
SMI�� � Object oriented framework

for designing Control Systems

for HEP experiments

C� Gaspar

CERN� European Organization for Nuclear Research
CH����� Geneva ��� Swizerland

B� Franek

Rutherford Appleton Laboratory� Chilton
GB�Didcot OX�� OQX

Abstract In order to cope with the complexity of the online control system the
DELPHI experiment at CERN �Aarnio at al� ����	 developped� in collaboration
with the CERN OC group� a new concept for the coding of the control logic
 In
this concept � SMI� the State Management Interface �Barlow at al� ����	� the
experiment is viewed as a collection of objects behaving as �nite state machines

These objects are tipically organized in hierarchical structures allowing up to the
full automation of the experiment by a a top�level object
 This concept has been
extended and is beeing re�designed using object�oriented techniques in SMI


for the BaBar experiment at SLAC


Keywords communication� control systems� development environments� object�
oriented methods� programming languages

�
INTRODUCTION

The Online systems of physics experiments are
normally composed of several di�erent parts

Most common tasks are�

� The Slow Controls System �SC	 controls and
monitors slowly moving technical parameters
and settings� like temperatures and high volt�
ages of each sub�detector� and writes them onto
a database


� The Data Acquisition System �DAS	 reads
event data from the detector and writes it onto
tape


� The Trigger System provides the DAS system
with the information on whether or not an
event is interesting and should be written to
tape


� The Machine�Experiment Communication Sys�
tem controls the exchange of parameters be�
tween the accelerator control system and the
experiment


In previous experiments the control of the di�e�
rent areas was always designed separately by dif�
ferent experts� using di�erent methodologies and
tools resulting in a set of dedicated control sys�
tems


DELPHI decided to take a common approach to
the full �experiment control� �Adye at al� ����	
system
 The result was the design of a system
that can be used for the control and monitoring
of all parts of the experiment� and consequently
obtaining a system that is easier to operate� be�
cause it is homogeneous� and easier to maintain
and upgrade


�
THE SMI SYSTEM

SMI is a tool for developing control systems� it
is based on the concept of Finite State Machines
�FSM	
 Finite state machines are a simple way
to describe control systems� complex systems can
be broken down into small and simple FSMs that
are hierarchically controlled by other FSMs
 Us�



ing SMI the experiment can be decomposed and
described in terms of objects behaving as �nite
state machines


SMI objects can represent concrete entities� for
example an hardware device or abstract entities
like a logical sub�system
 The objects represent�
ing concrete entities interact with the hardware
they model and control through driver processes
or proxies
 The objects are typically organised in
hierarchical structures called domains


The interaction between objects can best be un�
derstood in the example of Figure �


Hardware devices

Obj Obj

Obj
SMI Domain

SMI Domain

Driver
Process

Obj

Obj

Obj

Figure �� SMI example

The object model of the experiment is described
using State Manager Language �SML	
 This lan�
guage allows detailed speci�cation of the objects
such as their states� actions and associated condi�
tions
 The main characteristics of this language
are �

� Finite State Logic

Objects are described as �nite state machines

The only attribute of an object is its state

Commands sent to an object trigger actions
that can bring about a change in its state


� Sequencing

An action on an abstract object is speci�ed by
a sequence of instructions� mainly consisting
on commands sent to other objects and logical
tests on states of other objects
 Actions on
concrete objects are sent o� as messages to the
Driver Control Processes


� Asynchrounous

Several actions may proceed in parallel� a com�
mand sent by object�A to object�B does not
suspend the instruction sequence of object�A

Only a test by object�A on the state of object�B
suspends the instruction sequence of object�A

if object�B is still in transition


� AI�like rules

Each object can specify logical conditions
based on states of other objects
 These when
satis�ed will trigger an action on the local ob�
ject
 This provides the mechanism for an ob�
ject to respond to unsolicited state changes of
its environment


