
arXiv:hep-lat/9808038   26 Aug 1998

C
E
R
N
/T

H
-98-272

M
P
I-P

h
T
/98-66

T
h
e
P
H
M
C

algorith
m

for

sim
u
lation

s
of

d
y
n
am

ical
ferm

ion
s:

II
-
P
erform

an
ce

an
aly

sis

R
o
b
erto

F
rezzo

tti 1
a
n
d
K
a
rl

J
a
n
sen

2
;
�

1
M
a
x
-P
la
n
ck
-In

stitu
t
f�u
r
P
h
y
sik

,
F
�o
h
rin

g
er

R
in
g
6
,
D
-8
0
8
0
5
M
u
n
ic,

G
erm

a
n
y

2
C
E
R
N
,
1
2
1
1
G
en
�ev
e
2
3
,
S
w
itzerla

n
d

J
a
n
u
a
ry

2
9
,
2
0
0
2

A
b
s
t
r
a
c
t

W
e
co
m
p
a
re

th
e
p
erfo

rm
a
n
ce

o
f
th
e
P
H
M
C
a
lg
o
rith

m
w
ith

th
e
o
n
e
o
f

th
e
H
M
C
a
lg
o
rith

m
in

p
ra
ctica

l
sim

u
la
tio

n
s
o
f
la
ttice

Q
C
D
.
W
e
sh
o
w
th
a
t

th
e
P
H
M
C
a
lg
o
rith

m
ca
n
lea

d
to

a
n
a
ccelera

tio
n
o
f
n
u
m
erica

l
sim

u
la
tio

n
s.

It
is
d
em

o
n
stra

ted
th
a
t
th
e
P
H
M
C
a
lg
o
rith

m
g
en
era

tes
co
n
�
g
u
ra
tio

n
s
ca
r-

ry
in
g
sm

a
ll
iso

la
ted

eig
en
v
a
lu
es

o
f
th
e
la
ttice

D
ira

c
o
p
era

to
r
a
n
d
h
en
ce

lea
d
s
to

a
sa
m
p
lin
g
o
f
co
n
�
g
u
ra
tio

n
sp
a
ce

th
a
t
is
d
i�
eren

t
fro

m
th
a
t
o
f
th
e

H
M
C
a
lg
o
rith

m
.

�H
eisen

b
erg

F
o
u
n
d
a
tio

n
F
ello

w

1



Introduction

In this paper we continue our discussion of the Polynomial Hybrid Monte Carlo

(PHMC) algorithm [1, 2]. This algorithm, designed for simulations of models

containing fermionic degrees of freedom, is based on the idea [3] of combining

the Hybrid Monte Carlo (HMC) algorithm [4] with the multiboson technique

[5]. In the PHMC algorithm the update part relies on an approximation of the

exact fermion action to be simulated. The error induced by this approximation

is corrected for by a reweighing technique, which introduces a correction factor

taken into account in the sample average of the observables.

In this paper we will present our results concerning the dynamical behaviour of

the PHMC algorithm in practice. On the quantitative level we will compare its

performance with the one of the HMC algorithm. Our numerical tests have been

done in the Schr�odinger functional set up [6, 7, 8], on small and moderately large

physical volumes but at almost vanishing quark mass, which is feasible when

using Schr�odinger functional boundary conditions. We remark that since we are

working at tiny values of the quark mass, the condition number of the fermion

matrix employed in our simulations becomes O(2000).

We will demonstrate that the PHMC algorithm samples con�guration space dif-

ferently from the HMC algorithm. In particular, using the PHMC algorithm,

gauge con�gurations with very small eigenvalues of the lattice Dirac operator can

be reached. Consequences of this behaviour on the results for physical observables

are discussed.

We assume that the reader is familiar with refs. [1, 2]. In particular, in the latter

reference we have discussed a number of relevant technical aspects, which lay the

ground for the present performance analysis.

1 Numerical simulations with

the PHMC algorithm

In order to make the paper reasonably self-contained, we summarize here some

features of the PHMC algorithm. We remark that throughout the paper we will

use O(a)-improved Wilson fermions.
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1.1 Ingredients of the PHMC algorithm

Denoting the lattice gauge link from x to x+ a�̂ by U�(x) 2 SU(3) and a gauge

�eld con�guration by U , the expectation value of any gauge invariant observable

O = O[U ], in full QCD with nf = 2 degenerate 
avours, may be written as

hOi = Z�1
�Z

DUe�Sg [U ]det(Q2[U ])O[U ]
�
; (1)

where Sg is the standard plaquette action for the pure gauge sector and Q is the

Dirac operator for O(a)-improved Wilson fermions multiplied by 
5 (see below).

The PHMC algorithm makes use of a polynomial approximation of (Q2)�1. The

polynomial in a real variable s and having degree n is denoted by Pn;�(s) and

constructed such that it approximates s�1 in the range 0 < � < s < 1 with a

relative �t error bounded by

Æ = 2

 
1 �p�
1 +

p
�

!n+1
: (2)

We choose the normalization of the Dirac operator such that the highest eigen-

value of Q2 is smaller than 1 and write the corresponding polynomial in Q2,

Pn;�(Q
2), in a factorized form:

Pn;�(Q
2) = Cn;�

nY
k=1

(Q� r�k)(Q� rk) ; (3)

where Cn;� is a positive constant, rk is determined by
p
zk (see [2] for the exact

relation), and the zk's are the complex roots of Pn;�(s). We note that special care

has to be taken concerning the precise ordering of the factors in eq. (3) in order

to avoid problems with rounding errors [9].

The full QCD (nf = 2) partition function may now be represented as

Z =
Z
DUD�yD�D�yD�We�(Sg+SP+�

y�)

SP = SP [U; �] = �yPn;�(Q
2[U ])� (4)

by introducing the auxiliary pseudofermion �elds (i.e. boson �elds with spin and

colour indices) �, � and the correction factor W = W [�; U ]:

W = exp
n
�y(1� [Q2 � Pn;�(Q2)]�1)�

o
: (5)
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Each evaluation of W requires a trivial Gaussian \update" of the �-�eld and

the solution of the system [Q2Pn;�(Q2)]� = �. In practice it turned out to be

useful to generate the �-�elds Ncorr times for each given gauge �eld con�guration.

