260

A CAMAC EMBEDDED REAL TIME EXECUTIVE

WITH HIGH LEVEL LANGUAGE FOR USE AT GANIL

M. Ulrich, E. Lecorché, and the Ganil Control Group
J.M. Loyant (Operation Group)
Ganil B.P. 5027 - 14021 Caen Cedex

Abstract Since the first ion beam of Ganil, the
Real Time processes of the accelerator have been
under the control of distributed 1Intel 8080
controlled Camac crates. Application tasks are
therefore mainly written in assembly language.

These devices were recently replaced by 68000
based crate controllers named DIVA. And the
opportunity to write processes tasks in LTR, the
same high level language as for the rest of our
control software has existed since then.

This upgrading has been completed by designing
and realizing a small Real Time Executive.

This paper emphasizes the main features of the

RTE tasks, delay, resources management, etc...
Functional links to the control computer and
integration of the 68000 microprocessor in the

Ganil Control System are discussed. An application
example is then presented (beam switching control
in the experimental area).

In conclusion, merits and limitations of our
Real Time Executive are presented and possible
improvements for the next years to come are
suggested.

1. INTRODUCTION

GANIL is a heavy ion accelerator consisting of
three cyclotrons in cascade which provides
physicists with various kinds of beam, about 2000
equipments have to be driven by the control system.

The GANIL Control System widely described
elsewhere (1,2) is based on a minicomputer Mitra
625 linked to the equipments through the CAMAC
standard. Controlling the accelerator is also
achieved by using distributed intelligence mainly
consisting of microprocessors embedded in
autonomous CAMAC controllers. These controllers are
used either to drive the main console and four
movable consoles or to perform local processes
(handling RF cavities, measuring the beam phase,
collecting data from wire chambers...).

Most of these microprocessors are Intel 8080
housed in JCAM10O autonomous controllers, a new
generation named '"DIVA" has been designed at GANIL
and built around the 68000 Motorola microprocessor.
Hardware and software environment of this DIVA
controller are now briefly described in order to
show our needs and requirements.

1.1. Hardware :

The DIVA autonomous controller consists of two

boards (3). One card is the CPU board including up
to 512 kbytes of DRAM memory ; the input/output
devices are three RS232 lines on 6850 ACIAs

(console, printer) and a 68230 parallel interface
timer (PIT) used to handle a SCSI floppy disk
interface. Time management is achieved using this
PIT and a real time clock with battery back-up ;
for specific needs a 6840 timer has also been
integrated on the card.

The other card is mainly devoted to CAMAC
addressing purposes ; CAMAC is seen as a specific
map of memory among the whole memory addressing
space.

"Look-at-me" (LAM) CAMAC interrupts are
encoded into graded-lams so that a vector number of
the 68000 is attached to a dedicated graded-lam.

The most significant interrupt levels are
shown below in descending order :

- level 7 abort signal of the 68000 and
local/remote switch

- level 6 : no CAMAC response (known as
"no X")

~ level 5 : timer interrupts from the PIT

- level 4 : CAMAC interrupts (LAM)

-~ level 3 console interrupts coming through
the ACIA port

- level 2 not specified

-~ level 1 user thumbwheel switch on the

front panel of the DIVA.
1.2. Software :
As our minicomputers are programmed in LTR

which is a real time high 1level language, we
decided to adopt this same language for our new

controllers ; applications are therefore cross-
compiled on the development computer.
The requirement was to allow real time

applications to run on the 68000 while remaining
fully in line with the philosophy of the control
system.

As a first step, a small real time kernel was
written to provide the basic facilities. Quite
quickly, it was made <clear that much more
capabilities must be added for user programs.

The present executive we have designed 1is
named "MTR-D". It meets all the major requirements
of a real time monitor and still remains simple and
quite small (less than 7 kbytes for the basic
kernel).

