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Abstract

We use a recently completed O(α2
s) fixed-order calculation of the heavy-

flavour production cross section in e+e− collisions to compute the heavy-quark
fragmentation function. We fit the result of our calculation, convoluted with a
Peterson fragmentation function, to available data for charm production, and
thus obtain a value for the parameter ε in the Peterson function. We discuss
the relevance of mass effects and of subleading terms in our calculation.
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1 Introduction

In this work, we use a recently completed calculation of the O(α2
s) differential

cross section for heavy-quark production in e+e− annihilation [1] to compute the

heavy-quark fragmentation function at order α2
s. This calculation should be reliable

when the centre-of-mass energy E is not too high. At very high energies, in fact, large

logarithms of the ratio E/m, where m is the heavy-quark mass, arise at all orders in

perturbation theory, and should be resummed. A method for the resummation of the

large logarithms at the next-to-leading logarithmic level (NLL) has been developed in

Ref. [2]. On the other hand, the fixed-order calculation should be more accurate for

moderate values of the energy, since it correctly accounts for mass effects. Further-

more, the NLL calculation correctly accounts for terms proportional to α2
s log2(E/m)

and α2
s log(E/m), but cannot correctly predict the α2

s terms that do not carry any log-

arithmic enhancements, since these terms are of next-to-next-to-leading logarithmic

order (NNLL).

Studies of the charm fragmentation function have been performed with relatively

recent data in Ref. [3], using a parametrization of the non-perturbative effects based

upon the Peterson fragmentation function. From these studies, it was found that

the value of the ε parameter is much smaller in NLL fits rather than in leading-log

(LL) ones. In this work, we fit the same data sets, using our fixed-order calculation

convoluted with a Peterson parametrization of non-perturbative effects, and compare

our results with those of Ref. [3]. In order to better understand the differences of the

two approaches, we will also consider a fixed-order calculation of the fragmentation

function, in which mass-suppressed effects (i.e. effects suppressed by powers of m/E)

and NNLL terms are neglected. This calculation corresponds to a truncation of the

NLL formalism at order α2
s.

2 Theoretical framework

We consider the inclusive production of a heavy quark Q of mass m

e+e−→Z/γ (q)→Q (p) + X , (2.1)
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where q and p are the four-momenta of the intermediate boson and of the final quark.

We also introduce the notation

E =
√

q2 , ρ =
4m2

q2
. (2.2)

We will consider two possible definitions of the x variable, one based upon the energy

and one based upon the momentum. In the centre-of-mass system, we define

xE =
p0

p0
max

, xp =
|~p|
|~pmax| , (2.3)

with the kinematic ranges

√
ρ ≤ xE ≤ 1 , 0 ≤ xp ≤ 1 . (2.4)

In terms of invariants, we have

xE =
2 p · q

q2
, xp =

√
x2

E − ρ√
1− ρ

. (2.5)

Our starting formula will be the fixed-order (FO) cross section for the inclusive pro-

duction of a heavy-flavoured hadron. It is given by the convolution of the cross section

for the inclusive production of a heavy quark, supplemented with a non-perturbative

fragmentation function, which describes phenomenologically all the large time phe-

nomena related to the hadronization process

dσH

dxp
(xp, E, m)

∣∣∣∣∣
FO

=
∫ 1

0
dy dzp

dσ

dzp
(zp, E, m)

∣∣∣∣∣
FO

P (y, ε) δ(xp − yzp) , (2.6)

where P (y, ε) is the Peterson fragmentation function

P (y, ε) ≡ N
y (1− y)2

[(1− y)2 + y ε]2
, (2.7)

where the normalization factor N is fixed by the condition∫ 1

0
dy P (y, ε) = 1 (2.8)

if P refers to the total fragmentation function (i.e., summed over all heavy-flavoured

hadron species). In the following, where we will mostly consider D∗ production, the

normalization will be fitted to the data. Notice that we have written the convolution in

terms of the momentum fraction, rather than the energy fraction. At large momenta,
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the difference between the two definitions is small. At small momenta, one could

choose either approach. Choosing xp seems, however, simpler and more sensible, since

it is more conceivable that at small momenta the non-perturbative effects soften the

hadron momentum, rather than its mass.

The details of the procedure we followed to perform the calculation will be given in

a forthcoming publication. It is, however, quite clear that the heavy-quark inclusive

cross section dσ/dzp can be computed using the results of Refs. [4, 1]. In order to

compute the truncated NLL cross section, we have used the results of Ref. [5], where

the NLL evolution equations, with appropriate initial conditions, have been solved

exactly up to the second order in the strong coupling constant.

