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Abstract

Universality of the off-equilibrium fragmentation processes is discussed using the
Fragmentation-Inactivation-Binary process. The signature of criticality associated
with the scaling laws of the order parameter fluctuations are established and impor-
tance of these studies in various fields of physics including nuclear and condensed

matter physics is pointed out.
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I. INTRODUCTION

Fragmentation is the universal process which can be found at all scales in the na-
ture, going from the parton cascading in ultrarelativistic collisions of leptons or hadrons,
the multifragmentation in nuclear heavy-ion (HI) collisions or collisions of atomic clus-
ters, up to the formation of large-scale structures in the Universe. Similarly as for the
critical off-equilibrium aggregation processes [1], one expects only few universality classes
among various off-equilibrium fragmentation processes. For that reason, we have investi-
gated the general sequential binary and conservative fragmentation processes, called the
Fragmentation-Inactivation Binary (FIB) process, with scale-invariant fragmentation and
with either scale-invariant or scale-dependent inactivation [2-4] . The phase diagramme of
these off-equilibrium processes has been established and the universal aspects of both the
fragment size distribution and the total number of fragments distribution (i.e., the multi-
plicity distribution) are known in the case of scale-invariant inactivation functions [3,5] .
The FIB model has been successfully applied for the description of nuclear multifragmenta-
tion data for fragment-size distribution and fragment-fragment correlations at intermediate
energy HI collisions [6] and to the multiplicity data in ete™ [7] .

One of the most important open problems in physics of fragmentation is the signature
of possible criticality in small systems in terms of quantities which do not refer to the
thermodynamic equilibrium and as such can be used both in the equilibrium as well as
in the off-equilibrium fragmentation processes. In this context, we show that probability
distribution of the order parameter, which has distinctly different features at the critical
point and outside of it, may be extremely useful in phenomenological applications both in
energetic collisions of hadrons, leptons or nuclei as well as in physics of atomic clusters and

polymers.



II. THE MODEL

In the FIB model [2] , one deals with fragments characterized by some conserved scalar
quantity that will be called in the following the cluster mass. The anscestor cluster of mass
N is fragmenting via an ordered and irreversible sequence of steps. The first step is either
a binary fragmentation, (N) — (7) + (N —j) , or an inactivation (N) — (N)* . Once in-
active, the cluster cannot be reactivated anymore. The fragmentation leads to two clusters,
with the mass partition probability ~ Fj x_; . In the following steps, the process continues
independently for each active descendant cluster until either the low mass cutoff for further
indivisible particles (monomers) is reached or all clusters are inactive. For any event, the
fragmentation and inactivation occur with the probabilities per unit of time ~ Fj;_; and
~ I respectively. The fragmenting system and its evolution is completely specified by these
rate functions and by theinitial state. It is also useful to consider the fragmentation probabil-
ity pr without specifying masses of descendants : pp(k) = Zf;ll Fjr; (Ik-{—Zf;ll Fip_i)!

If the instability of smaller clusters is smaller than instability of larger clusters, pr(k) is an
increasing function of cluster mass and the total mass is converted into finite size clusters.
This is the shattered phase. Average cluster multiplicity in this phase is: < m > ~ N .
The cluster mass independence of pp(k) at any stage of the process until the cutoff-scale
for monomers characterizes the transition region. In the domain pr > 1/2 , the average
multiplicity is : <m >~ N""! (1<7<2,1ie,<m>/ N), where 7 is the exponent of
the power-law cluster-size distribution : n(k) ~ k=7 . It is convenient to define the multi-
plicity anomalous dimension : v = d(In < m >)/d(ln N) , which changes from 0 to 1 for for
pr changing from 1/2 to 1. For pg < 1/2 at the transition line and in the infinite-cluster
phase [2] , the average multiplicity is always finite, i.e., v = 0 , whereas v+ = 1 in the
shattered phase. Shattering is the second order phase transition and the order parameter
in this transition is the cluster multiplicity or monomer multiplicity, both of them closely

interrelated.
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FIG. 1. Typical multiplicity distributions in the critical fragmentation regime
a 2 -1,1/2 < pr < 1, are plotted in the first scaling variables (6 = 1) (see Eq. (5)) for

various values of 7 .

