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Abstract

We give a detailed description of the so-called Polynomial Hybrid Monte

Carlo (PHMC) algorithm. The effects of the correction factor, which is

introduced to render the algorithm exact, are discussed, stressing their

relevance for the statistical fluctuations and (almost) zero mode contribu-

tions to physical observables. We also investigate rounding-error effects

and propose several ways to reduce memory requirements.
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1 Introduction

Although lattice QCD [1] has nowadays reached a relatively mature age, precise

quantitative results –at least in the full theory– are still rare. One of the main

reasons is certainly that numerical simulations of lattice QCD, including the ef-

fects of dynamical quarks, are still very demanding and computer time consuming

(for reviews of dynamical fermion algorithms see [2, 3]). Efforts to improve on

this situation are therefore highly desirable.

In this paper we extend the discussion of the so-called Polynomial Hybrid Monte

Carlo (PHMC) algorithm, which we introduced in [4] as an attempt to improve

the performance of simulation algorithms for dynamical fermions.

The main idea of the PHMC algorithm relies on dividing the eigenvalue spectrum

of the Wilson-Dirac operator M on the lattice into different disjoint parts. These

different parts of the eigenvalue spectrum are then treated by either incorporating

them in the update step of a simulation algorithm or by taking them into account

in a reweighing procedure. This general idea is realized in practise by designing

suitable polynomials that approximate the inverse of M †M , which is needed in the

actual simulation, with a different accuracy for different parts of the eigenvalue

spectrum of M †M . In the present paper we choose a polynomial approximation

to the inverse of M †M which is equivalent to basically neglecting the contribution

of the low-lying modes and taking very precisely into account all the other modes

in the update step. This choice, which follows the original suggestion in [5],

is motivated by the experience with the multiboson technique [6, 7, 8, 9, 10]:

neglecting in the update a small number of low-lying modes of M †M still yields

results very close to the ones obtained using the exact Hybrid Monte Carlo (HMC)

algorithm. We want to emphasize, however, that our choice is only a special case

and the general method allows for a greater flexibility including ideas like the one

proposed in [11].

One may argue that the reweighing step can be replaced by a reject/accept step

in order to render the algorithm exact. We think that this is not the best choice

for the following reason: it is expected that almost zero modes of the Wilson-

Dirac operator appear when working in large physical volumes or at large values

of the lattice spacing. In such a situation a reject/accept step leads to a dilemma:

either the acceptance probability becomes so small that such events are always
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rejected. Or, if they are accepted, the zero modes give exceptional values to quark

propagators, distorting a statistical sample substantially. However, in full QCD,

gauge configurations carrying zero modes may give a finite contribution to several

fermion observables, which should be taken into account –at least in principle–

in order to get correct statistical averages. In fact, we consider this scenario as

a potential danger for the Hybrid Monte Carlo (HMC) algorithm [12] which is

commonly used.

As we will demonstrate below, with a suitable reweighing procedure, this problem

can be overcome elegantly. Namely, in our way of correcting for the polynomial

approximation, the reweighing factor becomes proportional to the almost zero

mode and hence cancels any singularity appearing in quark propagators used to

construct physical observables. This mechanism reflects in a sense the role of

the determinant when the full QCD partition function is considered. Of course,

reweighing techniques are widespread in applications for numerical simulations.

However, we would like to point out that our implementation of the reweighing

factor makes its computation very straightforward and reliable in all cases and

does not give too large an overhead in a simulation.

In a previous publication [4] we introduced the PHMC algorithm and gave some

first, promising results in practical applications for Wilson fermions. However,

it is by now well known that when using Wilson fermions for simulations of

lattice QCD, one has to face large lattice cutoff effects in physical observables.

For example, the axial Ward identity can be substantially distorted in this case

[13]. However the effects of a non-vanishing lattice spacing can be systematically

reduced by applying Symanzik’s improvement programme [14]: this turns out to

be easier in practice if only on-shell quantities are to be O(a) improved [15].