2. THE "MTR-D" MONITOR

2.1. Basic items

The "MTR-D" monitor allows tasks to be runned
under a real time environment. There are two kinds
of tasks "delayed" tasks which are performed at
interrupt level O of the 68000 and are scheduled by
the executive according to their priority ;
"immediate'" tasks which are attached to a dedicated
vector number of the microprocessor.

YMTR-D"
services:

- up to 32 delayed tasks can be polled by the

scheduling task

- each delayed task has its own priority

ranging from 1 to 32 (static assignment)

provides the following system

- up to 10 delayed tasks at the same time can
be waiting for a delay

-~ tasks can create or kill delayed tasks

- delayed tasks can be suspended waiting for
ressource allocation

- the RTE integrates all necessary interface
to the LTR language which calls the monitor by
the "TRAP 2" 68000 statement

- LTR tasks use A4 to A7 address registers ;
whatever for delayed or for immediate tasks
these registers are loaded approprialy at the
same time as the program counter and status
register.

Besides the Real Time kernel, "MTR-D" includes
system tasks

—- processing of CAMAC interrupts such as "LAM"
and 'no X"

~ handling the 1local/remote switch so that
application tasks can be executed from a local
console or be synchronized with other user
tasks performed on the control computer via
dedicated messages

~ when in local mode, a console server allow
to create and to delete tasks in a friendly
way by simulating messages coming from the
control computer

- other services have been added such as a
debugger, a loader and an initialization
routine

some

As not needed, the RTE neither includes memory
allocation, mailboxes nor a file server.

2.2. Scheduling of the tasks

"MTR-D" is using a round-robin method but it
does not provide a time-slicing of the tasks. If
needed, such a service can be implemented using the
6840 timer on the CPU board. The scheduler is
called in the following cases

- a delayed task directly calls the scheduler

or ends

- a delayed tasks suspends itself waiting for
a delay

-~ a delayed task reserves, waits or frees a
resource

- a delayed tasks creates or kills another one
- the shortest delay which was running has
been elapsed

All these transitions are shown in figure 1
with indication of the potential states of delayed
tasks. These states are defined as followed :

- dormant : there is no requirement to run the
task
-required the task has been 'created" so

that the scheduler could run it according to
its priority

- running : the task is running, scheduled by
the "MTR-D" kernel from the delayed task
control block list

- suspended : the task is suspended pending a

delay or a resource ; it moves to the ready
state when the delay is reached or when the
required resource is released

- ready : according to its priority, the task
can be elected by the scheduler to be
continued.

261

REQUESTED
DORMANT REQU IRED
CHOSEN BY THE
SCHEDULER
END
SUSPENDED RUNNING
WAITING FOR
DELAY OR RESOURCE
o CREATES OR KILLS
DELAY ANQTHER TASK OHOSEN
ELAPSED » FREES THE RESOURCE
» ASKED BY THE TASK BY THE SCHEDULER
Or « QUEVED ACCORDING
RESOURCE T0 PRIORITY LEVEL
FREE
READY
Figure 1 : States of a delayed task

2.3. The control block lists

The executive also contains an initialization
routine loading the application (shared data and
routines + MTR-D system + user tasks) from a disk
ram or floppy. It also completes a static task
control block list to map the whole application. A
dynamic task control block list is therefore built

for delayed tasks integrating additional
informations such as the identifier number of the
task, its priority, a task flag indicator ; it also
includes space for context switching.
LOADER
SHARED
DATA
SHARED
ROUTINES

MTR-D

SYSTEM TASKS

USER DELAYED decreasin

TASKS USER priority
. TASKS
initialization
STATIC DYNAMIC DELAYED
CONTROL BLOCK (15T TASK CONTROL BLOCK LIST
Figure 2 : The control block list
The delayed task to be elected by the

scheduler is always the first task found in the

delayed task control block list being in the ready
state.

For delayed tasks, the scheduler loads address

and starting point registers from the initial
registers settings of the task ("required" state
i.e starting the task) or from the context
switching area ('"ready state 1i.e resuming the
task).

On interrupts, context switching uses directly
the system stack. When first running an immediate
task, address and program counter registers are
loaded from the static task control block list.

