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Abstract

The spectral functions of the vector current and the axial-vector current have been mea-

sured in hadronic � decays using the OPAL detector at LEP. Within the framework of

the Operator Product Expansion a simultaneous determination of the strong coupling

constant �s, the non-perturbative operators of dimension 6 and 8 and of the gluon con-

densate has been performed. Di�erent perturbative descriptions have been compared

to the data. The Contour Improved Fixed Order Perturbation Theory gives �s(m
2
� ) =

0:348�0:009exp�0:019theo at the � -mass scale and �s(m
2
Z) = 0:1219�0:0010exp�0:0017theo

at the Z0-mass scale. The values obtained for �s(m
2
Z) using Fixed Order Perturbation

Theory or Renormalon Chain Resummation are 2:3% and 4:1% smaller, respectively.
The `running' of the strong coupling between s0 ' 1:3GeV2 and s0 = m

2
� has been tested

from direct �ts to the integrated di�erential hadronic decay rate R� (s0). A test of the

saturation of QCD sum rules at the � -mass scale has been performed.

(Submitted to European Physical Journal C)
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1 Introduction

The � lepton is the only lepton heavy enough to decay into hadrons. A comparison of the
inclusive hadronic decay rate of the � with QCD predictions can give fundamental parameters
of the theory. The energy regime governed by m� = 1:777GeV is regarded as a compromise
region between the low and high energy regimes where non-perturbative and perturbative QCD
dominate, respectively. In fact, � decay is probably the lowest-energy process from which the
coupling constant �s can be cleanly extracted [1{5] without large complications from non-
perturbative e�ects, while the perturbative expansion still converges well.

In this analysis the most important quantity to measure is the strong coupling constant
�s(m

2
�
). The `running' of �s, for energy scales smaller thanm� , can be tested with the integrated

di�erential decay rate into hadrons dR�=ds, where
p
s denotes the mass of the �nal-state

hadronic system and R� = �(� ! h�� )=�(� ! e�e�� ) is the hadronic decay width of the tau
normalized to the decay width of the tau going into electron and neutrinos. This is possible as
the hadronic decay rate R� (s0) depends on the strong coupling constant �s(s0) at the scale s0
only, where s0 denotes the upper integration limit for the integral over dR�=ds.

The measured �s(m
2
�
) can be transformed into a value for �s(m

2
Z) through the renormaliza-

tion group equation (�-function). In doing that, the relative error of �s(s) decreases like the
decrease of �s(s) itself. After the evolution to the Z0 mass the strong coupling is reduced to
�s(m

2
Z) ' (1=3)�s(m

2
�
) and its error is reduced to ��s(m

2
Z) ' (1=9)��s(m

2
�
). Hence, the signif-

icance of this measurement compares favorably with other �s(m
2
Z) determination methods [6].

Inclusive observables like the hadronic decay rate R� (s0) have been calculated in perturba-
tive QCD to O(�3s). Some remaining theoretical uncertainties due to corrections in powers of
1=m2

�
can be avoided if the di�erential decay rate dR�=ds is measured and compared to the

theory by means of its spectral moments which are weighted integrals over dR�=ds. As a result,
the power corrections and �s can be simultaneously determined from a �t. While R� (m

2
�
) can

be precisely determined from the leptonic branching ratios and the � lifetime, dR�=ds involves
a measurement of the invariant mass of the hadronic system. Thus, an exclusive reconstruction
of all hadronic �nal states in � decays is necessary.

In this paper an analysis is presented using data taken with the OPAL detector at LEP at
energies within �3GeV of the Z0 peak. The analysis includes measurements of the di�erential
decay rates dR�;V=A=ds for vector (V) and axial-vector (A) decays and their respective spec-
tral moments. Using these moments, �ts of QCD predictions are made extracting the strong
coupling constant �s(m

2
�
) and parameters of the non-perturbative expansion, most notably the

contributions of dimension 6 and 8 operators. The measurement is based on a set of spectral
moments de�ned by the same weighting functions used by ALEPH [7, 8] and CLEO [9].

The di�erential decay rates themselves can be re-expressed in terms of spectral functions
of the vector and axial-vector current, v(s) and a(s). This measurement serves for saturation
tests of QCD sum rules at the � -mass scale by comparing the experimental values of the sum
rules with chiral QCD predictions. Furthermore, by evaluating the moment integrals between
zero and s0, where

p
s0 is an energy smaller than m� , the `running' of �s is tested in a single

experiment.
The theoretical framework for inclusive observables from hadronic � decays is described

in section 2. After a short description of the OPAL detector in section 3 the selection of
hadronic � decays is described in section 4. In section 5 the unfolding procedure is described.
The measured and unfolded spectra are discussed in section 6 followed by a description of the
systematic uncertainties in section 7. Section 8 contains the results for the moments of R� and
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for the spectral functions. The extraction of the strong coupling constant and of the power
corrections, from �ts to the moments of R� (s0), is discussed in sections 9 and 10. Section 11
describes the test of the `running' of �s. The application of QCD sum rules to the spectral
functions is discussed in section 12. Finally, the results are summarized in section 13.

2 Theoretical description of hadronic � decays

QCD predictions of inclusive observables in hadronic � decays have been calculated including
perturbative and non-perturbative contributions. These observables can be related to the di�er-
ential, non-strange hadronic decay width, normalized to the decay width of �� ! e��e�� [1{5]:

dR�;V=A

ds
= 12�SEWjVudj2

1

m2
�

 
1� s

m2
�

!2 " 
1 + 2

s

m2
�

!
Im�

(1)

V=A(s) + Im�
(0)

V=A(s)

#
; (1)

where s denotes the square of the invariant mass of the hadronic system and the labels V
and A stand for the vector and axial-vector contributions, respectively1. SEW = 1:0194 is an
electroweak correction term [10] and jVudj2 = 0:9512�0:0008 is the squared CKM weak mixing
matrix element [11]. The functions Im� are proportional to the spectral functions for the
non-strange currents with angular momenta J = 1 and J = 0 as indicated by the superscripts.
The latter spectral function vanishes for the vector current, since no scalar particle has been
observed in � decays, while Im�0

A is given by the pion pole, assuming that the pion is the only
pseudo-scalar �nal-state in non-strange � decays:

Im�0
A(s) =

m2
�

12�SEWjVudj2

 
1� s

m2
�

!�2
B(� ! ��� )

B(� ! e�e�� )

1

N�

dN�

ds
; (2)

with N� being the number of selected � decays into pions. The spectral functions for the vector
and the axial-vector currents are de�ned in equation (22).

Within the framework of QCD weighted integrals or moments of (1) have been calcu-
lated [12]:

Rkl

�;V=A(s0) =

s0Z
0

ds
�
1� s

s0

�k
 
s

m2
�

!l
dR�;V=A

ds
: (3)

The moments are used to compare the experiment with theory. In what follows, ten moments
for kl = 00; 10; 11; 12; 13 for V and A are used. The �rst moments R00

�;V=A(m
2
�
) are the total

normalized decay rates of the � into vector and axial-vector mesons given by (1) integrated over
s. In the na��ve parton model these two rates are identical and add up to the number of colors.
Since only non-strange currents are considered in this work the na��ve expectation has to be
multiplied by jVudj2. Including the perturbative and non-perturbative contributions, equation
(3) is usually written as [12]:

Rkl

�;V=A(s0) =
3

2
SEWjVudj2

0
@1 + �0klEW(s0) + �klpert(s0) +

X
D=2;4;6;:::

�
D;kl

V=A(s0)

1
A ; (4)

where SEW is the same multiplicative correction as in equation (1) and �0klEW are additive elec-
troweak corrections. The latter has been calculated for kl = 00 only [13] yielding �000EW(m2

�
) =

1The notation V=A will be used throughout the paper to indicate vector and axial-vector contributions,

respectively.
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5
12

�(m2
� )

�
= 0:0010. In the higher moments it is assumed that this term scales with the integral

over the weight functions in equations (1) and (3) like the O(�s) correction:

�0klEW(s0) =
Rkl

�;na��ve(s0)

R00
�;na��ve(m

2
�
)
�000EW(m2

�
): (5)

Therefore the �0klEW contribution to the moments is small (� 0:1%) and the uncertainty due to
this term is neglected in the analysis. The other factors in equation (4) are explained in more
detail below.