Denoting averages evaluated with the e�ective action Sg+SP +�y� as h: : :iP , the
exact averages denoted as h: : :i are obtained by reweighing with W

hOi = hW i�1P hOW iP : (6)

In [1] we presented some tests of the PHMC algorithm for non-improved Wilson

fermions. In this paper, we extend these tests to the case of O(a)-improved

actions. With respect to the non-improved case this amounts to adding the so{

called \clover" term [10] to the lattice Dirac operator, as speci�ed below. The

modi�cations in the PHMC algorithm induced by this extra term in the action

are completely analogous to the ones needed for the standard HMC algorithm and

our implementation of the PHMC algorithm for O(a)-improved fermions follows

closely the procedure described in [11] for the HMC algorithm.

For the actual simulations we consider hypercubic space-time lattices with lattice

spacing a and size L3 � T . With the lattice spacing set to unity from now on,

the points on the lattice have integer coordinates (x0; x1; x2; x3), which are in the

range 0 � x0 � T ; 0 � xi < L. The gauge and the fermion �elds obey Schr�odinger

functional boundary conditions as used in [12] and detailed in [6, 7, 8]. The matrix

de�ning the fermion action will be denoted by Q:

Q(U)xy =
c0
cM


5[(1 +
X
��

[
i

2
csw����F��(x)])Æx;y

� �
X
�

f(1 � 
�)U�(x)Æx+�;y + (1 + 
�)U
y
�(x� �)Æx��;yg] ; (7)

where � is the hopping parameter and csw the improvement coeÆcient. The

constant cM serves to optimize the simulation algorithm and c0 = (1+8�)�1. For

further unexplained notations we refer to refs. [2, 9].

In order to speed up the Monte Carlo simulation, not the original matrix Q but

an even-odd preconditioned [13] matrix Q̂ is used. We expect the algorithm to

be working equally well by using di�erent preconditioning techniques like SSOR

[14]. Let us rewrite the matrix Q in eq. (7) as

Q � c0
cM


5

0
@ 1 + Tee Meo

Moe 1 + Too

1
A ; (8)
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where we introduce the matrix Tee (Too) on the even (odd) sites as

(T )xa�;yb� =
X
��

[
i

2
csw��

��
��Fab

��(x)Æxy] : (9)

The o�-diagonal parts Meo and Moe connect the even with odd and the odd with

even lattice sites, respectively. Preconditioning is now realized by writing the

determinant of Q, apart from an irrelevant constant factor, as

det(Q) / det(1 + Tee) det Q̂

Q̂ =
ĉ0
cM


5(1 + Too �Moe(1 + Tee)
�1Meo) : (10)

The constant factor ĉ0 is given by ĉ0 = 1=(1 + 64�2), and the constant cM is

chosen such that the eigenvalues of Q̂ are well within the interval [�1; 1]. Since
for the simulation algorithms the eigenvalues have to be positive, we �nally work

with the matrix Q̂2. We note that in the case csw 6= 0 the PHMC algorithm makes

use of the polynomial approximation Pn;�(Q̂2) ' 1=(Q̂2) only to simulate det Q̂2,

while the term det(1 + Tee)2 is treated exactly. The correction factor therefore

accounts only for the missing contribution, i.e. det Q̂2Pn;�(Q̂2), to the partition

function.

1.2 The simulations

An important question is how the parameters of the polynomial Pn;� are to be

chosen. Following ref. [2], a practical recipe for the choice of � and n may be

given by

� ' 2
h�min(Q̂2)i
h�max(Q̂2)i (11)

and the value of n is set such that Æ ' 0:01 (see eq. (2)). In eq. (11) �min(Q̂2) and

�max(Q̂2) denote the lowest and the highest eigenvalues of Q̂2, respectively. Our

experience suggests that only a poor knowledge of the value of the average condi-

tion number k = h�max(Q̂2)=�min(Q̂2)i for the speci�c run parameters is needed.

We remark that k � h�max(Q2)i=h�min(Q2)i. An estimate of k can be obtained,

e.g. in the thermalization phase of the simulation, which may be performed by

using either the standard HMC algorithm or the PHMC algorithm itself. We

have also found that a very good and decisive check about the quality of the cho-

sen polynomial approximation can be performed by monitoring the 
uctuations
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of the correction factor W : using too poor a polynomial approximation to Q̂�2

gives rise to large 
uctuations of W , and consequently large 
uctuations of many

reweighted observables (eq. (6)), which can be detected after a few trajectories.

Another remark 1 concerns the dependence of the approximation on the volume

V : the di�erence of the actions �S = SHMC � SPHMC is asymptotically �S =

V CS exp(�2p�n), with CS some proportionality constant. Since � is �xed by

the condition of eq. (11) we �nd, if we also want to keep �S �xed, that n '
� (log�S � log V � logCS)=2

p
�. We see that the explicit volume dependence in

n is rather weak in comparison with the (power{like) volume dependence induced

by the way we choose �, following the criterion of eq. (11). We therefore expect

that the PHMC algorithm will also work eÆciently in the case of large volumes,

while keeping the value of Æ, eq. (2), about 0:01.

The numerical tests are performed on 83�16 lattices using the massively parallel

Alenia Quadrics (APE) machines. Simulation parameters were chosen to be

� = 6:8 ; � = 0:1343 ; csw = 1:4251 (12)

� = 5:4 ; � = 0:1379 ; csw = 1:7275 : (13)

These parameter values correspond to those used in simulations to determine the

values of csw non-perturbatively [12].

All tests described below were performed on the APE machines by running Nrep

replica in parallel, with Nrep set to 32 or 16. Since the Nrep replica were indepen-

dently thermalized, the data from the di�erent replica are statistically indepen-

dent from each other. This allows for a reliable error analysis, provided that for

each replicum the statistics is several times larger than the integrated autocor-

relation time of the observable considered. We determined our statistical errors

for the observables, given below, from the variance of the Nrep data obtained

from running in parallel. We checked that the results were consistent with those

obtained from a jack-knife procedure combined with binning. We refer to [2] for

further details.