Most of interesting physical applications correspond to the homogeneous fragmentation
functions : Fy;av-j) = N*Fin-; , €.g., Fjn—; ~ [j(N — 5)]* . These include the singular
kernel @ = —1 in the perturbative quantum chromodynamics (PQCD) for gluons [8]
a = —2/3 for the spinodal volume instabilities in three dimensions 2] , @ = +1 in the
scalar A¢ field theory in six dimensions [9] , and many others [2] .

For the scale-invariant inactivation rate-function : I ~ k? , the transition line corre-
sponds to : 3 =2a+1,and: 8 < 2a+ 1, in the shattered phase. In the latter case,
the cluster-size distribution is a powerlaw with the exponent 7 > 2, though system is not

critical.



A. Evolution equations of the multiplicity (the order parameter) distributions in

FIB process

Below we shall discuss equations for the time-evolution of the multiplicity distribution
in FIB model. They are important for several reasons. Firstly, the cluster multiplicity
is the order parameter in FIB process and hence important informations about universal
features of the order parameter fluctuations can be extracted from these equations. Secondly,
after a suitable change of variables, these equations allow to study the relation between
the FIB process and the PQCD, which provides a foundation of our understanding of the
ultrarelativistic collisions.

Let us call Py[m;t] the probability to get a cluster multiplicity m at time ¢, starting
from initial cluster of size N at t = 0 . The time evolution equation for the multiplicity is

given by the following non-linear rate equations :

O0Pn[m;t =
—% + (IN + 3 Fj,N—j) Pylm;t] =
J=1

-1 m—1

=3 Fine; >, Pilm'it] Pyv_jlm —m'st]

J=1 m'=1

+ Iné(m—1) . (1)

In terms of the generating function : Zn(u,t) = Yo, Pn[m,t](1 + u)™ , one obtains :

aZN N-1
a, (Y = JN=3|L5\U, N—;\U, - NU,
5 (u,t) ; Fin-ilZi(u,t) Zn-j{u,t) — Zn(u,t)]+

+ In[l +u - Zn(u,t)] (2)

with the initial condition (monomer cannot break up) : Zj(u,t) = 1 + v and the normal-
1zation condition : Zy(u = 0,t) = 1 . Note that the partial derivative is taken at a fixed
size N. The sum on the right hand side of eq. (2) represents binary fragmentation of the

primary cluster NV into the daughter clusters of mass j and ¥ —j respectively. The second
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term on the right hand side is responsible for the inactivation and it is in the essence the

dissipative term.

1. Ezample : The gluodynamics with nonperturbative dissipation in QCD jets

We can transform the discrete variable j in (2) into a continuous one : z = J/N, which
varies from 0 to 1. The time ¢ appearing in (2), arises within the fragmentation and inacti-
vation kernels , which themselves are probabilities per unit of ¢. We define then the time as
:t=TInY, where T is a constant, ¥ = In(NO/Qy) , Q¢ = const and © plays the role of

time, ordering the sequence of events.

<m> P(m)

1.5

FIG. 2. Multiplicity distribution in the shattered phase are plotted in the variables of the second
scaling (§ = 1/2) (see Egs. (4), (5)) for systems of different sizes N = 210,212 914 | Two different
sets of parameters are used, corresponding both to the same value 7 = 4 : (e =-1,8= -3 and

a=0,8=-1).