2.1 Perturbative correction terms �klpert

The perturbative term �klpert is known to third order in �s [4] and partly known to fourth order
in �s [12]. For kl = 00 and s0 = m2

�
it is:

�00pert(m
2
�
) =

�s(m
2
�
)

�
+5:2023

�2s(m
2
�
)

�2
+26:366

�3s(m
2
�
)

�3
+(78:003+K4)

�4s (m
2
�
)

�4
+O

�
�5s (m

2
�
)
�
: (6)

This result which truncates after the fourth power of �s is refered to as Fixed Order Perturbation
Theory (FOPT). Di�erent attempts have been made to obtain a resummation of some of the
higher order terms. The resummation scheme proposed in [12] compensates for higher order
logarithmic terms in �s by expressing the �klpert(s0) terms by contour-integrals in the complex
s-plane along the circle jsj = s0 and solving numerically for each �s(s) along the circle (Contour-
Improved Perturbation Theory, CIPT). The di�erent �s(s) values on the circle can be calculated
from �s(m

2
�
) by solving numerically the �-function:

da

dlns
= �(a) = ��1a2 � �2a

3 � �3a
4 � �4a

5 +O(a6); (7)

with a = �s(s)=�, �1 = 9=4, �2 = 4, �MS
3 = 10:0599 and �MS

4 = 47:2306 [14] for 3 quark avors.
The last two coe�cients are renormalization scheme dependent and the quoted values belong
to the MS-scheme. The third method considered in this paper resums the leading term of the
�-function to all orders in �s by inserting so-called Renormalon Chains (RCPT) [15{17]2.

One of the leading theoretical uncertainties for FOPT and CIPT comes from the unknown
O (�4s ) correction K4. Expanding the perturbative corrections in terms of CIPT gives:

1 + �klpert(s0) =
X
n�0

KnA
kl

n
(s0); (8)

where the functions Akl

n
are the weighted contour integrals. For kl = 00 the function is:

A00
n
(s0) =

1

2�i

I
jsj=s0

ds

s

 
�s(�s)
�

!n  
2
s0

m2
�

� 2
s30
m6

�

+
s40
m8

�

� 2
s

m2
�

+ 2
s3

m6
�

� s4

m8
�

!
: (9)

In the MS-scheme and for three avors the �rst four terms are: K0 = K1 = 1, K2 = 1:63982,
K3 = 6:37101 [18{22]. A bold guess for K4 gives K4 � K3(K3=K2) � 25 [12]. Similar estimates
are given in [23, 24]. A central value of K4 = 25 is used, with an uncertainty of �K4 = �50 in
the perturbative expansions for CIPT and FOPT.

2The �xed-order corrected version (up to the third order in �s) quoted in the lower portion of table 6 in

ref. [15] is used in the �t.
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Another major theoretical uncertainty is the choice of renormalization scale � in the �s
dependence of �klpert(s0). The scale ratio � = �2=s0 is varied from 0:4 to 2:0 in all three models
described above as suggested in [5].

The choice of the renormalization scheme (RS) can also alter the result. Following the

prescription in [5] the third coe�cient of the �-function �RS3 is varied between 0:0 and 2:0 �MS
3

in order to obtain the uncertainty due to di�erent renormalization schemes.

2.2 Power correction terms �
D;kl
V=A

In the framework of the Operator Product Expansion (OPE) [25] the non-perturbative contri-
butions are expressed as a power series in terms of 1=m2

�
absorbing the long-distance dynamics

into vacuum matrix elements hO(~�)i [4, 26{28]. Thus, they can be written as sums over power
corrections of di�erent dimensions, D:

�klnon-pert;V=A(s0) =
X

D=2;4;6;:::

�
D;kl

V=A(s0): (10)

In contrast to the perturbative part described in the previous section the power corrections
di�er for the vector and the axial-vector currents.

In equation (10) the correction of dimension D = 2 is a mass correction term and therefore
belongs to the perturbative part. The D = 4 term is the �rst term with major non-perturbative
contributions, namely the quark condensates for the three light avors h  iu;d;s and the gluon

condensate h�s
�
GGi. If one neglects the small s-dependence of the power corrections, the �D;kl

V=A

terms can be expressed for all kl values by a product of the same (vector/axial-vector) operator
of dimensionD (or the power correction for kl = 00) and a simple integral over the kl-dependent
weight-functions [12]:

�
D;kl

V=A(s0) = 8�2

D=2 D=4 D=6 D=8 D=10 kl0
BBBBBB@

1
1
0
0
0

0
m2

�

s0

�1
0
0

�3
�3
�m2

�

s0

1
0

�2
�2� 3m2

�

s0

3
m2

�

s0

�1

0

�2m
2
�

s0

2 + 3m2
�

s0

�3
�m2

�

s0

1
CCCCCCCA

00

10

11

12

13

(11)

�
X

dimO=D

CV=A(~�) hO(~�)i
mD

�

;

where each entry in the matrix belongs to a particular dimensionD and a particular moment kl,
as denoted by the �rst row and the last column. The parameter ~� is an arbitrary factorization
scale which separates the long-distance non-perturbative e�ects, which are absorbed in the vac-
uum matrix elements hO(~�)i, from short-distance perturbative e�ects which are incorporated
in the Wilson coe�cients CV=A(~�) [12].

This approach is used for the dimension D = 6 and D = 8 terms, taking �
6=8;00

V=A as free
parameters. For the dimension D = 2 and D = 4 terms the full s-dependence is taken into
account for the theoretical description of the moments [12]. The least precisely known D = 4
parameter, the gluon condensate, which is known only to 50% [4], is also taken as a free
parameter in the �t, while the D = 2 term is calculated from the quark masses and the strong
coupling.

Terms with dimensions higher then 8 are neglected in this analysis as they do not contribute
to R00

�;V=A as can be seen from equation (11).

7



3 OPAL detector

A detailed description of the OPAL detector can be found in [29]. A brief description of the
features relevant for this analysis follows.

A high-precision silicon microvertex detector surrounds the beam pipe. It covers the angular
region of j cos �j � 0:8 and provides tracking information in the r-' (and z after 1992) direc-
tions3 [30, 31]. Charged particles are tracked in a central detector enclosed inside a solenoid that
provides a uniform axial magnetic �eld of 0:435T. The central detector consists of three drift
chambers: a high-resolution vertex detector, the large-volume jet chamber and the z-chambers.
The jet chamber records the momentum and energy loss of charged particles over 98% of the
solid angle and the z-chambers are used to improve the track position measurement in the z
direction [32].

Outside the solenoid coil are scintillation counters which measure the time-of-ight from
the interaction region and aid in the rejection of cosmic events. Next is the electromagnetic
calorimeter (ECAL) that is divided into a barrel (j cos �j < 0:82) and two endcap (0:81 <

j cos �j < 0:98) sections. The barrel section is composed of 9440 lead-glass blocks pointing
to the interaction region. Each block subtends approximately 10 � 10 cm2 with a depth of
24:6 radiation lengths. The two endcap sections consist of dome-shaped arrays, each having
1132 lead-glass blocks, mounted coaxial with the beam, where each block covers 9:2� 9:2 cm2

with a typical depth of 22 radiation lengths. The hadron calorimeter (HCAL) is beyond the
electromagnetic calorimeter and instrumented with layers of limited streamer tubes in the iron
of the solenoid magnet return yoke. In the region j cos �j < 0:81 this detector typically has
a depth of 8 interaction lengths. The hadron calorimeter is covered by the muon chamber
system, composed of four layers of drift chambers in the barrel region and four layers of limited
streamer tubes in the endcap region.

