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Abstract

A search for pair-produced charged Higgs bosons is performed with the L3 de-

tector at LEP using data collected at centre-of-mass energies from 130 to 183 GeV,

corresponding to an integrated luminosity of 88.3 pb�1. The Higgs decays into a

charm and a strange quark or into a tau lepton and its associated neutrino are con-

sidered. The observed candidates are consistent with the expectations from Stan-

dard Model background processes. A lower limit of 57.5 GeV on the charged Higgs

mass is derived at 95% CL, independent of the decay branching ratio Br(H� ! ��).
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Introduction

In the Standard Model [1], the Higgs mechanism [2] is used to generate the masses of W and Z

bosons via spontaneous breaking of the local gauge symmetry. The Higgs sector requires one

doublet of complex scalar �elds which leads to the prediction of a single neutral scalar Higgs

boson.

There are more general models, e.g. those derived from supersymmetry, that contain more

than one Higgs doublet [3]. A minimal extension to the Standard Model has a two{doublet

Higgs sector, which leads to �ve physical Higgs bosons: three neutral (A0, h0, H0) and two

charged (H�). The discovery of a charged Higgs particle would be clear evidence for physics

beyond the Standard Model.

Charged Higgs bosons can be produced in e+e� interactions via the process e+e� ! (Z=)!
H+H�. The Born cross section in the framework of two doublet models contains the mass of

the charged Higgs boson as the only free parameter [4]. In this letter, we describe the analysis

of the data taken at LEP from 1995 to 1997 at centre-of-mass energies between 130{183 GeV.

The sensitivity of this data covers the Higgs mass region below the mass of the charged heavy

gauge boson, mW. Charged Higgs bosons are expected to decay mainly into the heaviest lepton

that is kinematically allowed and its associated neutrino, or into the heaviest kinematically

allowed quark pair whose decay is not Cabibbo{suppressed. Thus there are three possible decay

modes: H+H� ! �+�� �
���� , c�s�

���� and c�s�cs. The relative branching ratio is model dependent.

Therefore three di�erent analyses are optimised for each of the possible �nal states. The results

include and supersede previous lower limits to the mass of charged Higgs bosons established

by L3 using the data collected at the Z peak [5]. Results from other LEP experiments are

published in Ref. [6].

Data Analysis

The data were collected with the L3 detector [7] at LEP, corresponding to an integrated lumi-

nosity of 88.3 pb�1; where 12.0 pb�1 were collected at a centre-of-mass energy of 130{136 GeV,

10.8 pb�1 at 161 GeV, 10.2 pb�1 at 172 GeV and 55.3 pb�1 at 183 GeV.

The signal cross section is calculated using the PYTHIA Monte Carlo program [8]. For the

e�ciency estimates, samples of e+e� ! (Z=)! H+H� events are generated for Higgs masses

between 40 and 80 GeV in mass steps of 5 GeV. About 1000 events for each �nal state are

generated at each Higgs mass. For the background studies the following Monte Carlo generators

are used: PYTHIA for e+e� ! q�q() and e+e� ! ZZ, KORALW [9] for e+e� ! W+W�,

PHOJET [10] for e+e� ! e+e�q�q, DIAG36 [11] for e+e� ! e+e�`+`� (` = e; �; �), KORALZ

[12] for e+e� ! �+��, e+e� ! �+�� and BHAGENE3 [13] for e+e� ! e+e�. The L3 detector

response is simulated using the GEANT program [14] which takes into account the e�ects of

energy loss, multiple scattering and showering in the detector.

Search in the H
+
H
�

! �
+
���

�

��� Channel

The signature for the leptonic decay channel is a pair of tau leptons with large missing energy

and momentum, giving rise to low multiplicity events with low visible energy. Such events are

selected by requiring a visible energy of less than 0.5
p
s, between 2 and 20 calorimetric clusters

and a charged track multiplicity of between 2 and 8. Dilepton �nal states from e+e� ! `+`�

(` = e; �; �) are rejected by requiring the maximum angle between any pair of tracks to be less
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p
s (GeV)

mH� (GeV) 130-136 161 172 183

45 29 20 21 23

50 33 22 23 25

55 35 24 26 26

60 38 27 29 27

65 - 28 29 28

70 - 30 30 30

Table 1: Selection e�ciencies (in %) for the �+���
���� �nal state for di�erent masses mH� at

di�erent centre-of-mass energies.

than 165� and the event thrust to be less than 0.98. Radiative dilepton production is reduced

by rejecting events with one or more reconstructed photons with energy greater than 20 GeV.

