger values of ∆0. For χχ → t̄t cases the correlation of Ωχh2 < 1 with large
negative A0 or very large positive A0 is quite pronounced and, as explained earlier, reflects
the necessity of a light stop, i.e., of a large left-right mixing. The asymmetry in the A0 values
follows from the renormalization-group running of the mixing parameter down to low energies,
where it is related to its GUT-scale counterpart through the equation [25]:

At = A0(1− y)−O(2)M1/2 (2)

where y is the ratio of the top Yukawa coupling to its infra-red quasi-fixed point value. The
correlation between Ωχh2 and the ratio m0/M1/2 is less pronounced, and m0/M1/2 > 1 is possible
for Ωχh2 < 1 even away from the exceptional cases mentioned above.

The situation is rather different for tan β = 1.65, as seen in Fig. 3. Here, we see in the
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top left panel that the tendency to favour low Ωχh2 is less marked, though Ωχh2 ∼ 1 is still
preferred. We again see that parameter choices with Ωχh2 < 1 normally have ∆0 < 200, with
exceptions provided by choices with important direct-channel Z0 and h0 poles, as seen in the
top right panel of Fig. 3. We recall that the five-pointed star choices with mχ ∼MZ/2 will be
explored exhaustively by the LEP runs at ECM = 200 GeV. We also see in the panel f) of Fig. 3
that LEP Higgs searches will be able to verify or exclude this possible value of tan β: it predicts
that Mh

<∼ 96 GeV, whereas LEP 200 should have a reach extending beyond Mh = 100 GeV.

The results presented so far have been obtained with a scan over mQ, mU and MA up to 1.2
TeV. We see that the highest values of M1/2 in this scan (and the corresponding values of mχ)
are consistent with Ωχh2 < 1, but at the expense of increasing fine-tuning. It is interesting to
extend the scan up to higher values of soft masses so that an absolute upper bound on M1/2

(mχ) is obtained from the requirement Ωχh2 < 1. This bound is shown in Fig. 4, where for
tan β = 10 we show Ωχh2 versus ∆0 and M1/2, scanning over mQ, mU and MA values up to 8
TeV. In Fig. 5a we plot ∆0 as a function of mχ for models which give Ωχh2 < 1. We observe
that the bound for the heavier superpartner masses is weak, around 1 TeV, but is saturated
only for large ∆0.

Let us now summarize the story so far. Minimizing the gauge hierarchy fine-tuning param-
eter ∆0 favours values of Ωχh2 close to the range favoured by astrophysicists and cosmologists.
Conversely, restricting Ωχh2 < 1 favours models with relatively low values of ∆0, with certain
well-understood exceptions, some of which may soon be probed by experiments at LEP.

The question now arises how sensitive these observations are to the fine-tuning criterion we
have used. In a recent paper [16], we have studied the consequences of postulating some linear
relation between a pair of the MSSM input parameters, and we now discuss their possible impli-
cations for the cosmological fine-tuning problem. Fig. 6 displays the implications of assuming
a linear relation between µ0 and M1/2, for the specific case tan β = 2.5. We see that the global
minimum of ∆Mµ is significantly reduced, and that the preference for Ωχh2 ∼ 0.1 is maintained
and even enhanced, as compared with Fig. 1 where no parameter relation was assumed. We
also see that the patterns of correlations between values of Ωχh2 and ∆0 for three different
sets of parameters are maintained, modulo an approximate overall rescaling in the values of
∆0. The picture if a linear relation between µ0 and A0 is assumed is somewhat different, as
displayed in Fig. 7. The minimum of ∆Aµ is again reduced, as compared to the case with no
parameter relation, but there is no longer any preference for Ωχh2 < 1: indeed, the favoured
value is Ωχh2 > 10. Finally, returning to Figs. 5b and 5c we see, for tan β = 10, the values of
∆Mµ and ∆Aµ for points satisfying Ωχh2 < 1 as functions of mχ. The values ∆Mµ

<∼ 10 are now
compatible with mχ

<∼ 500 GeV.

We conclude by reiterating that there is a significant correlation between the amount of
hierarchical fine tuning and the relic cold dark matter density in the MSSM. It is indeed
“natural” that the supersymmetric relic particle have Ωχh2 ∼ 0.1 to 1, which we consider to
be an attractive feature of this dark matter candidate, as compared to massive neutrinos or
the axion, whose densities have no obvious reason to fall within this favoured range. However,
this cannot be regarded as a hard prediction of the MSSM. Moreover, fine tuning is always
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a subjective argument, rather than a hard-and-fast mathematical argument, and one would
immediately embrace any experimental discovery of even an “unnatural” dark matter particle.
Nevertheless, we find this correlation between cosmological and hierarchical fine tuning an
interesting supplementary argument in favour of supersymmetric cold dark matter.
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Figure 1: The price of fine tuning and Ωχh2 for tan β = 2.5, as functions of various variables in
the minimal supergravity model. The experimental constraints described in the text are included.
The five-pointed stars (open circles) represent cases where mχ ∼MZ/2 (mχ ∼Mh/2). The dots
represent parameter choices where mχ

>∼ mt. Eight-pointed stars represent parameter choices
where no specific direct-channel annihilation mechanism is dominant.



Figure 2: As in Fig. 1, but for tan β = 10.
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Figure 3: As in Fig. 1, but for tan β = 1.65.
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Figure 4: The price of fine tuning and Ωχh2 for tan β = 10, with the scan over mQ, mU and
MA extended up to 8 TeV.
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Figure 5: The fine-tuning measures ∆0, ∆Mµ and ∆Aµ as functions of the lightest neutralino
mass for tan β = 10. Only points satisfying Ωχh2 < 1 are shown.
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Figure 6: As in Fig. 1 (tan β = 2.5), but assuming a linear correlation between M1/2 and µ0.
We show only points with ∆Mµ < ∆0.
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Figure 7: As in Fig. 1 (tan β = 2.5), but instead assuming a linear correlation between A0 and
µ0. We show only points with ∆Aµ < ∆0.
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