�� Example of SML code

object � RUN�CONTROL

state � READY

action � START�RUN

do MOUNT TAPE

if TAPE not in�state MOUNTED

do MOUNT�ERROR ERROR�OBJ

terminate�action�state�ERROR

endif

do START READOUT�CONTROLER

if READOUT�CONTROLER in�state RUNNING

terminate�action�state�RUN�IN�PROGRESS

���

state � RUN�IN�PROGRESS

when TAPE in�state FILE�FULL

do PAUSE�RUN

when READOUT�CONTROLER in�state ERROR

do ABORT�RUN

action � ABORT�RUN

���

object � READOUT�CONTROLER�driver

state � READY

action � START

���

state � RUNNING

action � PAUSE

action � ABORT

���

The SMI mechanism allows an easy recon�gu�
ration of the system� changes in the hardware
can be easily integrated by modifying or replac�
ing driver processes and logical modi�cations by
changing the SMI code
 The decoupling between
the actual actions on the hardware �done by the
Driver Processes	 and the control logic �residing
in the SMI objects	 makes the evolution of a sys�
tem from its �rst test phase up to �nal complexity
a very smooth process


�
SMI�S USE IN DELPHI



In DELPHI the full online system is controlled
through this mechanism� the various areas of
DELPHI have been mapped into SMI domains�
sub�detector domains� DAS domain� SC domain�
TRIGGER domain� etc
 The full system com�
prises about ���� SMI objects in �� di�erent do�
mains


A high level of automation of the experiment�s
control system is very important in order to avoid
human mistakes and to speed up standard proce�
dures


Using the SMI mechanism the creation of a top
level domain � BIG BROTHER � containing the
logic allowing the interconection of the underlying
domains �LEP� DAS� SC� etc
	 was a very easy
task


Hardware devices

Det 1 Det n. . .

DAS SC

LEP

Trigger To LEP

BIG
BROTHER

Figure �� Big Brother Control

Under normal running conditions BIG BROTH�
ER pilots the system with minimal operator in�
tervention as shown in Figure �
 In other test
and setup periods the operator becomes the top�
level object� using the user�interfaces he can send
commands to any SMI domain


�
DISTRIBUTED ENVIRONMENTS

Current online control systems are generally char�
acterized by a highly distributed architecture� like
most computer control systems� they consist of
workstations interconnected by a local area net�
work


SMI takes advantage of distribution� SMI Do�
mains can run on a variety of computer platforms

The cooperation between SMI Domains including
all exchanges between objects� are embedded in
the SMI system
 All issues related to distribution
and heterogeneity of platforms are transparently
handled by the underlying communication system
�DIM �Distributed InformationManagement Sys�
tem	 �Gaspar and D�onszelman� ����	


DIM�s aim is to provide interoperability between
applications on di�erent machines in heteroge�
neous distributed environments


The DIM system was designed and implemented
according to the following characteristics �

� E�ciency

The communication mechanism of DIM was
chosen having in mind the asynchrounous char�
acter of SMI objects and the speed in reacting
to changes or error conditions in the system

The solution we thought the best is for clients
to declare interest in a service provided by a
server only once �at startup	� and get updates
at regular time intervals or when the condition�
s change
 I
e
 an asynchronous communica�
tion mechanism allowing for task parallelism
and multiple destination updates


� Transparency

At run time no matter where a process runs� it
is able to communicate with any other process
in the system independently of where the pro�
cesses are located
 Processes can move freely
from one machine to another and all commu�
nications are automatically reestablished
 �this
feature also allows for machine load balancing	


� Reliability and Rubustness

In an environment with many processes� pro�
cessors and networks� it often happens that a
process� a processor or a network link breakes
down
 The loss of one of these items should
not perturbate the rest of the application
 DIM
provides an automatic recovery from crash si�
tuations or the migration of processes


DIM uses a publish�subscribe mechanism
 Any
process in the Online System can publish �Serv�
er	 information and any interface �or any other
process	 can subscribe �Client	 to this informa�
tion
 A unit of information is called a �Service�

A Name Server keeps track of all the Servers and
Services available in the system


Servers �publish� their Services by registering to
the Name Server �Normally once at startup	