It is also possible to divide the Nrep system replica into 2 sets of Nrep=2 replica and

analyse each of these two sets of data (a and b) separately. This gives two errors

�a and �b, each of them obtained with half the statistics of the full run. By

1We are grateful to A.D. Kennedy for this argument.
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rescaling �a and �b by
p
2, we can obtain an estimate of the error on the error,

which in turn gives a measure of the error on the integrated autocorrelation time.

This way of determining the error on the error yields values that are compatible

with the estimate [2, 12] of the relative error on the error given by (2Nrep)�1=2,

or, in the case of a binning analysis leading to Nblock independent measurements,

by (2Nblock)�1=2. In the latter case, of course, the values of Nblock have to be large

enough that a plateau behaviour of the error can be detected. For a few tables

below, besides the mean values and the errors (indicated in round brackets), we

also quote the error on the error (indicated in square brackets).

2 Results at � = 6:8

In this section we give our results for various quantities as computed with the

PHMC algorithm and compare with those obtained from the HMC algorithm. We

will compare bulk quantities as well as quark correlation functions and certain

combinations of them.

We give in table 1 the parameters for both simulation algorithms. As reported

in [12], in the simulations with the HMC algorithm, we found that sometimes a

trajectory was not accepted for a number of times. The cure was that every l-th

trajectory the step size Æ� was changed to a smaller value, and the corresponding

number of molecular dynamics steps, Nmd, was increased to reach a unit trajec-

tory length. In the actual simulation a value of l = 6 was chosen and we give in

table 1 the e�ective values of Æ� and Nmd built from the normal and the smaller

step size. We remark that this e�ect, observed in simulations with the HMC al-

gorithm, never appeared within the simulations using the PHMC algorithm and

that the step size was always kept constant there. This allowed in particular to

run the PHMC algorithm at an acceptance rate smaller than the one obtained

with the HMC algorithm.

2.1 Bulk quantities

As bulk quantities we consider the expectation values for the plaquette P , the

lowest �min and the largest �max eigenvalues of Q̂2, and the derivative of the pure

gauge action with respect to the background �eld, dSg=d�. The latter quantity

7



Table 1: The parameters for both simulation algorithms at � = 6:8. We denote

by Stat the statistics obtained in units of trajectories and Pacc is the acceptance

rate.

Algorithm Æ� e� N e�
md Pacc Stat � n cM

HMC 0:059 16:6 0:948(8) 2944 { { {

PHMC 0:077 13 0:79(1) 2944 0:0022 62 0:735

PHMC� 0:077 13 0:758(8) 2944 0:0022 54 0:725

Table 2: Comparison of bulk quantities as obtained from the two algorithms. We

use the notation PHMC(Ncorr) to indicate the values of Ncorr used for the analysis.

Ncorr = 0 means that the correction factor is set to 1. In square brackets we give

our estimate of the error on the error.

Algorithm hP i h�min(Q̂2)i h�max(Q̂2)i hdSg=d�i
HMC 0:673384(53)[7] 0:001150(35)[4] 0:87188(25)[3] 23:1(2:4)[0:3]

PHMC(4) 0:673483(46)[6] 0:001152(42)[5] 0:87164(36)[5] 22:1(2:3)[0:3]

PHMC(2) 0:673496(45)[6] 0:001150(43)[5] 0:87173(39)[5] 22:6(2:3)[0:3]

PHMC(1) 0:673505(48)[6] 0:001141(42)[5] 0:87190(42)[5] 22:6(2:2)[0:3]

PHMC(0) 0:673512(44)[6] 0:001025(46)[6] 0:87177(30)[4] 20:6(2:0)[0:3]

PHMC�(2) 0:673435(66)[8] 0:001117(44)[6] 0:87426(70)[9] 27:1(3:1)[0:4]

can be used to de�ne a running coupling constant in the pure gauge theory [15].

As table 2 shows, we �nd that, for Ncorr > 0 the values of all bulk quantities

are completely consistent with the corresponding ones from the HMC run. Also

the uncorrected (see Ncorr = 0) values for h�maxi and hdSg=d�i are in agreement

with the HMC values while, perhaps, the ones for hP i and �min are somewhat

o�. Within the error on the error, also the estimated errors on the observables

are consistent between the PHMC and HMC algorithm.

The prominent exception is �max, where the error from the PHMC algorithm

appears to be substantially larger than the one from the HMC algorithm. Note,

however, that the mean value and the error for the uncorrected value of �max are

both consistent with the corresponding quantities from the HMC algorithm. In

addition, the error decreases when Ncorr is increased from 1 to 4. This points

8



towards the interpretation that the larger error is just induced by the additional

noise appearing through the correction factor and that there is no large autocor-

relation time hidden in the PHMC algorithm. Of course, �max is a pure cut-o�

quantity and is not expected to be physically relevant.

2.2 Quark correlation functions

Quark correlation functions are important quantities, from which many physical

observables can be constructed. We hence extend our comparison of the algo-

rithms by considering certain quark correlation functions, which are often used

in computations with Schr�odinger functional boundary conditions. To this end

we closely follow ref. [8] and construct correlation functions using boundary quark

�elds �, �� at Euclidean time x0 = 0:

fA(x0) = �X
y;z

1

3
Aa
0(x)��(0;y)
5

1

2
� a�(0; z)

fP (x0) = �X
y;z

1

3
P a(x)��(0;y)
5

1

2
� a�(0; z) : (14)

In eq. (14) Aa
0(x) denotes the isovector axial current and P

a(x) the corresponding

density

Aa
� = � 
�
5

1

2
� a 

P a = � 
5
1

2
� a ; (15)

where � a is a Pauli matrix acting on the 
avour indices of the quark �eld.

Analogously one may build f 0A(T�x0) and f 0P (T�x0) with boundary quark �elds
� 0, �� 0 at x0 = T .

We will consider the correlation functions fA(x0), fP (x0) as well as �nite di�er-

ences of them:

dA(x0) = (@�0 + @0)fA(x0) ; 0 < x0 < T

DP (x0) = @�0@0fP (x0) ; 0 < x0 < T : (16)

In eq. (16) @0 is the lattice forward derivative, and @�0 the lattice backward deriva-

tive

@0f(x0) = f(x0 + 1)� f(x0)

@�0f(x0) = f(x0)� f(x0 � 1) : (17)
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Table 3: Comparison of quark correlation functions as obtained from the two

algorithms. Notations are as in table 2.

