KEK Preprint 98-
June 1998
A

Coherent Beam-Beam Effects in e *e - Colliding
Rings with Dispersion at the Interaction Point

S. Petracca and K. HIRATA

Submitted to the 14th Advanced ICFA Beam Dynamics Workshop on Beam Dynamics
Issues in e *e “Factories, Frascati, Italy, 20-25 October 1997

73

£806086-NVOS
HIT A
VAINETO ‘SHEVIAIT NIID

9879



High Energy Accelerator Research Organization (KEK), 1998
KEK Reports are available from:

Information Resources Division

High Energy Accelerator Research Organization (KEK)
1-1 Oho, Tsukuba-shi

Ibaraki-ken, 305-0801

JAPAN

Phone: 0298-64-5137

Fax: 0298-64-4604

Cable: KEK OHO

E-mail: Library@kekvax.kek.jp
Internet: http://www kek.jp



Coherent Beam-Beam Effects
in et e~ Colliding Rings
with Dispersion at the Interaction Point

Stefania Petracca
Dip. di Scienze Fisiche E.R. Caianiello,
University of Salerno, Italy
Kohji Hirata
KEK, High Energy Accelerator Research Organization
Tsukuba, Japan

abstract

With the dispersion at the interaction point the synchroton and betatron motions influence
each other. This coupling could affect the coherent beam-beam phenomena in et e~
colliding rings. We use the semi-analytical Soft Gaussian Model, to study the strong-
strong effects, showing a flip-flop behaviour not significantly different from the one already
known in absence of dispersion. The beam sizes, the bunch lenghtening and the luminosity
reduction confirm the structure of the resonances already found in the incoherent linear
analysis.
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1 Introduction

In the conventional colliders, the dispersion at the interaction point (IP) is designed to
be zero and might have a small value due to machine errors. The effects of such a small
dispersion at the IP have been studied regarding the dispersion as a small perturbation [1].
Recently, however, the monochromatization [2] has been considered seriously for future
tau-charm factories (3], where a rather large dispersion exists at the IP with opposite signs
for both beams. In this case, the dispersion effects cannot be discussed perturbatively.

To see the non-perturbative effects with large dispersion, the weak-strong simulation
for the monochromatization scheme has been done on the basis of the 3D-symplectic beam-
beam mapping (4], which showed the satisfactory performance of this scheme for the design
parameters of the Beijing Tau-Charm factory [5]. On the other hand, with the simulation
only, it is difficult to understand the general properties of the monochromatization scheme.
In a previous paper [6] we discussed the effects of the dispersion at the IP paying enough
attention to the mutual interaction between the betatron and the synchrotron degrees of
freedom.

The aim of this paper is to get a deeper understanding of the influence of the dispersion
at the IP, therefore we move to a more realistic assumptions, nonlinear beam-beam force
and strong-strong approach, using a semi analytical method, the Soft Gaussian Model
(SGM) [7].

In Sect. 2 we introduce the one turn matrix in the presence of a dispersion at the
IP, in Sect. 3 the radiation effects, in Sect. 4 strong-strong model and in Sect. 5 the
numerical results. Conclusions follow under Section 6.

2 Linear Motion in the Arc: One Turn Matrix from
IP to IP

We will use the approach introduced in [8]. We consider the vertical and longitudinal
motions only. The detail is shown in [6].

Let us define the physical variables of a particle for the betatron and synchrotron
motions: X = (y, py, 2,9), where y is the vertical coordinate, Dy is the vertical momentum
normalized by the momentum py of the reference particle (a. constant), z is the time
advance relative to the reference particle and multiplied by the light velocity ¢ and ¢ is
the energy deviation E — Ey from the energy of the reference particle £y and normalized
by Eq.

The one turn matrix from the IP (s = 0) to IP (excluding the beam-beam kick) can
be put in the following form.

My = M(0_,0,) = HyByM,,. By Hy", (1)
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where M,,. = diag(r(uy), m(13)) and By = diag(b3, b?) with

0 : 0 /30 0
T(ugvz) _ ( COS ﬂy‘z Sin uy,z ) , bO . ( Y,z ) : (2)

—_ 0 0 Y,z -
S [, . COS iy, . 0 1/ / sz

(T ke {0 D, - (0 D,
HO_(;LO I)a h0—<0 0)7 h0_<0 O) (3)

The nominal synchrotron tune 10 is negative for conventional electron machines with

and

positive momentum compaction factor. We will however consider the both signs for V0
because the option with the negative momentum compaction factor[9] is being considered,
which makes the 1/ positive. We have assumed that there is only one IP and is a symmetric
point with respect to betatron and synchrotron motions. We have also implicitly assumed
that the dispersion does not exist in cavities.

The matrix Hy decouples the betatron and the synchrotron motions in a symplectic
way. One can regard Eq.(1) as the definition of the dispersion, Dj.