In fact, implementing the improvement programme non-perturbatively for both

the action and all the local operators relevant for on-shell observables, one can

reach a complete cancellation of the cutoff effects that appear linear in the lattice

spacing [16, 17]. Since with such an improved theory we expect to be able to work

at a much larger lattice spacing, a substantial gain in the cost of numerical sim-

ulations can be obtained. Indeed, the non-perturbative on-shell O(a) improved

action has by now already been computed also for dynamical fermions [18]. Any

new simulation algorithm should hence have the ability to be applicable to im-

proved fermions. We therefore extend here our tests of the PHMC algorithm to
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the case of O(a) improved actions. In the present paper we are going to discuss

a number of important technical aspects of the PHMC algorithm. Numerical

results for the performance of the algorithm in practise are deferred to a separate

publication [19].

2 The PHMC algorithm

We introduce the PHMC algorithm and discuss several aspects concerning our

practical implementation of the algorithm. In particular, we derive the compu-

tational cost of the algorithm in terms of matrix times vector operations.

2.1 Introducing the PHMC algorithm

We consider Euclidean QCD with nf = 2 degenerate flavours regularized on a

hypercubic space-time lattice with lattice spacing a and size L3 × T . With the

lattice spacing set to unity from now on, the points on the lattice have integer

coordinates (t, x1, x2, x3) which are in the range 0 ≤ t ≤ T ; 0 ≤ xi < L. A gauge

field Uµ(x) ∈ SU(3) is assigned to the link pointing from the site x to the site

(x + µ), where µ = 0, 1, 2, 3 designates the 4 forward directions in space-time.

Throughout the paper we will adopt Schrödinger functional boundary conditions

as detailed in [20, 21, 17]. The partition function for lattice QCD with nf = 2

degenerate flavours of quarks is given by

Z =
∫
DUe−Sg [U ]det(Q2[U ]) , (1)

where Sg is the standard Wilson-plaquette action for the pure gauge sector with

a coupling strength β = 6/g2
0 and g0 the bare gauge coupling. The Hermitean

matrix Q, defining the fermion action, is given by

Q(U)xy =
c0

cM
γ5[(1 +

∑
µν

[
i

2
cswκσµνFµν(x)])δx,y

− κ
∑
µ

{(1− γµ)Uµ(x)δx+µ,y + (1 + γµ)U
†
µ(x− µ)δx−µ,y}] , (2)

where κ is the hopping parameter, related to the bare quark mass m0 by κ =

1/(8 + 2m0) and csw is the O(a) improvement coefficient [22]. The constant cM

serves to optimize simulation algorithms and c0 = (1 + 8κ)−1. For all practical
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simulations we have imposed an even/odd preconditioning and hence used the

preconditioned matrix Q̂, whose precise definition can be found in e.g. [23, 24].

It is the aim of the numerical simulations to compute expectation values of gauge

invariant operators O

〈O〉 = Z−1
[∫

DUe−Sg [U ]det(Q2[U ])O[U ]
]

, (3)

using Monte Carlo methods. Note that in eq.(3) the square of the determinant

appears in order to have a positive definite measure suitable for the numerical

algorithms employed below.

In the PHMC algorithm a polynomial Pn,ε(Q
2), approximating (Q2)−1 for all

eigenvalues λ of Q2 with λ ∈ [ε, 1], is introduced such that det(P−1
n,ε (Q

2)) ≈
det(Q2). Using the trivial identity det(Q2) = det(Q2Pn,ε(Q

2))/det(Pn,ε(Q
2)) and

representing the determinants with the help of auxiliary bosonic fields φ and η,

carrying colour and spin indices, one may exactly rewrite the partition function

eq.(1) as

Z =
∫
DUDφ†DφDη†Dη W e−(Sg+SP +Sη)

SP = SP [U, φ] = φ†Pn,ε(Q
2[U ])φ

Sη = η†η . (4)

In eq.(4) we have introduced the “correction factor” W = W [η, U ]:

W = exp
{
η†(1− [Q2 · Pn,ε(Q

2)]−1)η
}

. (5)

Denoting averages evaluated with the effective action Sg + SP + Sη as 〈. . .〉P , the

exact averages denoted as 〈. . .〉 are obtained by reweighing with W

〈O〉 = 〈W 〉−1
P 〈OW 〉P . (6)

As mentioned in the introduction, the advantage of rewriting the partition func-

tion in the form of eq.(4) is that by a suitable choice of the polynomial Pn,ε(Q
2)

the eigenvalue spectrum of Q2 can be smoothly separated into a part to be in-

cluded in the update procedure by simulating the effective action Sg + SP and a

rest, taken into account in the correction factor.