In the present calculation, we have neglected all contributions to the heavy-flavour

cross section arising from gluon splitting. These contributions are small at moderate

energies, and in general affect the heavy-flavour inclusive cross section at small values

of x.

3 Phenomenological results

Our main results are summarized in Fig. 1, where the fitted, O(α2
s) fragmenta-

tion function is shown together with the ARGUS data for D∗+ production [6]. The

Figure 1: Best fit for the O(α2
s) fragmentation function at ARGUS.
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free parameters in the fixed-order calculation are the charm-quark mass, which we

have fixed at 1.5 GeV, Λ
(5)
QCD, which we have fixed to 200 MeV (corresponding to

αs(MZ) = 0.116) ε, which we have fitted, and the normalization, which we have also

fitted. The large-x bin has been excluded from the fit. This is justified, since large

logarithms of (1 − x) spoil the accuracy of the perturbative expansion in that re-

gion. A manifestation of this pathology can be seen in the computed fragmentation

function, which becomes negative at large x. The result of the fit is ε = 0.036, with

χ2/dof = 0.853. In Fig. 1 we also display the O(αs) fixed-order result and the trun-

cated expansion of the NLL result (TNLL), both at orders αs and α2
s. All these curves

are obtained with the same value of ε = 0.036. We see, first of all, that the O(αs)

fixed-order result is harder than the O(α2
s) one. In fact, if we attempt to fit the data

using the O(αs) fixed-order result, we obtain ε = 0.058, with χ2/dof = 0.852. The

TNLL, O(αs) result differs from the full O(αs) one only by terms that are suppressed

by powers of the mass over the energy. The curves in the figure seem to indicate that

these effects are already quite small for charm at ARGUS energy. The TNLL, O(α2
s)

result differs from the full O(α2
s) one by terms that are suppressed by powers of the

mass over the energy, and by terms of order α2
s which are not multiplied by large

logarithms of the mass over the energy (NNLL terms). The figure suggests that the

presence of these terms makes the fragmentation function harder. Thus, a smaller

value of ε would be obtained if we fitted the data using the TNLL O(α2
s) result.

In Fig. 2 we plot the computed fragmentation function at LEP1 energy, using the

same value of ε = 0.036, together with data from OPAL [7]. The OPAL data are in

terms of xE , and we have thus performed the appropriate change of variable in our

cross section formulae. The data are arbitrarily normalized. It is apparent from the

figure that some evolution effect is present in the fixed-order computation, so that

the fragmentation function is softer at higher energy. However, it is not quite as soft

as the data would require. If we fit the value of ε to the OPAL data, we get ε = 0.041,

a somewhat larger value than in the ARGUS case. In this fit, besides excluding the

large-x region, we should also exclude the small-x bins, since our calculation does not

include gluon splitting effects, and these become more significant at high energy. We

also plot the TNLL, O(α2
s) result. We see that at this energy it differs very little from

the fixed-order result. It is nevertheless difficult to disentangle mass effects from the

NNLL, O(α2
s) terms. In fact, the former should be reduced by a factor of 10 when

going from ARGUS to LEP energies (assuming a linear power law), while the latter

should be reduced (roughly) by a factor of 2, due to the running in α2
s . The figure



–6–

Figure 2: The O(α2
s) fragmentation function plotted together with OPAL data.

seems to indicate something intermediate between these two values.

We now comment on the differences of our results with those of Cacciari and

Greco [3]. These authors have fitted the ARGUS data using a resummed NLL cal-

culation, and found the value ε = 0.02. This value is considerably smaller than the

commonly used value of 0.06 [8], which seems in fact to be appropriate only with lead-

ing logarithmic calculations. Our result confirms the fact that, when next-to-leading

corrections are introduced, smaller values of ε are needed. On the other hand, our

value of ε is larger. This is partly explained by the comparison of our result with

OPAL data. We expect that our result will become worse as the energy increases,

and conversely, becomes better at lower energies. Since our value of ε increases at

higher energies, we expect that it could decrease at lower energies, and thus approach

the result of Cacciari and Greco. On the other hand, we have evidence that mass

effects do make the fragmentation function harder, and thus require a larger value of

ε to fit the data. To state this in a few words, we can say that our result tends to

give larger values of ε because it lacks resummation of leading and next-to-leading

logarithms beyond the O(α2
s), while the result of [3] tends to give smaller values of ε

because it lacks mass effects.
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