3 Radiation Effects

The radiation effect was described in [6] in detail.
The one turn map for the second order moments o4 of the et beam is as follows:

: (4)

O'i(/_\Mi )t + ([ — A2)

arc

ey

oy = AMZE

arc

where

Mae = Hy BoMo By 'H', A= HyBoAB;'H7!, E= HiByEBLH., (5)

A = diag(Ay, Ay, 1, A\2), E = diag(e,, €, €, €7), (6)
Hi:(ijizo i;lo)' ()

Here
aij; =< (z; — T7)(x; a":;t) >4, I =< x; >4 (8)

with
< >x= / ()92(Ts)dZ 9)



4 Soft Gaussian Model

We describe the strong-strong beam-beam interaction using a semi-analytical model, de-
scribed in (7], called Soft Gaussian Model, based on the Gaussian approximation. We
assume that the beam is Gaussian, even when the beam-beam force is present.

As further assumptions we have:

e the dipole moments Z.; are stable, we let them vanish;
e the bunch is very small: 67 << 39, at the IP;

® Following [7] and [10] we use the flat beam limit 02 >> 0,, where therefore

reasonably the horizontal particle motion is unaffected, then getting the nominal

(incoherent) beam-beam parameter:
Te N:l:ﬁg:y

0 _
§:|: - 0 0 °
v 27T’Y:!: U:tzU:ty

]1/2

0%, = [B,€ed, + DR, /8%.] ", (10)

where 7. is the classical electron radius, v, the relativistic factor, Uim,y the nominal

horizontal (vertical) beam size, €5, and €%, = (09,0%;)"/2 being the nominal vertical

and longitudinal emittances. All quantities are evaluated at the IP.

e At IP, each particle is kicked as

P, = Dy — Ky erf (yi/\/ZU:Fy) ) (11)

27r3/2§iy 0 0 2.0 0
Ky = _—Igoi—'\/ﬁj:yfzty + DOE:tz/ﬂd:z- (12)
Y

The mapping for the second order moments due to nonlinear beam-beam kick is:

Olhop = Ox20 + 4KA(p)os12/ /011 + 462C(p)

0h1s = 0112 + 2kA(p)\/T11 (13)
Oloz = 0423 + 26A(p)0113/\/Ti11

094 = 0124 + 2kA(pP)0 114/ /111

Oty 1 1 ) ( P ) _ 1
=—, C(C=—-—-arcsin|,/-——], Alp)=-————or.
£ Ty 4 2(1+p) ( v2r(l+ p)

Other envelope elements do not change. Therefore the complete one-turn map for oy is
obtained by successive applications of Eq.(13) and Eq.(4)).



5 Coherent Effects

In [11] we emphasized that, due to the beam-beam interaction and the presence of dis-
persion at IP, all incoherent parameters (twiss parameters, tunes, etc.) change after the
collision. Here we want brefly discuss the evolution of few coherent parameters.

One of the most important observable quantities is the luminosity, expressed as:

erN— _—_—2 "_——2
L= —27r2522 exp {—(:c;(zga;Q) - (y;(zgy)Q) }, (15)
where
5= V(0% + (0%)% Bp= (00, + (0%, (16)

Figure 1: The luminosity reduction R; as function of ug and 10 with {3 = .05 and Dy = 4.

Let us define the luminosity reduction factor Ry, and the bunch sise ratios:

L % .
y R, =22, R, =Zw (17)

= — = —0,
L() Ey g_, O_y

Ry

where Lg is the nominal value without collision effect. Figure 1 shows RL(V;) ,v2). There

are some regions in the (1/8, %) plane corresponding to instabilities, where the effective

luminosity L changes abruptly.
In Figure 2a we show the contour plot of R, in the (v, v?
rence of some instabilities: I/2 ~ half integers (betatron instability), v9 ~ half integers

) plane, showing the occur-

(synchrotron instability), 9 +vJ ~ integers (synchro-betatron instability), the same found
in the linear incoherent analysis [6].

In Figure 2b we show the contour plots of R, in the ( 3 , Do) plane with v? = .008 and
vy =
clearly see the threshold line for the flip-flop occurrence: below this line the symmetry

.1. A flip-flop behaviour occurs: one beam blows up above certain current. We can
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is preserved, R, = 1, and above it is not, R, > 1. This phenomenon has been already
described in [7] in absence of dispersion, for Dy = 0, &, = .023 as shown in Fig. 2b.
Another interesting observable quantity is the effective (coherent) beam-beam param-

eter:

—0 Te Niﬁ?t 29 >> 59 Te Niﬂzot

=1, = Y s g
T 2y BO(S0 4+ X9) 2y BIX0

Its evolution versus &3, = Nir 8%, /27y ./ 52,€903%,€3, the nominal beam-beam parame-
ter in absence of dispersion, shows saturation as found in [7].

(18)
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Figure 2: (Left) The contour plot of R, (levels: 1,1.2,1.5) in the (v0,0?) plane with
52 = .05 and Dy = .4. The darker contours correspond to bigger values. (Right) The
contour plots of Ry in the (Do, &) plane with ¢ = .008 and v = .1. The dark line
corresponds to flip-flop thresholds.

6 Conclusions

We studied some coherent effects due the presence of dispersion at IP. We considered
a strong-strong interaction and a nonlinear beam-beam force for short bunches and flat
beams. We used the Soft Gaussian Model and tracked the evolution of the envelope and
found effects in the luminosity rate, bunch length and beam size in parameters space.
We found a flip-flop behaviour, not significantly different from the one already known in
absence of dispersion. A study of the tune plane reveals an instability structure similar

to the one found in the incoherent linear analysis.
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