We remark that, in analogy to the case of the multiboson technique [25], the

PHMC algorithm is also suited to allow for performing simulations with an odd
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number of flavours. Of course, the above procedure leading to eq.(4) may be

generalized and several polynomials may be introduced in such a way that each

of them gives a good approximation in different parts of the eigenvalue spectrum.

We demand in this case that the product of all these polynomials approximates

the inverse of Q2. The realization we are using in this paper amounts to cutting

out the very low-lying end of the eigenvalue spectrum from the update step.

In principle, there is a great flexibility in choosing the polynomial to approximate

Q−2. In this work we follow ref.[7] and choose a Chebyshev approximation method

to construct Pn,ε(Q
2). Since the polynomial we are going to use is detailed already

in [7, 24] we will give here just its final form written in the product representation,

Pn,ε(Q
2) = pn,ε(Q) =

2n∏
k=1

[
√

ck(Q− rk)] , (7)

where the complex numbers rk are given by

rk =
√

zk = µk + iνk , νk > 0 , k = 1, . . . , n

rk = r∗2n+1−k , k = n + 1, . . . , 2n

zk =
1

2
(1 + ε)− 1

2
(1 + ε) cos(

2πk

n + 1
)− i

√
ε sin(

2πk

n + 1
) . (8)

The overall normalization constant,
∏n

k=1 ck, can be computed analytically. If the

ck’s are taken all identical, they turn out to be of O(1).

The polynomial Pn,ε(Q
2) approximates the inverse of Q2 with a relative fit error

which is bounded from above by

δ ≡ 2

(
1−√ε

1 +
√

ε

)n+1

, (9)

for all the eigenmodes of Q2 with eigenvalues λ in the interval λ ∈ [ε, 1]. The

operator Q2 is normalised (through the choice of cM) in such a way that its largest

eigenvalue is always smaller than 1. For eigenvalues λ < ε the relative fit error

quickly increases as λ decreases.

2.2 Implementation and cost of the PHMC algorithm

The approximation of det(Q2) through the inverse determinant of the polynomial

Pn,ε(Q
2) was first suggested in [6]. There it led to a completely local bosonic action
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involving n copies of bosonic fields. Since the bosonic action in that case was local,

algorithms like heatbath and over-relaxation could be used. One unfortunate

property of this approach was the observation that the autocorrelation time of

the algorithm grows with the number of bosonic fields appearing in the action

[9, 10].

The approximate fermion action SP eq.(4) [5, 4] on the other hand still represents

a non-local bosonic action. In this approach one therefore has to rely on small

step size algorithms. However, the advantage is that now only one dynamical

bosonic field is needed and hence the dangerous increase of the autocorrelation

time with the number of bosonic field copies mentioned above is avoided.

In more detail, we have chosen to use a suitably adapted Φ-version [26] of the

HMC algorithm for the update of the gauge fields. The usual arguments, includ-

ing the reversibility of the molecular dynamics evolution, leading to the proof of

detailed balance, still holds for the case of the PHMC algorithm. The implemen-

tation of this update method for the case of O(a) improved fermions and even/odd

preconditioning can be done in complete analogy to ref. [23]. We therefore only

want to point out some peculiarities which are not discussed in [23].

In the following discussion we will be somewhat sketchy and focus our attention

on the modifications of the standard Φ-version of the HMC algorithm that are

needed for implementing the PHMC algorithm. In particular, we note again that

it is to be understood that for the actual simulation the preconditioned matrix

Q̂ was always used. Another remark is that the roots rk, k = 1, . . . , 2n were

suitably reordered with respect to their definition, eq.(8), while preserving the

relation r2n+1−k = r∗k. Such a reordering is necessary to keep rounding errors

on a tolerable level, as thoroughly discussed in [24]. Details of the different

ordering schemes we have used in our implementation of the PHMC algorithm

and rounding errors associated with them are discussed in Section 4.