4 Event selection and reconstruction of � decays

OPAL data collected from 1990 to 1995 is used in this analysis. The data were taken within
�3GeV of the Z0resonance. The Monte Carlo samples used in this analysis consist of 600 000
� -pair events generated at

p
s = mZ with Koralz 4.0 [33]. Their decays were modelled with

Tauola 2.4 [34] and then processed through the Geant [35] OPAL detector simulation [36].
The non-� background Monte Carlo samples consist of 1 000 000 qq events generated with
Jetset 7.4 [37], 800 000 Bhabha events generated with Radbab 2.0 [38, 39], 600 000 �-pair
events generated withKoralz 4.0 [33] and 800 000 events from two-photon processes generated
with Vermaseren 1.01 [40, 41].

4.1 Selection of � -lepton candidates

The standard � selection procedure as described in [42] begins with the rejection of cosmic
rays, multi-hadronic events and events from two-photon processes. Cosmic rays are rejected
by the time-of-ight information of the tracks. Multihadrons are removed from the sample by
requiring two narrow jets (cones with a half opening angle of 35 �) and up to six tracks in the
event. The events from two-photon processes are eliminated by allowing an acollinearity angle
of up to 15 � between the two jets.

3In the OPAL coordinate system the x-axis is horizontal and points to the center of LEP. The y-axis is

vertical and the z-axis is in the e� beam direction. The angle � is de�ned relative to the z-axis.
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The remaining event sample contains tau pairs, Bhabha events, and muon pairs. Events
with an energy deposit of more than 0:8 � 2Ebeam are identi�ed as Bhabhas. An event is
classi�ed as a muon pair if two tracks carry energy of more than 0:6 � 2Ebeam and if both
tracks have at least two hits in the muon chambers and almost no energy deposit in the ECAL.
The remaining events are classi�ed as � pairs if the polar angle of the total cone momentum
calculated from track momenta and ECAL clusters satis�es j cos �j < 0:95 for both cones.

After this selection both cones in each event are treated independently. The non-tau back-
ground is further reduced by requiring one or three tracks in each cone with a total charge
of plus or minus one. A total of 297 988 � candidates survive these selection criteria with an
estimated non-� background fraction of 3:9%.

4.2 Identi�cation of � -decay modes

A Maximum Likelihood selection as used in previous publications (see e.g. [43]) is applied
to the data and the Monte Carlo samples to distinguish between the following decay modes:
�� ! ��X

�, where X� is one of e��e, �
���, �

�, ���0, ��2�0, ��3�0, 2���+, 2���+�0,
2���+2�0. The charge and parity conjugated modes are implicitly assumed for �+ ! ��X

+

decays. Fourteen reference distributions are used to distinguish between the di�erent one-prong
channels and �ve reference distributions are used in the three-prong case. Decays with charged
kaons instead of pions are suppressed by a cut on the speci�c energy loss dE=dx in the drift
chamber. Decays into electrons are distinguished from the other modes by the ratio E=p of the
ECAL energy associated with the cone over the track momentum, and the dE=dx information.
Muons are identi�ed by the number of hits in the muon chambers and the outermost HCAL
layers. The di�erent hadronic decay modes with zero, one, two or three neutral pions are
separated by using the number of reconstructed photons in the ECAL (see section 4.3).

The decay channels used in this analysis are the three non-strange one-prong modes with
at least one neutral pion: ��0, �2�0 and �3�0, and the three non-strange three-prong modes:
3�, 3��0, 3�2�0. A total of 65899 � candidates are selected4 in these channels with an esti-
mated background fraction of 26:6% including misidenti�ed � decays and the remaining non-�
background fraction of 0:8%. Details about the treatment of the cross-talk between the signal
channels due to misidenti�ed � decays are subject to sections 5 and 6.

The most important observable for the discrimination between vector and axial-vector chan-
nels is the number of neutral pions in a cone. A new method to reconstruct neutral pions in �
decays has been employed, which is described in the following section.

4.3 Reconstruction of neutral pions

Neutral pions are identi�ed by their decay into two photons. Since photons are only detected
in the ECAL, an iterative �t of photon energies and directions to the observed energy deposits
in the ECAL blocks is performed.

The energy deposition in an ECAL block can be expressed as a function of the photon
energy and the photon direction. This is done by parameterizing the integrated energy density
of an electromagnetic shower for each ECAL block. In the barrel region of the ECAL where the
blocks have a quasi-pointing geometry only lateral shower pro�les need to be parameterized.
They can be approximated by the sum of two exponential distributions representing core and

4For the decay mode ��0 a cut on j cos �j < 0:9 is used in order to reduce the background from Bhabha

events.
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halo components [44]. For the endcap region, where the blocks are oriented parallel to the
beam, lateral and longitudinal pro�les are important. The longitudinal pro�le is reasonably
described by the gamma distribution [11].

The mean energy deposit of a minimum ionizing particle is subtracted from all ECAL blocks
hit by a charged particle. The �t then �nds the smallest number of photons needed to explain
the measured energies and provides their corresponding three-vectors.

Energy depositions from hadronic interactions of charged pions in the ECAL are accounted
for by assigning photon candidates which are close to track intersections with the ECAL to
the track. The maximum angle allowed between a photon candidate and a track to which the
photon candidate can be assigned depends on the polar angle of the track and varies between
1:2 � and 1:7 � in the barrel region and between 2:0 � and 3:4 � in the endcap region. A photon
candidate close to a track is still classi�ed as a photon if the total energy of photon candidates
assigned to this track exceeds the measured track momentum.

All possible two-photon combinations are then used to �nd �0 candidates. The combination
resulting in the largest number of �0 candidates with an average invariant mass deviation from
the �0 mass less than 1:5 � is selected. The error on the invariant two-photon mass, �, is
calculated from the error matrices of the above photon �t. The �0 four-momenta are then
calculated from the energies and directions of the photon pairs of the selected combination
after a constrained �t to the �0 mass. Figure 1 shows the photon-pair mass for selected ��0

candidates before the �0-mass constraint.
For all the one-prong modes a minimum energy of 0:7GeV for each reconstructed �0 is

required while E�0 > 2:0GeV is required in the three-prong modes to suppress fake �0's intro-
duced by the energy deposition of charged pions in the ECAL.
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Figure 1: The -mass in the ��0 channel for decays with two reconstructed photons with

a minimal energy of 0 :5 GeV . OPAL data is shown as data points; the total Monte Carlo

prediction is given by the open histogram and the shaded histogram denotes the � and non-�

background.

The granularity of the ECAL allows the reconstruction of both photons from a �0 only if
its energy is below 12GeV. The �0's with larger energies have photons which are merged in
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the ECAL. Therefore all the photon candidates with energies above this value are considered
to be �0's and their momentum is calculated from the reconstructed energy corrected by the
mass of the �0.

5 Unfolding procedure

The Monte Carlo predictions for the measured spectra and their background contributions are
corrected with the most recent constrained branching ratios of the � given in [11]. E�ects
due to limited detector resolution and e�ciency are accounted for by a regularized unfolding
technique [45].

To unfold measured distributions in s (the squared mass of the hadronic �nal state) the
detector simulation is used to create response matrices which map the generated distribution
in x � strue to a y � smeas distribution one would measure including all detector e�ects. The
following convolution integral describes the general relation between a true distribution f(x)
and a measured distribution g(y):

g(y) =

xmaxZ
xmin

dxA(y; x) �(x) f(x) + b(y); (12)

where A(y; x) is the detector response function, b(y) denotes the background distribution, and
�(x) is the selection e�ciency. Equation (12) can be simpli�ed to a matrix equation of the form:

g = A � f + b: (13)

This is performed in two steps. First, the true distribution f(x) is parameterized with a set of
m parameters fj and m basis functions pj(x) which are de�ned below in equation (18):

f(x) =
mX
j=1

fj fMC(x) pj(x); (14)

with fMC(x) being the generated Monte Carlo distribution. By de�ning:

Aj(y) =

xmaxZ
xmin

dx �(x) fMC(x)A(y; x) pj(x); (15)

equation (12) takes the form:

g(y) =
mX
j=1

fj Aj(y) + b(y): (16)

In the second step, g(y), b(y) and Aj(y) are represented by n bins:

gi =

yiZ
yi�1

dy g(y); bi =

yiZ
yi�1

dy b(y); Aij =

yiZ
yi�1

dy Aj(y): (17)

The basis functions pj(x) used in equations (14) and (15) are chosen as cubic B-splines and
thus have the following form:

pj(x) =
1

6
�

8>>>>>><
>>>>>>:

z3 z = (x� tj )=d tj � x < tj+1
(1 + 3(1 + z(1� z))z) z = (x� tj+1)=d tj+1 � x < tj+2
(1 + 3(1 + z(1� z))(1� z)) z = (x� tj+2)=d tj+2 � x < tj+3
(1� z)3 z = (x� tj+3)=d tj+3 � x < tj+4
0 otherwise

; (18)
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where d = (xmax � xmin)=(m� 3) is the distance between adjacent knots tk = xmin + (k � 4) d
for k = 1; : : : ; m� 1 knots and m splines.