Background from two-photon interactions is reduced by rejecting events where the sum of the

energy deposited in the luminosity monitor and the active lead rings exceeds 1 GeV. Remaining

two-photon interaction events are rejected by requiring the energy imbalance transverse and

parallel to the beam axis to be greater than 0.2 and less than 0.7 respectively, and by rejecting

events where there is no reconstructed jet with a momentum transverse to the beam axis

exceeding 15 GeV. Cosmic muons are rejected by requiring tracks to originate from the e+e�

interaction region and at least one scintillator hit in time with the beam crossing.

Tau leptons are identi�ed via their decay into isolated electrons or muons, or as a narrow

hadronic jet. Muons must have a momentum of at least 5% of the beam energy in order to

reduce the number of fake signatures from hadrons that escape the hadron calorimeter. For

hadronically decaying � candidates, the ratio E30=E10 must be less than 1.3, where E30 and E10

are the energy depositions in a 30� and 10� half angle cone around the direction of the decay

particles of the � respectively.

Events that are consistent with the signal are selected by requiring the presence of at least

two � decay candidates. At centre-of-mass energies above 136 GeV, additional criteria are ap-

plied to the � candidates to reduce contamination from WW! q�q`� (` = e; �). More energetic

leptons are more likely to come directly from a W decay than from a charged Higgs because

of the greater number of unobserved neutrinos in the latter case. For � decays to electrons

or muons, the observed lepton energy must be less than 0.45 of the beam energy (Figure 1).

Further reduction of W background is achieved by requiring the event to have at least one

hadronically decaying � candidate.

The e�ciency of the H+H� ! �+���
���� selection for the di�erent Higgs masses is shown in

Table 1. Table 2 shows the number of events selected in the data and the expected background

for the di�erent centre-of-mass energies. The total number of events selected in data is 7,

where 11.3 background events are expected from Standard Model processes. Almost all of the

remaining background comes from W pair production.

Systematic uncertainties in the signal e�ciencies and the expected number of background

events were investigated by comparing the distributions of several signal-sensitive variables in

the data and the Monte Carlo. We assign a systematic error of 0.8 events in the total predicted

background and 1.5% in the expected signal e�ciencies.

3



p
s (GeV) 130{136 161 172 183

Expected background 0.3 0.5 1.3 9.2

Data 0 0 1 6

Table 2: Expected background and number of events selected in data in the �+���
���� �nal

state at each centre-of-mass energy.

Search in the H
+
H
�

! c�s�
�

��� Channel

The semileptonic �nal state H+H� ! c�s�����
1) is characterised by two hadronic jets, a � lepton

and missing momentum. High multiplicity events are selected by requiring more than 5 charged

tracks and more than 10 calorimetric clusters. Tau leptons are identi�ed in the same way as

for the H+H� ! �+���
���� selection with the additional constraint that hadronically decaying

� candidates must have one or three tracks and unit charge. Selected events are forced into

two jets using the DURHAM algorithm [15], after subtracting the � candidate.

The kinematic cuts di�er slightly for the di�erent centre-of-mass energies. As an example,

we describe here the cuts for the
p
s = 183 GeV data where we have the largest search sensitivity

due to the high centre-of-mass energy and the large integrated luminosity.

The missing transverse momentum must be at least 10% of the visible energy in order to

reject background from the reactions e+e� ! q�qq�q() and q�q() (Figure 2a). The background

contribution from e+e� ! q�q() is further reduced by requiring the missing momentum par-

allel to the beam axis to be smaller than 50% of the visible energy. The polar angle of the

missing momentum vector must satisfy j cos�missj < 0:9. Furthermore, the visible mass, after

subtraction of the � candidate, must be less than 90 GeV and the opening angle of the two jets

must be less than 160� in the plane perpendicular to the beam axis. The energy deposition in a

cone of 25� around the missing momentum vector projected in the same plane must be smaller

than 40 GeV and the sum of the opening angles of the � candidate and the missing momentum

vector to the closest jet is required to be larger than 80�.