In the PHMC algorithm the variation of the pseudofermion action, SP eq.(4),

with respect to a given gauge link is somewhat more complicated than in the

standard HMC algorithm. In terms of the variation of the operator Q, denoted

by δQ, it assumes the form

δSP =
n∑

j=1

[
δQ χj−1 ⊗ χ†

2n−j + δQ χ2n−j ⊗ χ†
j−1

]
, (10)
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where the auxiliary pseudofermion fields χj, for j = 1, . . . , 2n− 1 are defined as

χj ≡ [
√

cj(Q− rj)] · [√cj−1(Q− rj−1)] · . . . · [√c1(Q− r1)]φ (11)

and φ denotes the pseudofermion field of eq.(4). In eq.(10) the products χ ⊗ χ†

denote direct products in colour space and a trace over spin indices is understood.

In order to speed up the simulation and minimize memory requirements we pro-

ceed for the computation of δSP as follows: We first precalculate the n vectors

χk, for all k = 1, . . . , n and store them. We then start the evaluation of the differ-

ent contributions to δSP by computing χn−1 ⊗ χ†
n and its Hermitean conjugate,

which for brevity will not be mentioned explicitly in the following. The next

contribution to δSP would involve χn−2 ⊗ χ†
n+1. The vector χ†

n+1 is obtained by

computing (Q − rn+1)χn. The resulting vector can now be stored in χn−1 since

this vector is no longer used. Iterating this procedure results in a memory re-

quirement of n+1 pseudofermion vectors. This may be considered as a drawback

of the PHMC algorithm as it requires a substantial amount of memory if the

degree of the polynomial becomes large. However, as it will be discussed below,

there are several ways to overcome possible bottlenecks if not enough memory is

available.

It is clear that the evaluation of all terms necessary to evaluate δSP amounts

to (2n − 1) Qφ operations (the extra work to incorporate the roots rk in the

operator Q − rk is completely negligible). In addition, since there are n terms

to be summed (and traced) to evaluate eq.(10) and since each of them requires

a computational work roughly equivalent (at least in our implementation on the

APE computers) to one Qφ operation, the complete cost of the computation of

δSP will become about 3n Qφ operations.

Although the polynomial approximation to (Q2)−1 is rather precise even if a few

eigenvalues of Q2 occur that are slightly larger than one, the numerical construc-

tion of δSP itself turns out to be unstable when eigenvalues very close to 1 are

met in the updating procedure. At least in our implementation of δSP , based on

eq.(10), numerical overflows occurred when updating gauge configurations car-

rying modes of Q2 with eigenvalues very close to (even if smaller than) 1. In

practise, Q should therefore be normalized, through cM in eq.(2), such that the

average highest eigenvalue of Q2 is sufficiently smaller than one, say 〈λmax〉 ≈ 0.9.

Since the value of the highest eigenvalue of Q2 shows very small fluctuations, such
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an appropriate normalization can safely be done at the beginning of a simulation.

The pseudofermion field φ in eq.(4) is to be generated according to the distribution

exp {−SP [U, φ]}. Generating this distribution via a heatbath step involves the

computation of the inverse square root of Pn,ε(Q
2[U ]). This can be achieved by

computing φ through

φ = A†
n,ε(Q)[Q2Pn,ε(Q

2)]−1Q2RG (12)

where RG is a random Gaussian vector and An,ε is given by

An,ε(Q) =
n∏

k=1

√
ck(Q− rk) . (13)

The vector X = [Q2Pn,ε(Q
2)]−1Q2RG is computed with a Conjugate Gradient

(CG) method, solving the equation Q2Pn,ε(Q
2) X = Q2RG. We demanded that

in generating φ with a CG inverter the relation

|SP − R†
GRG| ≈ O(10−7) (14)

holds. We noticed that this can be achieved by choosing a moderately large

stopping criterion for the CG solver, namely εstop = 10−12, where εstop is defined

by the norm of the residual vector

Φres = Q2RG −Q2Pn,ε(Q
2) X (15)

divided by the norm of the solution vector X (which is numerically close to the

norm of Q2Pn,ε(Q
2) X in all practical cases):