Algorithm hfA(T=2)i � 10�4 hfP (T=2)i � 10�6 hdA(T=2)i � 10�4 hDP (T=2)i � 10�5
HMC 0:542(39)[5] 0:1072(55)[7] �0:171(13)[2] 0:2062(60)[8]

PHMC(4) 0:609(58)[7] 0:1074(51)[6] �0:171(12)[2] 0:1957(55)[7]

PHMC(2) 0:612(60)[8] 0:1075(53)[7] �0:168(13)[2] 0:1969(56)[7]

PHMC(1) 0:618(60)[8] 0:1081(53)[7] �0:170(13)[2] 0:1986(56)[7]

PHMC(0) 0:879(144)[18] 0:1300(80)[10] �0:193(15)[2] 0:1891(83)[10]

PHMC�(2) 0:632(70)[9] 0:1088(56)[7] �0:173(12)[2] 0:1939(50)[6]

We compare the results for quark correlation functions as obtained from the two

algorithms in table 3. We take the distance in time to be half the temporal size of

the lattice, i.e. x0 = T=2. We can see from table 3 that we have again consistent

results for the mean values of fP (T=2), dA(T=2) and DP (T=2), as well as for the

corresponding errors. However, for fA(T=2) the error from the PHMC algorithm

is substantially larger than the one from the HMC algorithm. The discrepancy

is well outside the uncertainty of the error as indicated by the error on the error

given in the square brackets. Even more pronounced is the behaviour of the

uncorrected value of fA(T=2). The error is a factor of about 4 larger than in the

HMC case, and also the mean value is o�.

A �rst step for understanding the larger error obtained from the PHMC algorithm

is to look at the distribution of fA(T=2), which we show in �g. 1. It is clearly

seen that the distribution as obtained with the PHMC algorithm spreads much

further out, towards large values of fA(T=2). In principle, this e�ect can come

either from a large autocorrelation time encountered within the PHMC algorithm

or from a di�erent sampling in con�guration space. To decide on this question,

we plot in �g. 2 the time evolutions of various quantities.

Let us start with the correction factor W . Figure 2(a) shows that W can be-

come small, assuming values that are clearly much below the average value,

hW i � 0:45. At the time when W � 1, fA(T=2) assumes very large values

as shown in �g. 2(b). In �g. 2(c) we show W � fA(T=2): the spike in fA is now

suppressed by the correction factor W . The PHMC algorithm seems to allow for

con�gurations that make large contributions to quark correlation functions and
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Figure 1: The distributions of the quark correlation function fA(T=2)

as obtained from the HMC and the PHMC algorithms at � = 6:8.

Note that for the PHMC algorithm we plot the uncorrected values for

fA(T=2).

partly suppresses these contributions in the reweighing procedure through small

values of the (noisy) correction factor. In �g. 2(d) we show the Monte Carlo time

evolution of fA(T=2) for the HMC algorithm, which looks quite di�erent from

that of the PHMC algorithm. We conclude that the di�erence in the variance of

fA(T=2) is not due to a large autocorrelation time but re
ects the fact that the

PHMC algorithm really samples the con�guration space di�erently. A similar

observation was made in [16] in a di�erent context.

The Monte Carlo time evolution of fP (T=2) is plotted in �gs. 3(c,d) for the

11



Figure 2: The Monte Carlo time evolutions for W , fA(T=2),

WfA(T=2), as obtained from the PHMC algorithm, and fA(T=2) from

the HMC algorithm.
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Figure 3: The Monte Carlo time evolutions for the correction factor

W , �min(Q̂2), fP (T=2), as obtained from the PHMC algorithm, and

fP (T=2) from the HMC algorithm.
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PHMC and the HMC algorithms. For this quantity we do not observe spikes in

the PHMC Monte Carlo history and both time evolutions are similar. This is

consistent with the results in table 1, where we saw that the errors for fP (T=2)

are comparable in the two cases. In �gs. 3(b,a) we show the time evolution of the

lowest eigenvalue �min(Q̂2) and W for the PHMC algorithm.

2.3 Combinations of quark correlation functions

Following [8, 12] we de�ne correlation functions

r(x0) =
1

4
(@?0 + @0)fA(x0)=fP (x0)

s(x0) =
1

2
@?0@0fP (x0)=fP (x0) (18)

and analogously r0(T � x0), s0(T � x0) in terms of f 0A(T � x0) and f 0P (T � x0).

These correlation functions allow us to de�ne an unrenormalized PCAC current

quark mass:

M(x0; y0) = r(x0)� s(x0)
r(y0)� r0(y0)

s(y0)� s0(y0)
(19)

and analogously M 0. The non-vanishing of the di�erence between M and M 0 at

certain time distances

�M =M(
3

4
T;

1

4
T )�M 0(

3

4
T;

1

4
T ) (20)

is a lattice artefact appearing linear in the lattice spacing. The requirement that

�M assumes its tree-level value, �M = 0:000277, is the improvement condition

to determine the values of csw non-perturbatively.

We may build various, physically interesting combinations of the correlation func-

tions of eqs. (18). We will consider the unrenormalized current quark mass M

(eq. (19)), �M (eq. (20)), and an estimator of the improvement coeÆcient cA,

~cA = �r(T=4) � r0(T=4)

s(T=4) � s0(T=4)
: (21)

We want to emphasize that ~cA should not be taken as the true non-perturbatively

determined values of cA. We consider ~cA in this work as a purely technical

parameter, which can also be used in comparing the two algorithms. We give

our results for M , �M and ~cA in table 4. We �nd that, at least within the
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Table 4: Comparison of combinations of quark correlation functions as obtained

from both algorithms. Notations are as in table 2.

Algorithm ~cA M �M � 103
HMC �0:0265(28)[4] 0:00144(36)[5] 0:045(311)[40]

PHMC(4) �0:0262(30)[4] 0:00161(35)[4] �0:086(390)[50]
PHMC(2) �0:0257(26)[3] 0:00155(33)[4] �0:129(366)[50]
PHMC(1) �0:0265(31)[4] 0:00150(40)[5] 0:015(381)[50]

PHMC(0) �0:0242(27)[3] 0:00194(27)[3] �0:020(493)[60]
PHMC�(2) �0:0247(56)[7] 0:00180(62)[8] 0:745(404)[50]

statistical uncertainties, the average values as well as the errors are completely

compatible.