A kinematic �t is performed imposing energy and momentum conservation for an assumed

production of a pair of equal mass particles with one decaying into two jets and the other into

a � and a neutrino. The directions of the jets, of the � and of the missing momentum vector

are kept at their measured values. Using this method, a resolution of about 4 GeV is obtained

in the distribution of the e�ective mass of the two jets and of the � and the neutrino.

Semileptonically decaying W-pairs (WW ! q�q`�; ` = e; �) are suppressed in the following

way: the four momenta are transformed into the rest frame of the leptonically decaying parent

particle. In this frame, the lepton energy E�
`
is greater if the lepton comes from a prompt W

decay than from a � decay. The missing momentum jP�missj is also larger in the �rst case because
the neutrinos from the � decay are almost oppositely directed to the � neutrino coming directly

from the W. For the selection, the sum E�
`
+ jP�missj is used, which should be smaller than 60

GeV for an electron and smaller than 50 GeV for a muon in the �nal state. The discriminating

power of this variable is shown in Figure 2b.

To further reject q�q(), two{photon interactions and W pair events, the ight direction of the

parent particle is considered. The production of the charged Higgs follows a sin2� dependance

whereas the major fraction of the background is collected in the forward-backward region of

1)The charge conjugated decay is also considered.
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p
s (GeV)

mH� (GeV) 130{136 161 172 183

45 41 36 34 38

50 41 40 35 41

55 39 42 46 42

60 33 47 46 41

65 | 44 44 42

70 | 41 42 42

Table 3: Selection e�ciencies (in %) for the c�s����� �nal state for di�erent masses mH� at

di�erent centre-of-mass energies.

p
s (GeV) 130{136 161 172 183

Expected background 0.6 2.0 7.1 30.1

Data 1 1 9 28

Table 4: Background expectation and observed data at the investigated centre-of-mass energies

for the c�s����� channel.

the detector (Figure 2c). Events with j cos� j� 0:9 are accepted.

The selection e�ciencies for the di�erent centre-of-mass energies are shown in Table 3.

The background expectation together with the selected data events are given in Table 4. The

total number of events selected in data is 39, where 39.8 background events are expected from

Standard Model processes. The background is dominated by the process WW! q�q�� (� 70%)

and other WW decays (� 22%); the remaining contributions are q�q() and neutral current

four-fermion events. For the �nal mass distribution, we use the average of the masses of the

jet{jet and the � � pairs respectively, calculated after the kinematic �t. Figure 2d shows the

mass distribution for data and background events for all investigated centre-of-mass energies

combined.

The main contribution to the systematic error comes from the � identi�cation. Systematic

uncertainties in the � identi�cation were studied using high statistic e+e� ! e+e�, e+e� !
�+��, e+e� ! �+�� and e+e� ! q�q() data and MC samples at 91 GeV centre-of-mass energy.

A systematic error of 2% for the signal e�ciency and 2.5% for the background expectation is

derived.

Search in the H
+
H
�

! c�s�cs Channel

Events of the channel H+H� ! c�s�cs have high multiplicity and are balanced in transverse and

longitudinal momenta. Their total centre-of-mass energy is deposited in the detector and they

are characterized by four hadronic jets. The cut values di�er slightly at the di�erent centre-of-

mass energies. The cuts described here are for
p
s = 183 GeV.

Candidate events are selected by requiring more than 15 charged tracks and more than 45

calorimetric clusters. The visible energy must be between 0:6
p
s and 1:4

p
s and the transverse

and longitudinal normalised missing energy less than 0.3.

Radiative q�q() events are suppressed by rejecting events that contain an isolated photon

with an energy greater 0:1
p
s. Furthermore, the event spherocity must be within 0.14 and 0.74.
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The events are subject to the DURHAM algorithm with Y34 = 0:008. Events with less than

4 jets are rejected and the remaining ones are forced into four jets. The jet energies are rescaled

with a common factor so that their sum is equal to
p
s.

The four jets are grouped into three possible pairings and the di�erences between the invari-

ant masses of all pairings are calculated. Choosing the pair with the minimum invariant mass

di�erence, the polar angle of the parent particle must satisfy j cos�j < 0:8 . The opening angle

between the two jets originating from the same parent particle must be between 53� and 130�.