The coe�cient vector f = ffjg is now observed in a �t to the data bins gi, and the unfolded
result can be obtained with equation (14). This particular choice of basis functions and normal-
ization leads to the simple prediction fj = 1 for all j if the Monte Carlo generated distribution
and the unfolded result are identical.

In certain cases unfolding produces results with unphysical behavior. Statistically insignif-
icant components of the �tted coe�cient vector f can lead to large oscillations of the unfolded
distribution. Therefore the unfolding needs to be modi�ed by a regularization step which sup-
presses the statistically insigni�cant parts of the solution. This is achieved by applying a smooth
damping function to the unfolded result. The magnitude of the uctuations is measured by the
total curvature r(f) of the function f(x)=fMC(x):

r(f) =

xmaxZ
xmin

dx

" 
d2

dx2
f(x)

fMC(x)

!#2
=

xmaxZ
xmin

dx

2
4 mX
j=1

fj
d2

dx2
pj(x)

3
5
2

= fT �C � f ; (19)

where C is a constant, symmetric, positive semide�nite matrix obtained from the second deriva-
tives of the basis functions pj. The regularized result is now obtained by adding the total
curvature r(f) weighted with a regularization parameter � to the �2 in the �t and minimizing
the sum:

�2reg(f) = �2(f) +
1

2
� r(f): (20)

The �nal unfolded distribution in s is given by weighting the Monte Carlo distribution in strue
with the regularized coe�cient vector f obtained from the �t (14).

This method is bias-free as long as the detector simulation is correct for all s and is inde-
pendent of the used Monte Carlo distributions provided that only the statistically insigni�cant
components of the �tted contributions are damped. Possible biases due to the detector simu-
lation are accounted for in the systematic errors as described in section 7. The correct choice
of the regularization parameter � can be tested in the following way:

a) The coe�cients fj, which are correlated and have in general di�erent errors, can be
transformed into a set of independent parameters aj which have unit variance and are
sorted with the regularization measure � r(f) in order of decreasing signi�cance [45]. All aj
with j > n(�), where n(�) is the number of e�ective coe�cients remaining after damping
with the parameter �, have to be consistent with zero.

b) Furthermore the �2-probability of the �t without the regularization term r(f) should
increase for the regularized coe�cient vector f .

The regularization parameter is chosen according to these criteria.
The background, in a particular one-prong (three-prong) channel, consists mainly of misiden-

ti�ed other one-prong (three-prong) � decays, introducing correlations between the spectra. In
order to provide a proper treatment of the correlations, the three one-prong (three-prong)
channels are unfolded simultaneously. In addition to the three detector response matrices for
the three one-prong (three-prong) signal modes, six more detector response matrices are used,
mapping the Monte Carlo generated distribution in strue of a background channel to the back-
ground part introduced by this channel in the smeas distribution of a signal channel as correlated
background. Non-� background and other misidenti�ed � decays are treated as uncorrelated
background bi as described above.
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6 Discussion of the measured spectra

The selection e�ciencies and background fractions from simultaneously unfolded channels (cor-
related background) and other � - and non-� -background sources (uncorrelated background) are
listed in table 1. Figures 2 and 3 show the measured smeas distributions of the six channels

channel e�ciency
correlated
background

uncorrelated
background

selected
decays

��0 (28:7� 0:1)% (7:7� 0:2)% (7:9� 0:1)% 32316
�2�0 (18:8� 0:1)% (45:0� 0:6)% (8:4� 0:1)% 13814
�3�0 (8:0� 0:2)% (70:0� 2:2)% (11:4� 0:5)% 1738
3� (34:6� 0:1)% (9:7� 0:3)% (3:8� 0:1)% 14321
3��0 (11:0� 0:1)% (21:3� 1:0)% (6:1� 0:3)% 2455
3�2�0 (8:3� 0:4)% (82:3� 2:9)% (7:1� 0:5)% 1255

Table 1: E�ciencies, background fractions and total number of selected � decays.

used in this analysis in comparison to the �tted signal after the regularized unfolding, and the
Monte Carlo predictions.

The 3� spectrum shows a signi�cant deviation from the shape predicted by the Monte Carlo
(the dashed histogram) as has been observed in previous analyses of the 3� decay current [46].
There is also a slight deviation on the left side of the peak in the ��0 channel and in the upper
tail region. The other modes are statistically consistent with their Monte Carlo predictions.

The �2 values for the one-prong and three-prong �ts after the regularization step are
�21�pr:=d:o:f: = 94:0=109 and �23�pr:=d:o:f = 71:4=69 leading to the �2-probabilities 0:85 and
0:40, respectively.

The unfolded distributions of the measured spectra are shown in �gure 4. The plotted data
points are strongly correlated due to the unfolding procedure. The deviations from the Monte
Carlo prediction seen in �gures 2 and 3 are still present after the unfolding, most prominently
in the ��0 and the 3� channel. The enhancement in the upper tail (see �gures 2 (b) and 4 (a))
of the ��0 distribution can be explained within the K�uhn{Santamaria model [47] by enlarging
the fraction of �(1450)'s and �(1700)'s in the � decay amplitude. A similar correction to the
three-pion current, modelled as a Breit{Wigner decay chain a1 ! �� ! 3� [47] in the Monte
Carlo, does not account for the observed discrepancy.

7 Systematic uncertainties

Possible origins for systematic e�ects on the reconstructed value for the squared hadronic
mass, smeas, come from the uncertainty in the energy scale for reconstructed photons and the
uncertainty in the momentum scale for tracks, while the wrong choice of the regularization
parameter � in the unfolding can distort the unfolded distributions.

The energy resolution can be tested by measuring the invariant mass of the two photons
from �0 decays. A systematic shift in the observed mass in the data compared to the detector
simulation can be translated into a scale factor for the reconstructed photon energies. Devia-
tions of (0:5� 0:9)MeV for m�0 have been observed between data and Monte Carlo (�gure 1).
This corresponds to an energy scale factor of 1:004� 0:007. The energies of the reconstructed
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Figure 2: The measured smeas spectra for 1-prong decays. Plots (a) and (b) are the ��0 chan-

nel, (c) and (d) are the �2�0 and �3�0 modes, respectively. The points denote OPAL data

(statistical errors only). The open histograms show the �tted spectra after the regularized un-

folding, refolded into detector space. The background contributions from simultaneously unfolded

channels (correlated background) are shown as light grey areas while the background from other

sources (uncorrelated background) is represented in dark grey.
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Figure 3: The measured smeas spectra for 3-prong decays. Plot (a) is the 3� channel, (b) and (c)

are the 3��0 and 3�2�0 modes, respectively. The points denote OPAL data (statistical errors

only). The open histograms show the �tted spectra after the regularized unfolding, refolded into

detector space. The background contributions from simultaneously unfolded channels (correlated

background) are shown as light grey areas while the background from other sources (uncorrelated

background) is represented in dark grey.
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Figure 4: The unfolded strue spectra. Shown are the three vector channels (left) and the three

axial-vector channels (right) together with the Monte Carlo prediction. There are strong cor-

relations between the data points due to the unfolding. The plots (a),(d),(e) are the unfolded

spectra of plots (a),(c),(d) in �gure 2 and the plots (b),(c),(f) are the unfolded spectra of the

plots (a),(b),(c) in �gure 3. The error bars include statistical and systematic uncertainties.
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photons in the Monte Carlo samples are varied by �0:7% in order to estimate the systematic
error due to this e�ect5.