2.4. Delays management

The PIT is used to achieve delays management ;
the timer is always programmed with the shortest
delay to be waited by a delayed task. Obviously,
immediate tasks must not call for such a facility.
Up to ten tasks can be waiting for different delays
being therefore in the "suspended" state ; when the
delay 1is over, they will be commuted into the
"ready" state.

A waiting task list allows this management as
shown in figure 3.

Pointer to
) the dynamic
Time division task controt block list
(ms)
h Pq
'2 Pz
t
3 P3
0 0
0 0
A
e
]
e
i
Figure 3 : The waiting task list

task "By ' is waiting for t, ms
task "B, is waiting for t, + t,; ms
task "By - is waiting for t, + to+ t3 ms

2.5. Other features
A delayed task can create or kill another

delayed task. Delayed tasks can be killed only if a
dedicated bit in their flag indicator has been set.

Killing a task 1is seen by the monitor as
re-entering the task with initial registers
settings and a dedicated bit in the task flag
indicator. If needed, user tasks can integrate
their own specific kill sequence (for instance, to
reset some pieces of equipments or shared data ..).
Tasks can also ask for a resource. If the

resource is free they automatically reserve it an
go on running. If not, they will wait until the
resource is free being therefore in the "suspended"
state.

Two different bits in the task flag indicator
allow to distinguish between waiting for a delay or
for a resource. A killed task goes immediatly to
the '"ready" state even if it was waiting for a
delay or a resource. The resource reserved by a
killed task is automatically released.

2.6. Local/remote mode

Some system tasks have been added to the
kernel to provide local/remote working mode. First,
an immediate task is attached to a switch connected
to the interrupt level 7 of the microprocessor,
multiplexed with the ABORT signal of the 68000.
Using this facility is quite efficient when testing
programs and one can always change the working mode
by acting on the switch. The task alternately
enables and disables interrupts of the console port
and of the CAMAC data link module with the control
computer.

An other system task gives people a user
friendly interface when performing tasks in a local
way ; it can also simulate the remote working mode.

262

Finally any user task can be created or killed
from the control computer. This is achieved via
specific messages coming through the data 1link
module handled by a dedicated system task.

3. AN EXAMPLE OF THE MTR-D USE :
PROCESS

THE BEAM SWITCHING

The beam switching process has been the first
application running on the DIVA controller two
years ago (5) ; as new needs had appeared, it has
been re-designed this year taking benefit of the
new facilities of the "MTR-D" monitor (6).

3.1. First aim of the process

The GANIL experimental area consists of nine
experiment rooms. Two of the rooms can share the
ion beam on a time distribution pattern required by
the physicists. The process switches the ion beam
alternately to one of the two experiment rooms and
handles in that purpose two pulsed power supplies.
It continuously surveys the power supplies currents
and status. As shown in figure 4 the two rooms are
named '"upstream'" and "downstream" rooms ; the
upstream power supply is pulsed to achieve the time
pulsation while the downstream one is obviously
always delivering a continuous current. When the
upstream power supply is pulsed to provide beam
switching, the process handles at each room
transition a beam cutter during 500 ms to let the
current go to the appropriate value.

upstream room

ion beam
—
downstream room
4te200m.s
i
beam cutter h
) H
! \
: : X
) ! in the upstream room
beam) :
in the downstream room
Figure 4 : The beam switching process

while switching the beam, the process also
drives an intensity modulator to adjust the beam
intensity for each of the two rooms.

3.2. Management of the experiment rooms

An other important job performed by the
process is to manage the couple of experiment rooms
when one of them starts or stops working, for
instance when physicists want to enter the room to
change targets or calibrate detectors. To do so,
the process also drives a beam pulser and a beam
stopper as shown in figure 5.

Configuration 1 is the standard working mode
both of the rooms are sharing the ion beam, the
beam pulsation being given by the upstream power
supply which is pulsed.