Assuming now that all physical quantities depend only on the variable Y and not on N

and O separately, we transform (2) into :



0z

v (ou) = /01 Y0 (V) @212 [Z(Y +log z,u) Z(Y + log(1 — 2),u) —

— Z(Y,u)ldz + R(Y,u) , (3)

where R(Y,u) = Z(Y)[l + v — Z(Y,u)] , and Z(Y) is the inactivation function. The
initial and normalization conditions are : Z(0,u) =14+ u, Z(¥,0) =1, and : 3*(Y) =
(2N¢m)/as(Y) , where a,(Y) is the QCD running coupling constant. Eq. (3) is analogous
to the PQCD gluodynamics rate equations in the modified leading-log approximation if
N is the initial momentum, © is the angular width of the gluon jet considered and T is
chosen such that T' = 12N¢/(11N¢ — 2N;) , where N¢ and Ny are the number of colours
and flavours respectively. Standard gluodynamics equations correspond to neglecting the
dissipation term R(Y,u) in (3). Notice, that the precise form of this term follows from
the identification of the dissipation mechanism in QCD jets. Presently available data on
multiplicity distributions in e*e™ reactions are perfectly described using the finite-scale

Gaussian inactivation [7].

B. Scaling features of the order parameter distributions

Cluster multiplicity distribution : P(m) = T, Pi(m) , where P¢(m) is the probability
distribution of the number of clusters of mass k is the basic observable in physics of frag-
mentation and aggregation phenomena. Of particular importance is the asymptotic scaling

of multiplicity probability distributions [5,10] :

5 _m—<m>
P =&(z = — 4
<m >° P(m) = ®(z) , Z(5) Py (4)

where the asymptotic behaviour is defined as < m >— o0 , m — oo for a fixed (m/ <
m >) - ratio. < m > is the multiplicity of clusters averaged over an ensemble of events.
The scaling law (4) means that, e.g., data for differing energies (hence differing < m >)

should fall on the same curve when < m >° P(m) is plotted against the scaled variable

-1



z5) = (m— < m >)/ <m >* . Asymptotic scaling (4) with § =1 has been suggested in
the strong interaction physics [10] . § = 1 scaling, which corresponds to scale-independent
fluctuations in P(m) , has been found in the critical transition region of scale-invariant FIB
process for 1/2 < pr < 1 and a > —1 (3] (see Fig. 1) . In the shattered phase, P(m) obeys

the second scaling limit with § = 1/2 [5] (see Fig. 2).

<S.x>P(S_,, )
1.0 -

0.8

0.6
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0.2 |

FIG. 3. The order parameter distribution in the 3D bond-percolation at the critical point is
plotted in the variables of the first scaling (§ = 1 ) (see Eq. (5)) for systems of different sizes

N = 103,123,143 (respectively : diamonds, squares and circles) .

The fluctuations of order parameter are scale-invariant (6 = 1) only in the critical sector
of the FIB model (¢ > —1 ,1/2 < pr < 1) and correspond to the second scaling (6 =
1/2) in all non-critical sectors whenever < m >, N . This property is more general and |,
actually, for all second-order phase transitions, both equilibrium and non-equilibrium ones,
fluctuations of the order parameter M obey the first scaling (6 = 1) at the critical point

and the second scaling (6 = 1/2) outside of it, i.e. :

<M >° P(M) = f(zg) , E0E s v (5)



In percolation, for example, the order parameter M is the reduced size of the largest cluster
: M = S,.... Figs. 3 and 4 show the scaling features of S,,, in the 3D-percolation at the
critical point (the first scaling ) and outside of it (the second scaling ) . M-fluctuations for

the critical aggregation process have been discussed in [11] .

1/2

<S__ > P(§nax )

Z

FIG. 4. The order parameter distribution in the 3D-percolation outside of the critical point
(p = 0.35 # p.,) is plotted in the variables of the second scaling (§ = 1/2 ) (see Eq. (5)) for

systems of different sizes N = 103,123, 148 (respectively : diamonds, squares and circles) .

The essential information about the phase transition, the order parameter and its fluc-
tuations is contained in the scaling function f(z()) , which is the benchmark of the phase
transition. We have found that the scaling features are well seen even in relatively small

systems what is important in the studies of transitional behaviour in small finite systems.