The uncertainty in the momentum of the tracks have been studied using � pairs. The Monte
Carlo is corrected for observed deviations between data and Monte Carlo in the mean and the
width of the momentum distribution. The momenta and the momentum resolution of all tracks
in the Monte Carlo samples are scaled due to the uncertainties in these corrections, thus leading
to the quoted systematic errors.

The damping parameter � in the regularization step of the unfolding procedure is calculated
from the number of e�ectively remaining spline coe�cients after the regularization. This num-
ber is chosen so that the test conditions a) and b) given in section 5 are satis�ed. The default
value (16 e�ective splines from 48 total splines for the 1-prong �t and 16 e�ective splines from
36 total splines for the 3-prong �t) is varied by �4 for both �ts, where the range is derived from
Monte Carlo tests of the unfolding procedure: the tests consist of unfolding fake data samples
in the � ! ��0 channel. The mass and the width of the � in the fake data samples at the
generator level are di�erent from the values used in the standard Monte Carlo which is used to
create the response matrix. The allowed range of the damping parameter is then determined by
comparing the unfolded fake data samples with their generator level distributions for di�erent
choices of the damping parameter, for which the test conditions a) and b) are satis�ed. Within
this range the unfolded distributions reproduce the mass spectrum of the modi�ed � without
biases towards the generator distribution of the standard Monte Carlo. The uncertainty due to
the variation of the damping parameter is added as a systematic error on the unfolded results.

Uncertainties of statistical nature from the errors on the branching ratios (see table 2), the
limited statistics of signal and background Monte Carlo samples, and on the e�ciencies are
incorporated in the unfolding procedure by adding them in quadrature to the statistical errors
on the data.

Systematic e�ects related to photon and �0 detection e�ciency are largely covered by the
systematic errors.

8 Results

8.1 Moments of R�

The unfolded spectra of the hadronic modes shown in �gure 4 are normalized to their branching
fractions and summed up to the vector and axial-vector spectra with their appropriate weights:

Rkl

�;V=A(s0) =

s0Z
0

ds
�
1� s

s0

�k
 
s

m2
�

!l X
hV=A

B(� ! hV=A�� )

B(� ! e�e�� )

wV=A

NV=A

dNV=A

ds
; (21)

where NV=A is the number of taus that decay into the hadron hV=A plus neutrino, and wV=A

denotes the appropriate weight of the hadronic mode to the vector or axial-vector current.
The branching ratios of the hadronic modes (and the lepton channels), together with their
contributing weights for the vector and axial-vector spectra, are summarized in table 2.

The hadronic modes !�, !��0 and ���0 involve decays of !'s and �'s, and do not conserve
isospin symmetry, since their decay can occur via the electromagnetic interaction. Therefore,
the unfolded distributions in the 3� mode, which is considered to belong to the axial-vector

5Since the invariant two-photon mass depends also on the angle between the two photons, this energy scale

factor accounts for systematic uncertainties in the energy resolution and the angular resolution of the ECAL.
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� ! ��X B[%] wV wA comment
e�e 17:83� 0:08 { {
��� 17:35� 0:10 { {
��0 25:24� 0:16 1:0 0:0
3��0 4:26� 0:09 1:0 0:0 including !� and !��0

�3�0 1:14� 0:14 1:0 0:0
� 11:31� 0:15 0:0 1:0
3� 9:26� 0:12 0:0 1:0 3h� 2K� � K2� including !�
�2�0 9:27� 0:14 0:0 1:0
3�2�0 0:50� 0:05 0:0 1:0 including !��0 and ���0

5� 0:075� 0:007 0:0 1:0 MC
�4�0 0:12� 0:06 0:0 1:0 MC
3�3�0 0:11� 0:06 1:0 0:0 MC
5��0 0:022� 0:005 1:0 0:0 MC
KK0 0:16� 0:03 1:0 0:0 MC
2K� 0:10� 0:03 0:5� 0:5 0:5� 0:5 MC
2K0� 0:10� 0:02 0:5� 0:5 0:5� 0:5 MC
KK0�0 0:14� 0:03 0:5� 0:5 0:5� 0:5 MC
!� 0:21� 0:01 1:0 �0:2 MC excluding 3��0

!��0 0:046� 0:007 �0:25 1:0 excluding 3�2�0

���0 0:17� 0:03 1:0 �0:24 MC
Xstrange 2:67� 0:14 { {

Table 2: Branching ratios for the hadron modes and lepton channels. Shown are the �tted values

from the Particle Data Group [11] and the contributing weights for the vector and axial-vector

current. Channels marked with MC are `generator-level' Monte Carlo channels included in the

spectra. Negative weights are used to subtract inclusively measured contributions from the wrong

current.

current, and in the 3��0 mode, which belongs to the vector current, are contaminated by
decays not belonging to the assigned currents (e.g. !� ! 3�), and thus need to be corrected.
Since � 71% of the 3�2�0 mode consist of !��0 decays, this channel is used for the !��0

corrections. Corrections for the other ! and � modes are made with the Monte Carlo. Decay
modes which are not reconstructed from the data have also to be included in the total vector
and axial-vector spectra. Their distributions are taken from the Monte Carlo. The 2K� modes
contribute to both classes to an unknown amount. A weight of (50 � 50)% is used for both
currents and a correlation of�100% between the vector and the axial-vector weights is assumed.
The errors assigned to Monte Carlo spectra are taken to be �100%, in order to take a possible
mismodelling of the Monte Carlo into account.

The moments Rkl

V=A are given in table 3. The errors on the moments are subdivided into
statistical uncertainties due to the data statistics, the uncertainties comming from the branching
ratio errors, and systematic uncertainties induced by the limited Monte Carlo statistics and the
variations of the energy scale, the momentum scale, and the regularization parameter (table 4).
Correlations between the moments are given in table 5.
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moment kl Rkl

V total error Rkl

A total error
00 1:764 �0:016 1:720 �0:017
10 1:264 �0:012 1:240 �0:013
11 0:2980 �0:0034 0:2510 �0:0032
12 0:0942 �0:0019 0:1090 �0:0019
13 0:0403 �0:0016 0:0518 �0:0013

Table 3: The measured moments Rkl

V =A
, for kl = 00 ; 10 ; 11 ; 12 ; 13. The errors shown represent

statistical and systematic uncertainties.

systematic errors
kl data stat. branching ratios MC stat. E scale p scale regularization
00 { �0:016 { { { {
10 �0:005 �0:010 �0:004 �0:004 �0:001 �0:001

V 11 �0:0012 �0:0031 �0:0008 �0:0005 �0:0002 �0:0000
12 �0:0006 �0:0016 �0:0004 �0:0007 �0:0000 �0:0001
13 �0:0008 �0:0011 �0:0005 �0:0005 �0:0001 �0:0001
00 { �0:017 { { { {
10 �0:004 �0:012 �0:002 �0:002 �0:002 �0:003

A 11 �0:0010 �0:0029 �0:0007 �0:0003 �0:0002 �0:0004
12 �0:0008 �0:0015 �0:0005 �0:0006 �0:0001 �0:0005
13 �0:0007 �0:0008 �0:0004 �0:0004 �0:0002 �0:0003

Table 4: Statistical and systematic uncertainties of the measured moments. The upper (lower)

portion of the table contains the result for the vector (axial-vector) current.