εstop = ‖Φres‖2/‖X‖2. (16)

A last remark concerns the second pseudofermion field η. It is generated trivially

by Gaussian random vectors. Through it the correction factor W = W [η, U ]

(eq.(5)) can be computed via the solution of the equation [Q2Pn,ε(Q
2)]X = η,

which involves an additional inversion of Q2Pn,ε(Q
2). The correction factor, or

w = log(W ) is then obtained by

w[η, U ] = η†(1− [Q2Pn,ε(Q
2)]−1)η . (17)

Since the expression Q2Pn,ε(Q
2) is almost the unit matrix, there is the possibility

of dangerous rounding errors when computing the vector (1 − [Q2Pn,ε(Q
2)]−1)η
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in eq.(17), especially on machines with only 32-bit precision 1. However, eq.(17)

may be rewritten as

w[η, U ] ≡ η†(Rn,ε(Q
2)[Q2Pn,ε(Q

2)]−1)η . (18)

Following refs.[6, 7, 24] the polynomial Rn,ε(Q
2) = Q2Pn,ε(Q

2)−1 is directly given

by Chebyshev polynomials of degree n+1. One may hence use numerically stable

recursion relations to compute Rn,ε(Q
2). Although the use of eq. (18), instead

of eq. (17), leads to a somewhat larger cost for evaluating the correction factor,

our experience is that it is advisable to use eq.(18) when only 32-bit precision

is employed. Analogously to the case of generating the pseudofermion field φ,

eq.(4), we optimized the value of the stopping criterion also for the CG inversion

needed in eq.(18).

It might be observed2 that eq.(17) can be generalized to

w[η, U ] = η†(1− [bn,εQ
2Pn,ε(Q

2)]−1)η , (19)

where bn,ε is some real positive constant. Its value might be optimized, depending

on the values of n and ε, in order to reduce the stochastic noise associated with

reweighing through the correction factor. However, we did not exploit this addi-

tional freedom and took always bn,ε = 1, which enabled us to use the expression

of w[η, U ] in eq.(18).

In principle, the ratio of the number of η-field “updates” to the number of gauge

field updates is arbitrary. In fact, it turns out (see Section 3) that it is advan-

tageous to choose this ratio to be larger than one. In this way, the additional

noise induced in the reweighted observables, eq.(6), by the correction factor can

be partly suppressed. The above-mentioned ratio will be denoted in the following

by Ncorr, since it gives the number of computations of the correction factor per

gauge field configuration.

From the discussion above it is easy to express the cost of the PHMC algorithm in

terms of matrix times vector, Qφ, operations. The cost for the PHMC algorithm

can be split into three parts,

CQφ(PHMC) = Cbhb + Cupdate + Ccorr , (20)

1We remark that, of course, all internal products and global sums were performed in software
Kahan or double precision arithmetic.

2We are grateful to Ulli Wolff for this interesting remark.
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where Cbhb is the cost for the heatbath of the bosonic fields, Cupdate the cost for

the computation of δSP and Ccorr the cost to evaluate the correction factor. In

units of Qφ operations we find

Cbhb = (2n + 2) ·Nbhb
CG + n

Cupdate = 3n ·Nstep

Ccorr = (2n + 2) ·N corr
CG ·Ncorr . (21)

The factor Ncorr denotes as above the number of evaluations of the correction

factor W per full gauge field update (or molecular dynamics trajectory). The

symbols Nbhb
CG and N corr

CG denote the average numbers of CG iterations in the

heatbath of the bosonic fields and the computation of W , respectively. The factor

3n in Cupdate comes from adding the cost for the construction of the auxiliary fields

χk and the cost of the other algebraic operations needed for a single update of

the gauge field and its conjugate momenta. Nstep is the number of steps used

in a trajectory, i.e. how often δSP has to be evaluated within a trajectory. We

explicitly verified that our formulae for Cupdate, Cbhb and Ccorr agree with the

costs in real time observed for our implementation of the PHMC algorithm on

the APE computer.