C. FIB model with the finite-scale dissipative effects

The dissipation which slows down and finally stops the off-equilibrium fragmentation

process, is often characterized by a finite and usually small length scale. It is then an open



question to which extent this process,

<m>" P(m)

zZ

0.75

FIG. 5. The multiplicity distribution in FIB model for @ = —1/3 with the Gaussian inactiva-

tion (6) (B8 = 0,c=1,0 = 1) in the scaling variables § = 0.75 are plotted for systems of different

sizes : N = 210,212 914 |

which on one side is driven by the homogeneous scale-invariant fragmentation rate func-
tion and on other side it is inactivated at a certain fixed scale by the random inactivation
process, may develop scale-invariant and universal features in both the cluster mass distri-
bution n(k) and the cluster multiplicity distribution P(m) . This question is important
in view of the widespread occurrence of scale-invariant cluster mass distributions and the
lack of convincing arguments for using homogeneous dissipation functions in many processes
including parton cascading in the PQCD [7] or the fragmentation of highly excited atomic
nuclei, atomic clusters or polymers. This important question was investigated in [4] for
certain fixed values of exponents : & = —1,+1 , of the fragmentation function F;s_; and

for the dissipation at small scales approximated by the Gaussian inactivation rate function
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1 (k-1)"
_ 3
]k = ck exp[—@( N ) ] . (6)
Limit ¢ — oo yields ordinary scale-invariant inactivation.

As a generic case for & = —1 , one finds the scale-invariant region of power law fragment

mass distributions with 7 < 2 for ¢ above ~ 0.5 . The power law region is completely

analogous to the critical sector of scale-invariant FIB model (« > —1 and 1/2 < pr <

1) [2,3] . As in the latter case, the multiplicity anomalous dimension is : 0 < v<1

0.78

<M’} > P(M’, )
0.5

0.4
0.3
0.2

0.1

Z .78

FIG. 6. 3D bond-percolation probability distribution of the variable M| = M; — §,,,., with M;
the first moment of the size-distribution (i.e., M] =mass of all clusters except for the largest one) at
the percolation threshold is plotted for three different lattice sizes : 103,123 and 14° (respectively

: diamonds, squares, circles) in the scaling variables (5) with § = 0.78 .

For o = +1 and o above ~ 0.5 , the fragment size distributions is the power law with the
exponent 7 > 2. The multiplicity anomalous dimension is : ¥ =1 , and the second scaling
(6 = 1/2) holds like in the shattered phase of scale-invariant FIB model [2] . These generic
situations can be summarized as follows : if the fragment size distribution is a power law,

the first scaling (6§ = 1) of multiplicity distributions is associated with 7 < 2 and the second
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scaling (6 = 1/2) of multiplicity distributions with 7 > 2 in both scale-invariant and scale-
dependent regimes of dissipation. This clearly indicates a relation between the multiplicity
scaling law and the fragment mass distribution scaling regimes in the FIB model. It also
proves that in this range of parameters, the nature of the order parameter and its singularity
is not modified by the finiteness of the dissipation scale in the Gaussian FIB model. Like
in the scale-invariant FIB process, the scale-dependent fragmentation processes may also
develop strong scale-invariant fluctuations (the first scaling ) , though the region of their
appearance is restricted to : —1 < a < —1/2, of the homogeneous fragmentation function.
For o > 0, the fragment multiplicity distributions obey the second scaling (6 = 1/2) , i.e.

the small amplitude limit of scaling multiplicity fluctuations.

1/2

<M] > P(M’ )

0.20

0.10

-1.0 ) ] 1.0
Zp

FIG. 7. 3D bond-percolation probability distribution of the variable M| = My — 8,,,., with
M the first moment of the size-distribution (i.e. M{=mass of all clusters except for the largest
one) away from the percolation threshold (p = 0.35 # p.,) is plotted for different lattice sizes :

N = 103,123,143, in the scaling variables (5) with § = 1/2 .