8.2 Spectral functions

The vector and axial-vector spectral functions are given by inverting equation (1):

v=a(s) = 2� Im�
(1)

V=A(s)

= m2
�

2
46SEWjVudj2

 
1� s

m2
�

!2  
1 + 2

s

m2
�

!35
�1

�
X
hV=A

B(� ! hV=A�� )

B(� ! e�e�� )

wV=A

NV=A

dNV=A

ds
; (22)

where the sum is performed over hadronic �nal states hV=A with angular momentum J = 1.
The spectral functions (and their correlations) are shown in �gure 5 together with the at

na��ve parton model prediction vna��ve(s) = ana��ve(s) = 1=2 and the prediction of perturbative
QCD (massless) for �s(m

2
Z) = 0:122 which increases the na��ve prediction by � 10%. As a result

of the regularized unfolding, the bin-to-bin correlations are of the order of +80% (�50%) for
bin distances of 0:1GeV2 (� 1GeV2). The correlation between vector and axial-vector spectral
function varies from �60% to +60%. Figure 6 shows the di�erence and the sum of the two
measured spectral functions. The function v(s)�a(s) should vanish in the limit of perturbative,
massless QCD. The deviation from this prediction, e.g. due to the � and a1 resonances, indicates
the large sensitivity of this distribution to non-perturbative e�ects. The QCD prediction for
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Figure 5: The vector and axial-vector spectral functions. Shown are the sums of all contributing

channels as data points (upper two plots). Some exclusive contributions are shown as shaded

areas. The na��ve parton model prediction is shown as dashed line, while the solid line depicts the

perturbative, massless QCD prediction for �s(m
2

Z ) = 0 :122 . The error bars include statistical

and systematic uncertainties. The pion pole is subtracted from the axial-vector spectrum. The

lower plot shows the correlations of the two spectral functions in continuous gray-levels from

white to black which correspond to the correlations in percent from �100 % to +100 %. The

contour lines are drawn in equidistant steps of 20 %.
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V 00 10 11 12
10 72
11 87 72
12 74 14 72
13 53 �18 37 90

AnV 00 10 11 12 13
00 2 9 0 �8 �8
10 9 4 0 4 8
11 �5 �2 �7 �7 �4
12 �8 3 0 �12 �17
13 �10 8 3 �16 �26

A 00 10 11 12
10 85
11 79 56
12 64 22 85
13 51 2 63 94

Table 5: Correlations between the measured moments Rkl

V =A
in percent. The left (right) table

gives the correlations between the moments of the vector (axial-vetor) current; the table in the

middle shows the correlations between the moments of di�erent currents.

v(s) + a(s) which is � 10% above the na��ve expectation v(s) + a(s) = 1 as in �gure 5 gives a
reasonable description of the region s > 1GeV2. The structure due to the narrow resonances
in the region below s ' 1GeV2 is however not described by perturbative QCD.
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Figure 6: The di�erence (sum) of the spectral functions v(s)� a(s) (v(s) + a(s)). The dashed

line is the na��ve parton model expectation and the solid lines depict the prediction of massless,

perturbative QCD as in �gure 5. For v(s)� a(s) both predictions are identically zero.

9 Measurement of the strong coupling �s

Since the perturbative expansions for vector and axial-vector currents are identical while the
non-perturbative parts have opposite sign but the same order of magnitude for both currents,
two di�erent �ts are used for the extraction of �s and the power corrections, respectively. The
sum of vector and axial-vector moments is most sensitive to perturbative QCD and is used for
the measurement of �s (�t 1) while the separate moments of both currents are used to obtain
the power corrections (�t 2). In addition to the moments listed in table 3 it is possible to
include the measurements of the � lifetime �� and the branching ratio B� = B(� ! ����� ) in
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�t 1 since each of them can be used to predict the total hadronic decay rate of the � lepton:

R� (�� ) =
1

�e

1

��
� 1� ��

�e
; (23)

R� (B�) =
��

�e

1

B�

� 1� ��

�e
: (24)

Both equations assume lepton universality so that the following equation holds:

B� = Be

��

�e
; (25)

with ��
�e

= 0:9726 [10] and �e = 4:0329 � 10�13GeV [10, 48]. The non-strange decay rate of the
� lepton is then obtained by subtracting R�;s = Bs=Be = 0:150� 0:008 [11] from the weighted
average R� (B�; �� ) of R� (�� ) and R� (B�)

6. In principle the electron branching ratio Be could
also be used to determine R� but this has a 96% correlation with R� from the hadronic modes
due to the correlations of the constrained branching ratios in [11].

Using the world average �� = (291:0� 1:5) fs and the �tted value B� = 0:1735� 0:0010 [11]
one gets:

R� (B�; �� )� R�;s = 3:485� 0:023: (26)

From the vector and axial-vector decay rates in table 3 one gets the following value:

R�;V +R�;A = 3:484� 0:024: (27)

In the �rst �t, four parameters are used to describe the �ve moments, leaving one degree
of freedom for the �t: the strong coupling �s(m

2
�
), the gluon condensate h�s

�
GGi and the

dimension 6 and 8 contributions to the kl = 00 moments �6V+A, �
8
V+A. The second �t requires

six parameters to predict ten moments (four degrees of freedom): �s(m
2
�
), h�s

�
GGi and the

power corrections �6V, �
8
V, �

6
A and �8A. The power corrections from the two �ts can be compared

via the following relation:

�DV+A =
1

2

�
�DV + �DA

�
: (28)

Further inputs for both �ts are the quark masses for the three light quarks mu;d;s

mu = (8:7� 1:5)MeV; md = (15:4� 1:5)MeV; ms = (270� 30)MeV; (29)

and the quark condensates h  iu;d;s = ��3u;d;s, with

�u = �d = (189� 7)MeV; �s = (160� 10)MeV: (30)

The values are taken from [4]. The error matrix of the moments is calculated from the experi-
mental errors on the moments and their correlations (tables 3 and 5) and the theoretical error
matrix calculated from the errors on the quark-masses and quark-condensates. The results
from the �t to the sum of vector and axial-vector moments is given in table 6. The quoted
errors are subdivided into a statistical error due to the data statistics, the uncertainty induced
by the errors on the branching ratios, an experimental systematic error from the Monte Carlo
statistics and the unfolding procedure, and a theoretical error including the uncertainties on
quark masses, the variation of the O(�4s) coe�cient, the renormalization scheme dependence,
and the renormalization scale uncertainty. The strong coupling is most sensitive to the kl = 00
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contributing errors
theory observable value data B syst. theo. �2=d:o:f:

�s(m
2
�
) 0:348 �0:002 �0:009 �0:002 �0:019

h�s
�
GGi=GeV4 �0:003 �0:007 �0:007 �0:006 �0:005

CIPT
�6V+A 0:0012 �0:0034 �0:0033 �0:0029 �0:0006

0:16=1

�8V+A �0:0010 �0:0024 �0:0016 �0:0015 �0:0003
�s(m

2
�
) 0:324 �0:001 �0:006 �0:002 �0:013

h�s
�
GGi=GeV4 0:014 �0:007 �0:006 �0:005 �0:013

FOPT
�6V+A 0:0028 �0:0034 �0:0034 �0:0030 �0:0068 0:17=1

�8V+A �0:0015 �0:0024 �0:0016 �0:0014 �0:0019
�s(m

2
�
) 0:306 �0:001 �0:005 �0:001 �0:011

h�s
�
GGi=GeV4 �0:002 �0:007 �0:007 �0:005 �0:002

RCPT
�6V+A �0:0047 �0:0036 �0:0040 �0:0032 �0:0011 0:07=1

�8V+A �0:0001 �0:0024 �0:0017 �0:0015 �0:0003

Table 6: The result for �s(m
2

�
) and the non-perturbative parameters from the �t to the sum

of vector and axial-vector moments. Shown are the values for the three di�erent descriptions

of the perturbative part of the moments (see text). The given errors correspond to the data

statistics, the uncertainty due to the errors on the branching ratios B, a systematic error from

the Monte Carlo statistics, the energy scale, the momentum scale, and the unfolding, and a

total theoretical uncertainty.

moment, and therefore the dominant contribution to the experimental uncertainty on �s comes
from the uncertainties on the branching ratios.

All three theories lead to similar �2 values (see table 6) but the spread in the �tted values
for �s(m

2
�
) exceeds the total uncertainties by a factor of two. A similar spread of the values

for �s(m
2
�
) from the three models has also been observed in [8, 49], where RCPT has led to the

lowest value and CIPT to the largest value in agreement with our results (table 6).
The di�erences in the statistical and systematic errors on �s are induced by the scaling of the

relative error with �s and thus are compatible for the three �ts. The theoretical uncertainties
should also obey this scaling behavior: here the �ts for FOPT and CIPT only include the
uncertainty on the unknown K4 coe�cient and hence cannot be compared to the RCPT result.
Furthermore the uncertainty due to the variation of the renormalization scheme vanishes for
RCPT. The impact on �s from the various theoretical error sources is listed in table 7. The
given errors correspond to the spread of the �tted values of �s in �t 1 due to the unknown
O (�4s ) dependence K4 = 25 � 50, the choice of renormalization scale 0:4 � �2=m2

�
� 2:0,

the variation of the renormalization scheme parameterized with the third coe�cient of the
�-function 0:0 � �RS3 =�MS

3 � 2:0, and the evolution of �s(m
2
�
) to the Z0-mass scale.