The scaling behaviour of the computational cost Cupdate, eq.(21), as a function

of the lattice size, L3 × T , or the condition number of Q2 is expected to be

fully analogous to the one observed in the HMC algorithm, with one important

difference. Due to the form of the variation of the pseudofermion action, SP

eq.(4), in the molecular dynamics evolution for the PHMC algorithm the role of

the lowest eigenvalue of Q2 is taken over by the infrared cut–off parameter of

the polynomial approximation, ε, as already discussed in [4]. Since in practise

ε ≈ 2〈λmin〉, we expect therefore an improvement on the cost of a simulation.

3 Effects of the correction factor

In this section we want to discuss the effects of the correction factor we introduced

for the exactness of the algorithm. The first main point concerns the statistical

fluctuations induced by reweighing observables with the correction factor: this

aspect determines to a large extent the tuning of the PHMC algorithm. The
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second point is of qualitative nature and concerns the occurrence of gauge con-

figurations with exceptional eigenvalues of Q2 and how the reweighing procedure

can deal with them.

3.1 Statistical errors and reweighing

As discussed above, an important ingredient of the PHMC algorithm is the cor-

rection factor. The computational cost of the algorithm will depend in a crucial

way on the behaviour of the correction factor in a real simulation. The reason

is that through the correction factor, which is computed stochastically, a cer-

tain noise is introduced which may affect the errors on the observables and will

contribute therefore to the cost of a simulation.

In the PHMC algorithm the update of the gauge field U is alternated with Ncorr

“updates” of the pseudofermion field η, yielding Ncorr evaluations of W [η, U ] on

each gauge configuration. Performing a simple arithmetic average of them yields

a single estimate of the correction factor per each gauge configuration. As a

consequence, on a sample of N gauge configurations labelled by the integer j, the

averages 〈. . .〉P introduced in section 2.1 can be represented as trivial arithmetic

averages over the sample:

〈OW 〉P = N−1
N∑

j=1

OjWj (22)

where Oj is any gauge invariant observable and Wj the above alluded estimate

of the correction factor on the gauge configuration Uj.

For any finite number of configurations, the statistical error on 〈O〉 is expected

to depend on the choice of n and ε, i.e on the chosen polynomial approximation

to (Q2)−1, and, for a given polynomial approximation, also on the value of Ncorr.

By rewriting the expression for the reweighted average of O, eq.(6), in the form:

〈O〉 = 〈O〉P + 〈W 〉−1
P · (〈OW 〉P − 〈O〉P 〈W 〉P ) , (23)

it becomes clear that both the statistical fluctuations of O and those of the con-

nected part of OW contribute to the statistical error on the reweighted average,

eq.(23). The latter contribution will depend on the statistical correlation between

the observable O and the reweighing factor W .
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As the polynomial approximation to (Q2)−1 is made more precise, the contribu-

tion to the error on O coming from the statistical correlation between O and W

becomes smaller, just because W gets closer to 1. Still, in the limit W ≈ 1, there

remains some noise, because W is computed not exactly but only stochastically.

We are then left with a pure Gaussian noise factor.

Choosing a poor polynomial approximation to (Q2)−1 for the update step in

the PHMC algorithm yields a reweighing factor W which will strongly fluctuate.

(Think, e.g., of W as being the full determinant.) Moreover, W may have in

general a non-negligible correlation with the observable O, such that, even in the

limit Ncorr → ∞, a large contribution to the error on 〈O〉 is expected to arise.

The discussion suggests that it is the relative statistical error of the correction

factor itself that controls the additional fluctuations induced by reweighing and

hence the statistical error for a given observable 〈O〉.
As a consequence, we can expect the PHMC algorithm to be found efficient only

in situations where the variance of W is very small. This amounts to choosing

the value of ε to be of the same order as the average lowest eigenvalue of (Q2) and

the value of n to be large enough for the polynomial approximation to (Q2)−1

to be reasonably precise. As we will see below, situations of this kind can be

realized, in practice, by setting ε ≈ 2〈λmin〉 and n such that the fit accuracy

δ ≈ 0.01, see eq.(9). When this criterion is respected and hence the parameters

of the polynomial are fixed, the statistical error on 〈O〉 will only be a function of

Ncorr. In the following we will see which values of Ncorr are sufficient to keep the

error on 〈O〉 small.