The situation is different for —1/2 < a < 0. Here, the multiplicity distributions scale as

12



in (5) but with the exponent é which takes an intermediate value between the first scaling
(6 = 1) and the second scaling (§ = 1/2). In Fig. 5 we show the cluster multiplicity
distributions in the scaled variables z(s) for § = 0.75 for the parameters o = —1/3, § =
0,c =1,0 =1 of the fragmentation and inactivation rate functions. Of course, if 0 — oo ,
the inactivation becomes scale-invariant again and, for this choice of parameters o and
B, the process is in the shattering phase and, hence, the second scaling (6 = 1/2) holds.
What happens then for small values of ¢ in the range of parameters o from -1 /2 to 07
To understand meaning of this unusual scaling, it is instructive to refer to the properties
of percolation model. What happens at the percolation threshold (p = Per) if instead of
P(M) , where M = S, , we plot the probability distribution of M{ = My — Sz , where
My = ¥, kn(k) 7 M, is related in a non-trivial way to the order parameter S,,.; and, in
particular, it conserves the singularity of S,.., . Fig. 6 shows the probability distributions
of the variable M, at the 3D bond percolation threshold. P(M;) for systems of different
sizes obeys the scaling law (5) but with the non-trivial exponent : § = 0.78 . This non-
trivial value of ¢ , i.¢., different both from é = 1/2 and 1, is here a signature of the phase
transition and disappears, i.e., § becomes equal 1/2, for p # p., (see Fig. 7). Of course, this
sign of criticality is not the same as the first scaling (6 = 1), but on the other hand M] is
not exactly the order parameter : M = Spo./N = (N — M{)/N for which the first scaling
(6 = 1) holds (see Fig. 4). The results we have obtained so far for the off-equilibrium
fragmentation systerns as well as for the percolation which is a static equilibrium model,

lead us to formulate the following conjecture :

o The occurrence of first scaling (§ = 1) in the probability distribution P(M") of a
certain macroscopic quantity M, is the sign of critical behavior and M’ is the order

parameter in this transition;

o The occurrence of generalized scaling with: 1/2 < § < 1 in the probability distribution
P(M’) is the sign of a critical behavior in the system but M’ is not the order parameter

M . M’ isin this case closely related to the true order parameter M and, in particular,

13



1t is singular at the critical point as M is;

® The occurrence of a second scaling (§ = 1/2) in the probability distribution P(M') is

the sign that the variable M’ is not singular.

In a certain range of parameters of the Gaussian FIB model, one observes a change of the
order parameter as compared to the scale-invariant FIB model. This change manifest itself
in the modification of exponent & of the scaling law (5) at the critical point. In general, it is
possible to reconstruct the true order parameter though this procedure may turn out to be
inaccurate in some cases due to the finite-size effects. This possibility could be important in
various phenomenological applications where the order parameter may not be directly related
to observed quantities. Nevertheless, one may deduce from observables the most essential

properties of the order parameter and obtain the information about scaling exponents [12] .

III. CONCLUSIONS

The analysis of critical behaviour and, hence, the determination of critical exponents in
finite systems may be strongly perturbed by the finite-size effects. Moreover, for many phe-
nomena even the order parameter is not known. In these cases, investigation of fluctuations
in the order parameter or in the related quantity may be very important. We have shown
that both equilibrium and off-equilibrium processes exhibiting a second-order phase transi-
tion, obey the scaling law of order parameter fluctuations (5) for systems of different sizes.
This scaling, which is well seen even in small systems, permits to tell whether the studied
process is critical (i.e.,1/2 < § <1in Eq. (5)) and the selected macroscopic quantity which
shows a singular behaviour in a critical sector is a true order parameter in this process (i.e.,
6 =1 in this case). The case § = 1/2 in Eq. (5), is an interesting special case. This scaling
appears outside of a critical region ( e.g., in the shattering phase of the off-equilibrium FIB
process or away from the critical point in the equilibrium percolation process) where the

order parameter is non-singular.
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The universal features of the order parameter fluctuations do not depend on whether
the studied process is an equilibrium or an off-equilibrium process. In the latter case,
the arsenal of available tools to characterize statistical properties of the system is strongly
limited, and the universality of the order parameter fluctuations may be a unique tool in
many phenomenological applications. For example, in ultrarelativistic collisions of leptons
or hadrons, the study of multiplicity fluctuations and their deviations from the § = 1 scaling
as seen by UA5 Collaboration [13] may give a unique insight into the dynamics of parton
cascading and subsequent hadronization, allowing for the determination of both the relevant

observables and the nature of criticality.
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