Clients �subscribe� to Services by asking the
Name Server which Server provides the Service
and then contacting directly the Server
 Clien�
t�s Services are then kept up�to�date in an event
driven mode or at regular time intervals
 Clients
can also send commands to servers


DIM is responsible for most of the communica�
tions inside the DELPHI Online System� it is
used by SMI in order to transfer object states and



commands� by the user interfaces in order to ac�
cess SMI or any other necessary information and
by many other processes for monitoring or pro�
cessing activities
 In the DELPHI environment it
makes currently available around ����� Services
provided by ��� Servers
 Dim is also beeing used
by other experiments at CERN �and of course in
Babar	


�
IMPLEMENTATION AND AVAILABILITY

DELPHI�s SMI was implemented using ADA�
each SMI domain corresponded to a �le of SML
code
 The SML code was translated into ADA
forming a VMS process� each object beeing
mapped into an ADA task
 This version is avail�
able on VMS only


In SMI

 � The SML code is parsed and trans�
lated into an SMI object database that is then
used by generic �Logic Engines�


The logic engine has been designed using an Ob�
ject oriented design tool �Rational Rose�C

	
and coded in C

 language
 It uses the trans�
lated SML representation of the experiment to in�
stantiate the required objects and then responds
to external events to drive the computer model of
the experiment


Con�guration tools allow the user to specify
which objects belong to a speci�c SMI Domain�
an SMI Domain corresponding to a Logic Engine


The design of the project is completed and the
implementation is in progress
 The �rst proto�
type should be working by the end of the year


SMI

 will be available on any mixed environ�
ments comprising � VMS �VAX and ALPHA	 and
UNIX �avours �OSF� AIX� HPUX� SunOS� So�
laris	

DIM is already available in the above platforms
and on OS� and is beeing ported to WindowsNT
and LINUX


Other available tools are �

A generic SMI display� allowing to visualise the
state of the SMI objects in a Domain and to send
commands to them


A DIM Display allowing the visualization of all
the servers and clients in a certain DIM environ�
ment �including SMI and driver processes	
 Very
usefull for debugging applications


A DIM to WWW gateway� allowing access to all
DIM services �including SMI states	
 The WWW
page can be written in HTML with speci�c DIM
tags containing the service name
 The DIM tags

are translated when the page is loaded


�
CONCLUSIONS

SMI is a powerfull tool for designing and imple�
menting control systems� it merges the concepts
of object modeling and �nite state machines


The SMI system provides a simple language to
model the application and a set of tools to com�
pile� con�gure and run your applications on a va�
riety of platforms


The full control of the DELPHI experiment at
CERN is implemented using this system� SMI
proved capable of handling the control of di�erent
environments such as� data acquisition �including
run control	� slow controls� trigger� etc


Due to the homogeneity in the control of the di�e�
rent parts of DELPHI it was possible to intercon�
nect the di�erent parts and completelly automate
the DELPHI operations
 It also considerably re�
duced the e�orts on maintenance and upgrade of
the complete control system of DELPHI


SMI

 implements extensions to the SMI con�
cept and is beein re�designed for use by the BaBar
experiment at SLAC
 The main extensions are
related to more con�guration capabilities at run�
time� availability on a larger set of platforms �in�
cluding heterogeneous distributed environments	
and a higher support on graphical tools


�
REFERENCES

DELPHI Collaboration� Aarnio� P
 et al
 �����	

The DELPHI Detector at LEP
 In� Nucle�

ar Instruments and Methods in Physics Re�

search A���� pp
 �������


J
 Barlow et al
�����	
 Run Control in MODEL�
The State Manager IEEE trans�nucl�sci����
pp
 ���������


T
 Adye at al
 �����	
 The DELPHI Experi�
ment Control Proceedings of the Internation�
al Conference on Computing in High Energy

Physics ��	� Annecy� France


Gaspar� C
 and D�onszelmann� M
 �����	
 DIM �
A Distributed InformationManagement Sys�
tem for the DELPHI experiment at CERN

In� Proceedings of the IEEE Eight Confe�

rence REAL TIME ��� on Computer Ap�

plications in Nuclear
 Particle and Plasma

Physics� Vancouver� Canada