We close this section by remarking that we also performed a simulation with the

PHMC algorithm choosing a trajectory length of NmdÆ� � 0:5. The results from

this test are, however, rather inconclusive: while for some observables the errors

did not change with respect to the run with unit trajectory, for other observables

we found an increase of the errors as expected.

3 Results at � = 5:4

This section is devoted to a discussion of the results obtained at � = 5:4, for

which the lattice spacing a � 0:1 fm. We set � = 0:1379 and csw = 1:7275. At

these values of the parameters we �nd a quark mass M = 0:009(1) [12]. We use

a 83 � 16 lattice and the boundary conditions are the same as in section 2. For

reasons that will become clear from our discussion, we do not aim in this section

at a comparison of the HMC and PHMC algorithms on the same quantitative

level as it was done in the previous section for the results at � = 6:8. We will

rather emphasize the qualitative behaviour of the PHMC algorithm in sampling

con�guration space and reweighing observables when very small eigenvalues of

Q̂2 occur.
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3.1 Low-lying eigenvalues

As was shown in [2] for the parameter values considered in this section, isolated

very small eigenvalues of the operator Q̂2 are found. We illustrate this again in

�g. 4, by showing the Monte Carlo time evolution of the �ve lowest eigenvalues in

four typical situations. In �g. 4(a) the �ve lowest eigenvalues lie in a narrow band

and we �nd a basically continuous spectrum, at least up to the tenth eigenvalue.

In �gs.4(b,c) there are a few eigenvalues that assume rather small values and

�nally, in �g. 4(d), we observe very small, isolated eigenvalues, lying many orders

of magnitude below the ones in �g. 4(a). As can be seen from the distribution of

�min in �g. 3 of ref. [2], such very small eigenvalues could not be observed in the

corresponding simulations using the HMC algorithm.

It is a natural question to ask, whether the occurrence of the small eigenvalues

shown in �g. 4 is related to some topological e�ects. We therefore consider the

values of the pure gauge action and the naive topological charge [17] after per-

forming 500 cooling [18] iterations (see also [12]); these values will be denoted in

the following by Sclassical and Qtopo, respectively. We emphasize that we do not

want to give a precise and reliable number for the topological charge itself, but

rather that we are interested in the qualitative behaviour of Qtopo and in only

estimating the autocorrelation time of a quantity that is related to topology. We

remark that in the case of Schr�odinger functional boundary conditions there exist

bounds [6] on the pure gauge action Sg given by

g20Sg � �2; Qtopo = 0 ;

g20Sg � 8�2jQtopoj : (22)

In �g. 5 we plot an example of the Monte Carlo time evolution of Sclassical, Qtopo

and the lowest eigenvalue of Q̂2. It is remarkable that, although working at

basically zero quark mass, we see some transitions between topological sectors.

As expected from the bounds of eq. (22) the behaviour of Sclassical closely follows

the one of Qtopo.

The behaviour of the lowest eigenvalue of Q̂2 and the topological charge are not as

closely related. Small eigenvalues are expected when a transition between topo-

logical sectors occur and, indeed, there is one instance, shown in �g. 5, where

exactly this happens. However, we also see from �g. 5 that the topological charge
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Figure 4: We show the Monte Carlo time evolution of the �ve lowest

eigenvalues of Q̂2 at � = 5:4 in four typical situations. The lowest

eigenvalue is shown by the open symbols, the remaining eigenvalues

by the �lled ones.
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can change without any occurrence of a very small eigenvalue. This might of

course be due to the fact that a small eigenvalue has appeared during the mo-

lecular dynamics evolution. Finally we can have situations where the eigenvalue

becomes very small but the topological charge does not change, which might

correspond just to an unsuccessful attempt to change topological sectors. The

relation between the topological charge and very small eigenvalues may be partly

obscured in our case by the fact that we use only a naive de�nition of the topo-

logical charge. Moreover we remark that the index theorem does not have to

hold owing to the existence of lattice artefacts and to our choice of Schr�odinger

functional boundary conditions. In any case, since we are working at almost zero

quark mass and reasonably large physical volume, we take �g. 5 as an encourag-

ing indication that the PHMC algorithm is able {even in this physical situation{

to explore di�erent topological sectors. Of course, only more extensive investi-

gations, possibly at larger physical volumes, can decide whether our tentative

conclusion is too optimistic.

We remark that when measuring the topological charge with the PHMC algo-

rithm, its physical value will be the one reweighted with the correction factor. If

we are close enough to the continuum for the e�ects of the lattice spacing to be

negligible and we are able to work at vanishing quark mass, a non-trivial topo-

logical charge has to induce the appearance of a zero mode. Since the correction

factor is proportional to this zero eigenvalue, the reweighted topological charge

will always be zero. This corresponds, of course, exactly to the continuum situ-

ation, where the topological charge vanishes after integration over the fermions,

provided that at least one of the fermion species is massless.

3.2 Modi�ed correction factor

As discussed in [2], in order to deal with situations where very small eigenvalues

may occur, the correction factorW , eq. (5), has to be modi�ed. The reason is that

in the presence of very small eigenvalues the noisy estimate of det[Q̂2Pn;�(Q̂2)]

given in eq. (5) is largely dominated by those �-�elds that are almost orthogonal to

all the eigenfunctions of the small eigenvalues. Since the probability of extracting

such �-�elds from a distribution / exp(��y�) is low, we would need a large value
of Ncorr to obtain a good (i.e. not too noisy) estimate of det[Q̂2Pn;�(Q̂2)].
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Figure 5: The Monte Carlo time evolution of the pure gauge action

and the topological charge after cooling, Sclassical and Qtopo, respec-

tively, and the lowest eigenvalue �min, as obtained with the PHMC

algorithm at � = 5:4.
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An improved de�nition of the correction factor, replacing eq. (5), is given by (see

[2] for more details):

W = WBWIR : (23)

The separation betweenWB and WIR is controlled by a new parameter: ~�� �. In

eq. (23) WB is a \bulk" factor, taking into account the contribution of all modes

with eigenvalues larger than ~�:

WB[�; U ] = exp
n
�y?[Rn;� � (Q̂2 � Pn;�)�1]�?

o
(24)

and WIR an \infrared" factor that incorporates the contribution from the eigen-

modes of Q̂2 lying below ~�,

WIR =
Y
�j�~�

[1 +Rn;�(�j)] : (25)

In eqs. (24) and (25) we have introduced the relative �t deviation Rn;� = Q̂2Pn;��
1, the eigenmodes j�ji of Q̂2 and the projection of the �-�eld onto the subspace

orthogonal to all the modes lying below ~�:

Q̂2j�ji = �j j�ji
j�?i = j�i �X

j

�(~�� �j)j�jih�j j�i : (26)

Whereas WB is given again by a noisy estimator, WIR is calculated \exactly"

in terms of the eigenvalues of Q̂2 that are smaller than ~�. These eigenvalues

can be explicitly computed, together with the corresponding eigenvectors, with a

pre-de�ned accuracy [19, 20]. In order to guarantee the exactness of the PHMC

algorithm, ~� has to be �xed in a simulation beforehand. For the present inves-

tigation we have chosen ~� = �=10. Clearly, when no eigenvalues smaller than ~�

occur, WIR = 1. In particular, for ~� = 0 we are back to the old correction factor

of eq. (5).

The di�erence between the old and the modi�ed correction factors, as evaluated

on a gauge con�guration carrying a very small isolated eigenvalue (�min = 3:7 �
10�7), is demonstrated in �g. 6. There we plot the distribution for a �xed gauge

�eld con�guration of w = log(WBWIR) as obtained from the generation of 600

�-�elds for two di�erent values of ~�. When setting ~� = 0 (open squares) the

distribution is very broad, leading to a very noisy and imprecise estimate of
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det[Q̂2Pn;�(Q̂2)]. When setting ~� = 0:00011 (�lled squares), i.e. a value ten times

smaller than �, the distribution appears as a needle on the scale of the upper plot

in �g. 6. In the lower plot of this �gure we therefore resolve the distribution for

~� = 0:00011. The picture nicely demonstrates that if we use the original form

of the correction factor, i.e. set ~� = 0, the estimate of W [�; U ] is dominated

by the terms WB[�m; U ] with h�mj�mini ' 0. However, vectors j�i, which are

almost orthogonal to j�mini, may be extracted very rarely from the probability

distribution P [�] = expf��y�g. This leads to large 
uctuations a�ecting the

estimate of det[Q̂2Pn;�(Q̂2)], and a very large value of Ncorr is needed for the

result to be suÆciently precise. For ~� = 0:00011 the distribution becomes much

narrower and a value of Ncorr lower than 10 is suÆcient to achieve a precision

that is appropriate for the purpose of keeping the 
uctuations of WB small.

For situations where no eigenvalue of Q̂2 is exceptionally small it should make no

di�erence whether ~� is set to zero or to some �nite value smaller than �. The noise

in the estimate of det[Q̂2Pn;�(Q̂2)] will be essentially the same for both cases, since

there is no single mode that plays a dominating role in determining the value of

WIRWB. We have checked this expectation explicitly and our numerical results

fully con�rm the above picture. We have also checked that a relative precision of

1% in the evaluation of the low-lying eigenvalues of Q̂2 yields eigenvectors that are

accurate enough to get a precision suÆcient for the projection onto the subspace

orthogonal to the one spanned by the eigenvectors themselves. Concerning the

computational cost of the modi�ed correction factor, eq. (23), an overhead with

respect to the cost of computing the ordinary correction factor, eq. (5), comes

from the evaluation of the needed eigenvalues and eigenvectors of Q̂2. This over-

head depends on the choice of ~�. In our test run at � = 5:4, we found that for

a case (see below) when the four lowest eigenvalues and eigenvectors of Q̂2 are

needed, the overhead for the modi�ed correction factor is just half the time of

evaluating the ordinary correction factor having Ncorr = 4. We mention that,

when setting ~� = �=10, the modi�ed correction factor had only to be computed

in about 35% of our measurements. This leads to an additional reduction of the

overhead. We will hence neglect this overhead when discussing computational

costs in section 4.

In table 5 we show data for the low end of the spectrum of Q̂2: for the ten

lowest eigenvalues, we consider the expectation values and the variance of the
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Figure 6: The distribution of w = log(WBWIR) for ~� = 0 (open

squares) and ~� = 0:00011 (�lled squares), on a �xed gauge con�gura-

tion carrying an exceptionally small (isolated) eigenvalue of Q̂2. In the

lower �gure, we resolve the distribution of w for the case ~� = 0:00011.
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Table 5: The uncorrected (Ncorr = 0) values of the ten lowest eigenvalues of Q̂2:

We give the expectation values, with the corresponding true error in parenthesis,

and the variance, as obtained from our PHMC test at � = 5:4, see table 6. Note

that the value of � was set to 0:0011. Moreover we show the ten lowest eigenvalues

of Q̂2 for two particular gauge con�gurations (C1 and C2), the �rst of which has

a very small value of �min.

Eigenvalue h�i
q
h�2i � h�i2 C1 C2

�1 = �min 0:00032(5) 0.00024 0:0000017 0:00052

�2 0:00054(5) 0.00026 0:00027 0:00087

�3 0:00090(5) 0.00034 0:00041 0:00137

�4 0:00114(6) 0.00032 0:00077 0:00152

�5 0:00140(6) 0.00033 0:00098 0:00170

�6 0:00162(6) 0.00033 0:00139 0:00171

�7 0:00190(6) 0.00032 0:00141 0:00189

�8 0:00212(5) 0.00032 0:00204 0:00217

�9 0:00237(5) 0.00031 0:00206 0:00262

�10 0:00256(5) 0.00031 0:00260 0:00274

uncorrected (Ncorr = 0) eigenvalues. We see that the variance is almost constant

and takes a value of the same order of magnitude as the average lowest eigenvalue

of Q̂2. We also give the example of two particular gauge con�gurations, one with

an exceptionally small eigenvalue and another with no exceptional eigenvalues.