Considering the jet pairing with the medium invariant mass di�erence, events are rejected if

the average of the two masses is within 2 GeV equal to mW and their di�erence is less than

20 GeV. With these cuts the number of WW events is further reduced.

A �ve-constraint kinematic �t is then applied assuming the production of a pair of equal

mass particles each decaying into two jets. The �2 per degree-of-freedom of the �t must be

smaller than 5.5. This further suppresses the q�q background.

The selection e�ciencies are shown in Table 5. The expected background and the selected

data are shown in Table 6. The total number of events selected in data is 145, where 159.5

background events are expected from Standard Model processes. The main contribution to the

background comes from W pair decays into four jets. In Figure 3, the average dijet invariant

mass distribution is shown for the data and the expected background at
p
s = 130� 183 GeV.

The low mass tail for the WW background is due to incorrectly assigned jet pairs.

Systematic errors are assigned to the signal e�ciencies and the expected number of back-

ground events by comparing the distributions of signal-sensitive variables in the data and the

Monte Carlo simulation. The main contribution to the systematic error comes from the fact

that the number of reconstructed jets per event is not perfectly simulated in the Monte Carlo.

We assign a systematic error of 4.5 events in the total predicted background and 0.6% in the

expected signal e�ciencies.

p
s (GeV)

mH� (GeV) 130{136 161 172 183

45 36 37 35 29

50 41 45 45 36

55 44 51 45 39

60 46 44 43 40

65 � 45 41 38

70 � 46 39 34

Table 5: Selection e�ciencies (in %) for the c�s�cs �nal state for di�erent masses mH� at di�erent

centre-of-mass energies.

p
s (GeV) 130{136 GeV 161 GeV 172 GeV 183 GeV

Expected background 19.0 15.2 25.9 99.4

Data 21 13 18 93

Table 6: Expected background and number of events selected in data in the c�s�cs �nal state at

each centre-of-mass energy.
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Results

The number of selected events in data is consistent, in each decay channel, with the number of

events expected from Standard Model processes. No indication of pair-produced charged Higgs

bosons is observed. Mass limits as a function of the branching fraction Br(H� ! ��) are derived

at 95% con�dence level, where the con�dence level is calculated using the same technique

described in Reference [16]. For the H+H� ! c�s�cs and the H+H� ! c�s����� channels we use

the reconstructed mass distribution in the limit calculation, whereas for the H+H� ! �+���
����

channel the total number of data, expected background and expected signal events are used.

Systematic uncertainties are taken into account using the same procedure as in the Standard

Model Higgs search [17]. In addition to the systematic errors resulting from the selection, an

error of 0.3% on the luminosity measurement, an error of 5% on the background normalisation

and an error of 2% on the signal cross section are taken into account.

Figure 4 shows the excluded mass regions of charged Higgs bosons at 95% CL for the analyses

of each �nal state and their combination as function of the branching fraction Br(H� ! ��).

A lower limit on the mass of the charged Higgs boson of

mH� > 57:5 GeV (1)

independent of the branching fraction is obtained.
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Figure 1: Energy spectra, after pre-selection, for events with (a) electrons and (b) muons in

the �nal state for
p
s = 183 GeV. The dotted line indicates the signal of a 60 GeV charged

Higgs boson at Br(H� ! ��) = 1 multiplied by a factor 5. The background is dominated by

W decays into leptons.
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Figure 2: Distributions for the H+H� ! c�s����� channel after the pre-selection and the� identi-

�cation: a) ratio of the missing transverse momentum and the visible energy for
p
s = 183 GeV,

b) sum of the electron energy and the absolute value of the missing momentum in the rest frame

of the leptonically decaying parent particle for events with an identi�ed electron in the �nal

state for
p
s = 183 GeV, the background process W+W� ! q�qe� is clearly separated from

the signal, c) polar angle distribution of the negative parent particle for
p
s = 183 GeV, d)

reconstructed mass spectrum after all cuts for
p
s = 130� 183 GeV. The dotted lines indicate

the signal for a 60 GeV charged Higgs boson at Br(H� ! ��) = 0:5 multiplied by a factor 100

(a-c) and by a factor one (d).
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Figure 3: Distribution of the mass resulting from a kinematic �t, with assumed production

of a pair of equal mass particles, for data and background events in the c�s�cs channel atp
s = 130� 183 GeV. The dotted line indicates the signal of a 60 GeV charged Higgs boson at

Br(H� ! cs) = 1.
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