A most important quantity in determining the cost of a simulation of a given

algorithm is the autocorrelation time. Since we are using the correction factor

to render the algorithm exact, all observables have to be computed as a ratio

of 〈OW 〉P and 〈W 〉P : hence it is not obvious how to define the autocorrelation

function of O, in terms of which the integrated autocorrelation time τint(O) is

usually defined. We “define” the integrated autocorrelation time for a given

observable O by means of the expression which can be derived in the ordinary

case, when no reweighing occurs:

τint(O) =
1

2

(
σ(O)

σnaive(O)

)2

(24)
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where σnaive(O) denotes the naive and σ(O) the true error on the observable O.

In order to obtain a reliable estimate of the true error on O in all of our tests,

which are discussed below, we have used a single elimination jack-knife procedure.

The jack-knife procedure has been then combined with a binning analysis by

blocking the data into blocks of length Lblock. Our error analysis follows closely

the discussion in [18] (see section 5.2 there).

We have run K replica in parallel and determined the true error in two ways: In

the first approach we average on each replicum separately. Since the averaged

data are statistically independent, we can estimate the true error by looking

at the naive dispersion of them with respect to their arithmetic average. The

relative error on the error in this case can be estimated as (2K)−1/2. In the

second approach, we divide the sample into blocks of size Lblock, so that the total

number of blocks is given by Nblock = KNtraj/Lblock, where Ntraj is the number

of trajectories obtained per replicum. Of course, Lblock is to be constrained by

the requirement that data coming from different replica never appear in the same

block. The error can then be computed as a function of the block length Lblock.

For a large enough block length, a plateau behaviour sets in from which we then

determine the true error. The relative error on the error in this procedure can be

estimated as (2Nblock)
−1/2.

Even when we have determined the true error on an observable as discussed above,

the definition of the naive error on 〈O〉, and consequently the autocorrelation time

τint(O), is not obvious, again due to the occurrence of the reweighing factor W in

the definition of 〈O〉. A possible definition of the naive error on 〈O〉 is given by

the single elimination jack-knife error for a block length of Lblock = 1. We remark

however that the variance of O:

V(O) = 〈O2〉 − 〈O〉2 =
〈O2W 〉P
〈W 〉P − 〈OW 〉2P

〈W 〉2P
(25)

is an observable itself and should hence be independent of a particular algorithm

used to compute it. The above observation suggests another definition of the naive

error on 〈O〉, which is the one adopted in our studies of the PHMC algorithm:

σnaive(O) =
[
(N − 1)−1V(O)

]1/2
. (26)

with N = KNtraj. Note that only for W = 1 both definitions of the naive error

have to agree.
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Figure 1: The integrated autocorrelation time for the plaquette, 2τint(P ), versus

σP (W )/〈W 〉P , for several values of ε: ε = 0.046 (empty hexagones), ε = 0.036

(filled hexagones), ε = 0.026 (empty triangles), ε = 0.016 (filled triangles). For

each value of ε four values of n (8, 12, 16, 20) are considered: the smaller is n,

the larger is the corresponding value of σP (W )/〈W 〉P in the plot.