When one of the two rooms
receiving the beam, the other one may go on with a
continuous beam or a maintained pulsed bean,
switching is therefore kept by the beam pulser
which simulates the pulsation of the pulsed power
supply now delivering a continuous current. This
last feature 1is mainly wused when physicists
synchronize their detectors on the beam switching
signal.

wants to stop

1 ‘%
P C
2
OFF C R
3 OFF
¢
. oFF
0FF
5 Off ¢
¥y
6 o/ oFf
Ju

Figure 5 : Configuration modes of the process

P = pulsed power supply "on"
C = pulsed power supply "on"
continuous current
OFF = pulsed power supply "off"
— = the room is receiving the ion beam
-% = no beam is delivered into the room

= the beam stopper is set and stops the
beam at the experiment switchyard entrance
v = the beam pulser is set and provides the
beam pulsation

delivering a

So, when the upstream room stops,
configuration 1 1is turned into configuration 2
(continuous beam in the downstream rcom) or & where
the beam pulser maintains the beam switching in the
downstream room. An analog situation occurs for
configurations 3 and 6 coming from configuration 1
when the downstream romm stops running, as already
said the upstream pulsed power supply is here used
in continuous.

Finally, configuration 4 corresponds to the
case where both of the rooms have stopped accepting
the ions beam ; the power supplies are turned off
and the beam stopper is set at the experimental
switchyard entrance.

3.3. Software aspects

The application process consists of 7 user
tasks requiring about 400 Kbytes of memory .

One immediate task is in charge of surveying
the power supplies status, currents and the stops
of the beam intensity modulator and beam pulser.

The first delayed task of the process is an
initialization task loading the names of the
experiment rooms, parameters such as the starting
current values and beam timing, use of the beam
pulser... Other delayed tasks allow to modify the
beam switching times, to change the power supplies
currents values or to handle the modulator.

The more sophisticated delayed tasks of the
process are a task in charge of the management of
the two experiment rooms as described in 3.2 and a
task devoted to the beam switching pulsation
between the two rooms.

Finally, a task reads informations from the
process such as power supplies currents values,
status and sends them to the control computer.

Eight other user tasks can be performed on the
control computer to interface the operator to the
process, one of them collects and displays the
parameters of the process on a graphic color
terminal as represented on fig. 6.

263

18 JL 1527 2 {SHR 13w

RMONT: =2 1

RVRL /A2

n

IH= 7g1.£25
[E= =
[C= 754,272 J

Figure 6 : schematic display of the process

"Gl" and "D2" rooms are sharing the ion beam
(20/180 seconds). The beam has been delivered to
"D2" for about 50 seconds as shown onthe display.

4. CONCLUSION
Despite the fact that the MTR-D executive is

quite small and very simple, it gives us most of
usual features required by a real time monitor.

Having designed and written our own monitor, it's
quite very easy to maintain. Some complementary
facilities could be introduced if needed ; for

greater convenience it would be useful to add some
software utility such a spying facility to dump
task lists and queues under an easy to interprete
way.

The next application of "MTR-D" will be the
handling of magnetic probes inside the cyclotrons,
the corresponding programm is currently under way.

REFERENCES

(1) E. LECORCHE and the GANIL Control Group

New developments of the Ganil Control System

2 International Workshop on Accelerator Control
Systems -~ Los Alamos - U.S.A (October 1985)

(2) T.T. LUONG, L DAVID, E. LECORCHE and the Ganil
Control Group -~ Present Status and recent
improvements of the Ganil Control System .

This Conference.

(3) M. PROME and M. VASSSENT
Le dispositif Intelligent & Vocation Autonome,
DIVA 68C - Ganil Internal Report 83R/035/CC/14

(4) E. LECORCHE and M. ULRICH
Le processus alimentations pulsées
Ganil Internal Report 85R/016/CC/05

(5) M. ULRICH and E. LECORCHE
"MTR-D" Moniteur temps réel pour DIVA
Ganil Internal Report 87R/24R/CC/17

(6) J.M. LOYANT
Evolutions du processus commutations de salles
Ganil Internal Report