Note that for the �rst con�guration (C1) all the eigenvalues �j, with 1 < j �
10, lie somewhat below the corresponding eigenvalues measured for the second

con�guration (C2). We infer from the results for the variance that for practically

all gauge con�gurations of our sample there are only very few eigenvalues lying

below �. This also justi�es our choice of ~� = �=10 for the modi�ed correction

factor. We remark that with this choice of ~� for evaluating the modi�ed correction

factor, eq. (23), we need not more than the four lowest modes of Q̂2 (see table 5).

Let us �nally demonstrate that, despite the di�erent behaviour of the two algo-

rithms in sampling con�guration space, compatible results are found within the

present statistical uncertainties. In table 6 we give the algorithmic parameters

for the simulations performed at � = 5:4 as well as the acceptance rates and the
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statistics.

Table 6: Technical parameters for the algorithms at � = 5:4.

Algorithm Æ� Nmd Pacc Stat � n cM

HMC 0:032 34 0:948(8) 5120 { { {

PHMC 0:056 18 0:83(1) 1632 0:0011 76 0:806

In table 7 we present a comparison of the bulk quantities. Note that the statistics

for the HMC run is about a factor of 3 larger. We emphasize again, however,

that with this small statistics the error on the error is substantial and no real

comparison of the performance between the two algorithms is possible. To really

say something about the performance, a much larger statistical sample would be

necessary for both algorithms. Since a non-negligible amount of computer time

has already been invested in obtaining the present statistics, we feel that such

a comparison should be made within a project that aims at the same time at

physical results.

Table 7: Comparison of bulk quantities as obtained from the HMC and the PHMC

algorithms at � = 5:4. Notations are as in table 2.

Algorithm hP i h�min(Q̂2)i h�max(Q̂2)i hdSg=d�i
HMC 0:563331(65) 0:000561(17) 0:83555(31) 0:8(2:0)

PHMC(8) 0:563302(120) 0:000506(50) 0:83672(99) �6:2(4:4)
PHMC(4) 0:563344(135) 0:000528(69) 0:83665(90) �3:6(5:0)
PHMC(2) 0:563404(138) 0:000554(85) 0:83649(190) �4:6(6:3)
PHMC(1) 0:563679(377) 0:000600(107) 0:83599(259) �0:7(9:6)
PHMC(0) 0:563336(122) 0:000322(50) 0:83730(43) �6:9(3:4)

We remark that we have also monitored the quark correlation functions, intro-

duced in sections 2.2 and 2.3, �nding consistent results for the HMC and the

PHMC algorithm. No new qualitative features arise with respect to our discus-

sion for the data obtained at � = 6:8 (see the previous section). In particular, we

�nd again spikes in the uncorrected quark correlation functions, in coincidence

with gauge con�gurations carrying very small eigenvalues of Q̂2. For these con-

�gurations we observe e.g. for fA(T=2) values up to three orders of magnitudes
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larger than the typical values assumed for \normal" gauge con�gurations; at the

same time the modi�ed correction factor, eq. (23), takes values up to three orders

of magnitudes smaller than the usual ones, leading, as expected, to contributions

of \normal" size to the reweighted average, eq. (6).

Taking Ncorr = 8 and a statistics of 1632 trajectories for the PHMC algorithm,

we �nd for the quark mass M = 0:0066(21) and for the lattice artefact �M =

0:00299(183). With the same statistics, the HMC algorithm givesM = 0:0086(28)

and �M = 0:00026(201). This indicates, but does not prove, that with the same

statistics compatible errors can be obtained from the two algorithms also for these

quantities.

4 Computational cost

A crucial question is, of course, how the cost of the PHMC algorithm compares

with the one of the HMC algorithm. In this section we will therefore give the

computational cost of both algorithms for generating one gauge �eld con�guration

at the two values of � considered in this paper. For the simulations performed at

� = 6:8, this comparison of the cost corresponds to a comparison of the actual

cost to generate an independent con�guration, because the errors on almost all

observables are compatible between the two algorithms when the same statistics

is employed. For the simulation performed at � = 5:4, the situation is, however,

di�erent since, with the available statistics, the uncertainties on the integrated

autocorrelation times are rather large and no de�nite statement can be made.

However, regarding observables for which the very small eigenvalues are impor-

tant, a comparison of the errors would be diÆcult even if the statistics were large.

If the modes corresponding to these very small eigenvalues are physically impor-

tant for some observables and the HMC algorithm generates these modes only

very seldom, a direct comparison of the 
uctuations of these particular observ-

ables computed with the two algorithms is not appropriate. This is, of course,

a general problem when comparing algorithms with di�erent behaviour in sam-

pling con�guration space 2. In such a situation the algorithms have very di�erent

2One example would be the behaviour of the cluster and the Metropolis algorithms at a

�rst-order phase transition.
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autocorrelation times.

In [2] we gave a detailed description of the computational cost of the PHMC

algorithm in units of matrix times vector Q� operations. Therefore, we list here

only the formulae for the cost analysis derived in [2]. Let us remark that the cost

of a single trajectory in both algorithms may be written as

Ctot = CQ� + Cextra ; (27)

where the �rst contribution is given by the number of matrix times vector Q�

operations and the second part accounts for all other operations. Asymptotically,

when the condition number of Q becomes large, CQ� will by far dominate the cost

of the algorithms. We will therefore only discuss and compare the cost CQ� in

the following.

Let us denote by NCG the average number of iterations of the Conjugate Gradient

algorithm that is implemented in our programs for all matrix inversions3. Then

the cost for the HMC algorithm in units of Q� operations is given by

CQ�(HMC) = 2 � (2Nmd + 1) �NCG ; (28)

The factor (2Nmd + 1) originates from the use of the Sexton{Weingarten inte-

gration scheme [21]. The cost for the PHMC algorithm is split into three parts

[2]:

CQ�(PHMC) = Cbhb + Cupdate+ Ccorr ; (29)

where Cbhb is the cost for the heatbath of the bosonic �eld �, Cupdate the cost for

the computation of the variation of the action with respect to the gauge �eld and

Ccorr the cost to evaluate the correction factor. In units of Q� operations we �nd

Cbhb = (2n+ 2) �Nbhb
CG + n

Cupdate = 3n � (2Nmd + 1)

Ccorr = (2n+ 2) �N corr
CG �Ncorr : (30)

The factor Ncorr denotes as usual the number of evaluations of the correction

factor W per full gauge �eld update (or molecular dynamics trajectory). We

3We remark that in the set up we consider here and using APE computers the standard CG

solver was found to be competitive with the BiCGStab solver for the purpose of inverting Q̂2.
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explicitly veri�ed that the cost in real time, as expected from our formulae for

Cupdate, Cbhb and Ccorr, agree with the one measured for our implementation of

the PHMC algorithm on the APE computer.