Although the total theoretical uncertainties on �s are compatible for all three theories
there is a major di�erence between FOPT and the two other models: the FOPT �t leads to

6R�;s is subtracted from R� , since the induced dependency on the mass of the strange quark would lead to

a larger uncertainty in the �ts if R� would be used instead.
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��s(m
2
�
) ��s(m

2
Z)

error source CIPT FOPT RCPT CIPT FOPT RCPT

�25 � K4 � 75 �0:012 �0:006 { �0:0013 �0:0007 {

0:4 � �2=m2
�
� 2:0 �0:006 �0:009 �0:011 �0:0005 �0:0009 �0:0015

0:0 � �RS3 =�MS
3 � 2:0 �0:015 �0:009 �0:000 �0:0009 �0:0005 �0:0005

evolution { { { �0:0003 �0:0003 �0:0003

Table 7: The theoretical uncertainties on the strong coupling constant. The errors correspond

to the full spread of the �tted �s values in �t 1 due to the variation of the parameters listed in

the �rst column.

a signi�cant larger dependency of the non-perturbative parameters h�s
�
GGi and �6=8V+A on the

theoretical uncertainties than CIPT and RCPT. The dominant e�ect comes from the variation
of the renormalization scale �2. The statistical and systematic uncertainties on the power
corrections are very similar for all three theories, agreeing with expectation. Figure 7 shows
a comparison of R�;V(s0) + R�;A(s0) as predicted from the three theories using the �t results
at s0 = m2

�
with the data. The Contour Improved prediction is consistent with the data from

the � -mass scale down to s0 � 1GeV2 while FOPT and RCPT tend to predict too large values
below s0 � 2GeV2.

9.1 Evolution of �s from m� to mZ

The value of the strong coupling at the mass scale of the � lepton can be evolved up to the
mass scale of the Z0. This is done by solving the four-loop �-function given by equation (7)
numerically in small steps from m2

�
to m2

Z applying a three-loop matching condition [50] at the
avor thresholds for mc(mc) = (1:30 � 0:06)GeV and mb(mb) = (4:13 � 0:06)GeV [50]. The
evolution procedure induces an additional error of �0:0003 [50] on the strong coupling at the Z0
mass. Using the CIPT result for �s(m

2
�
) and mZ = 91:187GeV the following value is obtained:

�s(m
2
Z) = 0:1219� 0:0010exp � 0:0017theo � 0:0003evol: (31)

The FOPT �t gives

�s(m
2
Z) = 0:1191� 0:0008exp � 0:0013theo � 0:0003evol: (32)

Finally RCPT gives:

�s(m
2
Z) = 0:1169� 0:0007exp � 0:0015theo � 0:0003evol: (33)

The di�erent contributions to the theoretical uncertainties are listed in table 7. The results are
in good agreement with the value obtained from �ts to combined electroweak measurements at
LEP and SLD [51]:

�s(m
2
Z) = 0:120� 0:003: (34)
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contributing errors
theory observable value data B syst. theo. �2=d:o:f:

�s(m
2
�
) 0:347 �0:001 �0:012 �0:002 �0:019

h�s
�
GGi=GeV4 0:001 �0:003 �0:006 �0:003 �0:004
�6V 0:0256 �0:0017 �0:0024 �0:0017 �0:0006

CIPT
�8V �0:0080 �0:0010 �0:0007 �0:0005 �0:0002

0:63=4

�6A �0:0197 �0:0016 �0:0022 �0:0019 �0:0010
�8A 0:0041 �0:0012 �0:0013 �0:0008 �0:0002

�s(m
2
�
) 0:323 �0:001 �0:008 �0:002 �0:014

h�s
�
GGi=GeV4 0:017 �0:003 �0:004 �0:003 �0:010
�6V 0:0271 �0:0017 �0:0025 �0:0018 �0:0056

FOPT
�8V �0:0085 �0:0010 �0:0007 �0:0005 �0:0012 0:62=4

�6A �0:0183 �0:0016 �0:0023 �0:0019 �0:0052
�8A 0:0036 �0:0011 �0:0012 �0:0008 �0:0011

�s(m
2
�
) 0:305 �0:001 �0:007 �0:001 �0:011

h�s
�
GGi=GeV4 0:002 �0:003 �0:005 �0:003 �0:001
�6V 0:0202 �0:0018 �0:0033 �0:0018 �0:0009

RCPT
�8V �0:0075 �0:0010 �0:0008 �0:0005 �0:0002 0:61=4

�6A �0:0252 �0:0017 �0:0032 �0:0020 �0:0006
�8A 0:0047 �0:0012 �0:0013 �0:0008 �0:0001

Table 8: The �t result for �s and the power corrections from the combined �t to vector and

axial-vector moments. The given errors correspond to the data statistics, the uncertainty due

to the errors on the branching ratios B, a systematic error from the Monte Carlo statistics, the

energy scale, the momentum scale, and the unfolding, and a total theoretical uncertainty.

10 Measurement of dimension 6 and 8 operators

The results from �t 2 where the separate moments of the vector current and axial-vector current
are used are given in table 8. In contrast to �s where the error is dominated by the theoretical
uncertainties, the power corrections are almost independent of the theoretical uncertainties for
CIPT and RCPT. As mentioned in section 9, this is not the case for the FOPT �t which leads
to theoretical errors of the order of (or even larger than) the experimental errors. Due to the
correlated unfolding of vector and axial-vector spectra a strong positive correlation between
the power corrections of the vector and axial vector current of the same dimension is observed.
The power corrections of di�erent dimension but for the same current are anti-correlated. All
correlations of the �t parameters for CIPT are summarized in table 9. The �tted values of
the strong coupling constant in both �ts are in excellent agreement for all three models. The
experimental error on �s from this �t is larger than in �t 1 as the additional information from
the � lifetime and the branching ratio B(� ! ����� ) is omitted. Using equation (28), the
separate and total power corrections are also in good agreement for all three models. As in �t

26



�s(m
2
�
)

D
�s

�
GG

E
�6V �6A �8VD

�s

�
GG

E
�57

�6V �55 99

�6A �61 96 96

�8V 41 �92 �90 �84
�8A 42 �87 �86 �77 89

Table 9: Correlations between the QCD parameters from the �t to the moments of the vector

and axial-vector current in percent. The given numbers are taken from the CIPT �t result.

1 all three theories give similar �2 values in the �t to the exclusive moments. The theoretical
uncertainties behave similarly in �t 1 and �t 2. The sum of all power corrections �non-pert;V=A
and �non-pert;V+A to R�;V=A and R�;V + R�;A including the dimension 2 quark-mass correction
and the dimension 4 correction obtained from the �tted gluon condensate are:

0:0172� 0:0026 CIPT

�non-pert;V = 0:0187� 0:0054 FOPT (35)

0:0124� 0:0033 RCPT;

�0:0219� 0:0026 CIPT

�non-pert;A = �0:0204� 0:0050 FOPT (36)

�0:0266� 0:0032 RCPT;

�0:0024� 0:0025 CIPT

�non-pert;V+A = �0:0009� 0:0051 FOPT (37)

�0:0071� 0:0031 RCPT;

where the errors include experimental and theoretical uncertainties. Thus all three theories
lead to non-perturbative corrections to R�;V (R�;A) of the order 1:6% (�2:3%), while a large
cancellation of both contributions leads to a total non-perturbative correction to R�;V + R�;A

which is compatible with zero and therefore allows a precise measurement of the strong coupling
constant in �t 1. The numbers in table 8 can be compared to the estimates given in [4]:

h�s
�
GGi=GeV4 = 0:02� 0:01;

�6V = 0:024� 0:013; (38)

�6A = �0:038� 0:020;

�8V=A ' �0:0001:

Only the power corrections of dimension 8 seem to be underestimated, while the other estimates
are in good agreement with the measured values. Figure 8 shows the two power corrections of
dimension 6 (CIPT) together with the theoretical prediction given in [4].
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Figure 8: The power corrections of dimension 6 to R�;V =A. Shown are the one and two stan-

dard deviation contours of the correlated result for the vector and axial-vector current (CIPT)

including experimental and theoretical uncertainties. The solid line indicates the theoretical

prediction given in [4].