Table 8: Conjugate Gradient iterations and degree of the polynomial used in the

PHMC runs. Notations are explained in the text.

HMC PHMC

� N32
CG NCG n Nbhb

CG N corr
CG

6:8 149:0(1) 113:3(4) 62 3:66(4) 3:26(4)

6:8 { { 54 3:61(6) 3:88(3)

5:4 197:6(1) 143:0(8) 76 3:56(6) 3:88(4)

All of the simulations done at � = 6:8 and � = 5:4 have been performed by

running several replica in parallel. In particular for the HMC runs we always

had 32 replica. Because the APE computer we are using is a SIMD machine, all

replica have to wait until the Conjugate Gradient solver of the slowest replicum

has converged. This \parallelization e�ect" has an important consequence for the

HMC algorithm. We give in table 8 the maximal number of CG iterations, N32
CG,

as determined from the slowest replicum and the number of CG iterations NCG,

obtained by averaging over all replica. As we see from the tables, in particular

for � = 5:4, there can be a substantial increase of the number of CG iterations

from this parallelization e�ect. The analogous e�ect is much less relevant in the

case of the PHMC algorithm, since it may occur only in Cbhb and Ccorr, which are

asymptotically marginal in comparison with Cupdate. To be conservative in the

estimate of the computational cost for the PHMC algorithm, we will neglect to

correct for this small parallelization e�ect. We do mention, however, that doing

so may reduce the values for Cbhb and Ccorr by a factor of 2 at � = 5:4.

From tables 1, 6 and 8 we can now calculate the computational cost for both

algorithms. We present the results in table 9 for � = 6:8 and in table 10 for

� = 5:4. We give the global costs for both algorithms considering the case

of 32 replica (C32
Q�), where the HMC algorithm is slowed down by a signi�cant

parallelization e�ect, and the case of a single lattice system (CQ�).

For � = 6:8 we see that the dominating e�ect in the cost gain of the PHMC al-

gorithm stems from the parallelization e�ect. Taking this e�ect out, we still have
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Table 9: Computational cost for � = 6:8. We take Ncorr = 1 for the PHMC run

with n = 62 (PHMC) and Ncorr = 2 for the PHMC run with n = 54 (PHMC�).

The cost C32
Q� takes the parallelization e�ect into account when running 32 replica

in parallel. CQ� would be the cost when simulating a single lattice system.

Algorithm Cbhb Cupdate Ccorr C32
Q� CQ�

HMC | 10192 | 10192 7750

PHMC 523 5022 411 5956 5956

PHMC� 451 4374 854 5679 5679

Table 10: Pure computational cost for � = 5:4. We consider the cases Ncorr = 4

(PHMC(4)) and Ncorr = 8 (PHMC(8)). Notations are as in table 9.

Algorithm Cbhb Cupdate Ccorr C32
Q� CQ�

HMC | 27269 | 27269 19734

PHMC(4) 624 8436 2390 11450 11450

PHMC(8) 624 8436 4780 13840 13840

a performance of the PHMC algorithm better than that of the HMC algorithm,

but the gain becomes marginal. We remark that at � = 6:8 the lattice spacing

is very small and we are hence working in a correspondingly small physical vol-

ume. Going to a more challenging situation, i.e. � = 5:4, we still �nd a large

parallelization e�ect but now even if this is taken out, a factor of almost 2 is

found in favour of the PHMC algorithm. We emphasize again at this point that

we give here only the computational cost of the algorithms and do not take the

autocorrelation time into account for the reasons discussed above.

5 Conclusions

In this paper we have tested the PHMC algorithm for O(a)-improved Wilson

fermions. We compared the computational cost of the PHMC algorithm, as

well as its qualitative behaviour, with those of the HMC algorithm. Practical

simulations were performed on 83 � 16 lattices at � = 6:8, which corresponds

to a very small physical volume, and � = 5:4, corresponding to an intermediate
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physical volume, with a lattice spacing a � 0:1 fm. The results of our tests lead

us to the following conclusions:

1) It is easy to �nd values for the degree n and the infrared parameter �, deter-

mining the polynomial approximation used in the PHMC algorithm, such

that its performance becomes comparable to that of the HMC algorithm.

As a guideline one may choose � � 2h�mini, with �min the lowest eigen-

value of the fermion matrix used in the simulation. The degree n of the

polynomial should then be chosen such that Æ � 0:01, see eq. (2).

2) With some extra tuning of n and � it is possible to improve on the computa-

tional cost of the PHMC algorithm and a gain over the HMC algorithm can

be obtained that can reach about a factor of 2. In particular it seems that

when going to larger physical volumes this gain tends to increase. Another

{substantial{ gain can be obtained from the PHMC algorithm on massively

parallel machines when several replica are run in parallel.

3) Even if one decides to conservatively choose the polynomial parameters n

and �, such that the computational cost becomes comparable to the one

of the HMC algorithm, we still see a conceptual advantage of the PHMC

algorithm. It samples con�guration space di�erently from the HMC al-

gorithm, allowing in particular for exceptionally small eigenvalues of the

lattice Dirac operator to occur. Fermionic observables that are propor-

tional to the inverse of these eigenvalues get corrected by the correction

factor which makes the PHMC algorithm exact, yielding a �nite contribu-

tion to the (reweighted) sample average. We demonstrated this feature in

a number of tests in this paper and showed that our way of treating these

exceptional eigenvalues in the simulation is working in practise. If gauge

con�gurations, carrying exceptionally small eigenvalues, are physically im-

portant for some observables, the HMC algorithm, given its diÆculty to

generate such con�gurations, would have a very long autocorrelation time

for these quantities. In this scenario the performance gain of the PHMC

algorithm would be very large. Of course, an investigation of this issue is

very expensive and should be performed {in our opinion{ within projects

aiming at the same time at physical results.
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