11 Test of the `running' of �s

The �t to the sum of vector and axial-vector moments (�t 1) can be extended to lower values
of s0, thus giving a correlated measurement of the strong coupling at di�erent scales. Four
equidistant values for s0 between 1:3GeV2 and m2

�
are used. In addition to the �ve moments at

s0 = m2
�
the integrated di�erential decay rate R00

�;V(s0) + R00
�;A(s0) for each additional s0 value

is included in the �t (see �gure 7).
For the extraction of the `running' of �s the number of �t parameters is increased to include

the strong coupling �s(s0) for each s0 value below m2
�
. The result can be examined with the

four-loop �-function. This is shown in �gure 9, where the �-function has been re�tted for all
three sets of �s values. The values at s0 = 1:3GeV2 were not included in the �t. A comparison
of these values with the predicted `running' shows good agreement in case of CIPT, while a
weaker `running' as predicted by the �-function is preferred by the FOPT and the RCPT values.

Figures 7 and 9 can be regarded as tests of the validity of the OPE for s0 values below
m2

�
. It has been questioned if the de�nition of R� (s0) is still valid in this region [4], since the

endpoint s = s0 is no longer suppressed by the (1�s=m2
�
)2 term in front of the spectral function

(see equation (1)). By de�ning the hadronic decay rate for a hypothetical � 0 with a mass of
m� 0 =

p
s0 and inserting m� 0 for m� in equation (1) one gets [8]:

R� 0;V=A(s0) = 12�SEWjVudj2
s0Z
0

ds

s0

�
1� s

s0

�2 ��
1 + 2

s

s0

�
Im�

(1)

V=A(s) + Im�
(0)

V=A(s)
�
; (39)

obeying the same quadratic suppression of the endpoint on the real s-axis as R�;V=A(m
2
�
).

Figure 10 shows the sum R� 0;V(s0) +R� 0;A(s0) versus the upper integration limit s0. The error
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Figure 9: The `running' of the strong coupling. The three sets of �s values are shown as

data points. The error bars include statistical and systematic uncertainties. The dashed curves

represent the predictions of the 4-loop �-function obtained from �ts to the three sets of �s values

not including the values �s(1 :3 GeV 2 ). The solid lines depict the errors from the �ts.

band for CIPT in the lower plot shows that the uncertainties increase below s0 ' 1:5GeV2

compared to the error in the lower plot of �gure 7. While the error on R� (s0) is dominated
by the uncertainty of the perturbative expansion, the error on R� 0(s0) originates mainly from
its dependency on the non-perturbative parts. In contrast to R� where these power corrections
stay constant for all s0 (see equation (11)) they increase with powers of 1=s0 as s0 decreases
in the case of R� 0 . As the errors are large for small values of s0 little can be said about this
region.

12 QCD sum rules

Weighted integrals over the di�erence of the two measured spectral functions shown in �gure 6
can be compared to the chiral predictions of QCD sum rules:

I1(s0) =
1

4�2

s0Z
0

ds (v(s)� a(s)) = f 2
�
; (40)

I2(s0) =
1

4�2

s0Z
0

ds s (v(s)� a(s)) = 0; (41)

I3(s0) =
1

4�2

s0Z
0

ds

s
(v(s)� a(s)) = f 2

�

hr2
�
i

3
� FA; (42)
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Figure 11: QCD sum rules. Equations (40){(43) are shown in the plots (a){(d). Shown are

the integrals versus the upper integration limit as shaded bands. The chiral prediction is given

by the lines (�1 � when two lines are present).

I4(s0) =
1

4�2

s0Z
0

ds s ln
s

�2
(v(s)� a(s)) = �4�f 2

�

3�

�
m2

��
�m2

�0

�
: (43)

Here the right hand side of each equation is understood to be the chiral prediction in the limit
s0 ! 1. Equation (40) is known as the �rst Weinberg sum rule [52], assuming that the only
scalar contribution is given by the pion pole which is related to the pion decay constant f� =
(92:4� 0:26)MeV [11]. The second Weinberg sum rule [52] is given in equation (41). The Das{
Mathur{Okubo (DMO) sum rule [53] is given by equation (42). Its asymptotic prediction is a
function of the pion decay constant f�, the mean square of the pion charge radius hr2

�
i = (0:439�

0:008) fm2 [54] and the axial-vector form factor of the pion FA = 0:0058 � 0:0008 [11]7, and
equation (43) gives the electromagnetic mass di�erence of pions [55]. Note that equation (43)
does not depend on the cut-o� value � by virtue of the second Weinberg sum rule.

7Our de�nitions of FA and f2
�
di�er by a factor of 1=2 from those given in [11]
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The saturation of these four sum rules is tested taking into account the full correlations
between the measured spectral functions. The plots of �gure 11 show the measured values
of the integrals I1-I4 as error bands including all experimental uncertainties versus the upper
integration limit. The asymptotic predictions are drawn as thin lines denoting the present �1 �
ranges.

All four sum rules appear to be saturated at the � -mass scale within their errors. However,
due to the small phase space near the � -mass which appears in the denominator of the spec-
tral functions these errors are very large except for the DMO sum rule where the 1=s factor
suppresses the high energy tail. The value of equation (42) at s0 = m2

�
is:

I3(m
2
�
) = (26:3� 1:8) � 10�3; (44)

where the error covers all experimental uncertainties.

12.1 Pion polarizability

Assuming that the DMO sum rule shown in �gure 11 (c) is already saturated at the � -mass
scale, its value can be used to predict the electric polarizability of the charged pion as proposed
in [56]:

�E =
�

m��

 
hr2

�
i

3
� I3

f 2
�

!
: (45)

Using the result from the previous section for the DMO sum rule (equation (44)) one gets:

�E = (2:71� 0:88) � 10�4 fm3; (46)

which is in good agreement with the value �E = (2:64� 0:36) � 10�4 fm3, derived in [56].

13 Summary

Measurements of the spectral functions of the vector current and the axial-vector current and
their applications in QCD have been presented. Within the framework of the Operator Prod-
uct Expansion, a simultaneous determination of the strong coupling constant �s and non-
perturbative correction terms has been performed. The sum of R�;V and R�;A was found to
involve a large cancellation of the non-perturbative terms and thus has been used together with
the � lifetime and the branching ratio B(� ! ����� ) to give a precise measurement of the
strong coupling constant. CIPT has led to the value

�s(m
2
�
) = 0:348� 0:009exp � 0:019theo;

at the � -mass scale and

�s(m
2
Z) = 0:1219� 0:0010exp � 0:0017theo

at the Z0-mass scale, where the �rst error stems from the experimental uncertainties and the
second error originates from the theoretical uncertainties. The values obtained for �s(m

2
Z) using

FOPT or RCPT are 2:3% and 4:1% smaller, respectively.
The total amount of non-perturbative corrections toR�;V (R�;A) was found to be (1:6�0:4)%

((�2:3 � 0:4)%), while the correction on the sum of R�;V and R�;A due to non-perturbative
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QCD is found to be only (�0:3�0:4)%. Here the errors include all experimental and theoretical
uncertainties.

Assuming the validity of the Operator Product Expansion for energy scales below the �
mass a test of the `running' of the strong coupling between s0 ' 1:3GeV2 and s0 = m2

�
has

been performed. A good agreement between the predicted `running' from the 4-loop �-function
and the �tted �s values has been observed for CIPT.

The saturation of QCD sum rules at the � -mass scale has been tested, yielding a measure-
ment of the pion polarizability of �E = (2:71 � 0:88) � 10�4 fm3 as determined from the DMO
sum rule.
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