3.2 Tuning of the PHMC algorithm

In order to investigate on a quantitative level the tuning problem for n, ε and Ncorr,

we have run the PHMC algorithm on a 44 lattice with Schrödinger functional

boundary conditions [20, 21] for a number of choices of n and ε. To be more

specific, we have set ct(g0) = 1 and θ = π/5. At the boundary at time t = 0 the

gauge fields were set to classical fields denoted as point “A” in [20]. Finally, the

gauge fields at time t = T were set to be identical to the one at t = 0. We remark

that since we have chosen the gauge fields to be identical at both time boundaries,

we do not have exactly the same boundary conditions as the ones in [20]. The

simulation parameters were chosen to be csw = 0, β = 6.4 and κ = 0.15. Although

in this situation the average condition number for Q̂2 was only about 60 we still
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Figure 2: The cost of obtaining a statistically independent measurement of the

plaquette, 2τint(P ) ·CQφ is plotted versus σP (W )/〈W 〉P , using the same symbols

as in Fig.1.

find a significant dependence of the simulation cost on the algorithm parameters

such that a sensible tuning can be performed. For each choice of n and ε about

20000 trajectories were generated using a step size of δτ = 0.25 and the number

of molecular dynamics steps Nmd = 4. These parameters were chosen to yield

acceptance rates of about 80%. The values of Ncorr were varied from 1 to 4 or 1 to

10 in these simulations. These values for Ncorr turned out to be sufficient to look

for an optimal value minimizing the computational cost. We will consider here

mainly two observables, the plaquette and the lowest eigenvalue of Q̂2, denoted

by P and λmin, respectively. We mention that we monitored also the largest

eigenvalue of Q̂2 and the reweighing factor itself. Within statistical errors the

average values for all the considered observables agree among all our simulations

with the PHMC algorithm and with the corresponding results obtained from the

HMC algorithm.

We start by showing the integrated autocorrelation time of the plaquette observ-
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able in Fig. 1. As discussed above we expect the cost of a simulation using the

PHMC algorithm to depend strongly on the relative fluctuation of the correction

factor. We therefore plot the integrated autocorrelation time as a function of

σP (W )/〈W 〉P . Here the subscript P (not to be confused with the symbol for

the plaquette) reminds that the mean value and the standard deviation for the

correction factor W do not involve, of course, any reweighing and

σP (W ) =
[
(Nblock − 1)−1(〈W 2〉P − 〈W 〉2P )

]1/2
. (27)

For the figure we have chosen four values of ε (0.046, 0.036, 0.026, 0.016) and

n (8, 12, 16, 20). The smaller n is, the larger is the corresponding value of

σP (W )/〈W 〉P in the plot. For each choice of n and ε, we took the value of Ncorr

that turns out to minimize the quantity 2τint(P )CQΦ (see below). The point at

σP (W )/〈W 〉P = 0 belongs to the integrated autocorrelation time as obtained from

the HMC algorithm. It is clearly seen that when increasing σP (W )/〈W 〉P the

integrated autocorrelation time assumes large value. For σP (W )/〈W 〉P < 0.01,

the dependence of the autocorrelation time becomes weak and no preferred choice

of n and ε can be given.

In Fig. 2 we show the total cost by computing 2τint(P )CQΦ, with the cost factor

CQΦ given in eq.(20), again taking for each n and ε the value of Ncorr that mini-

mizes 2τint(P )CQΦ itself. Here we find that for σP (W )/〈W 〉P ≈ 0.01 one reaches

the minimal cost of the algorithm. We also give, at σP (W )/〈W 〉P = 0, the cost

of a corresponding HMC simulation. As already mentioned in [4] the cost ob-

tained from the PHMC algorithm is significantly lower. On the other hand, for

σP (W )/〈W 〉P > 0.01 the cost from the PHMC algorithm increases, which is a

direct consequence of the increase of the autocorrelation time observed in Fig. 1.

For σP (W )/〈W 〉P � 0.01 we also find an increase of the cost of the simulation.

This is a consequence of the fact that more precise polynomial approximations

have a higher computational cost without giving any sensible reduction of the

autocorrelation time τint(P ) and, correspondingly, of the statistical error σ(P ).

The corresponding results for λmin look qualitatively similar, although with a

somewhat stronger dependence on σP (W )/〈W 〉P . Also in this case we find the

optimal value of σP (W )/〈W 〉P ≈ 0.01.

After having identified the optimal values for n and ε, it is interesting to study the

behaviour of the statistical errors as a function of the values of Ncorr. To this end,
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L3 × T Algor.(Ncorr) < P > < λmin(Q̂
2) >

44 HMC 0.66179(5)[12] 0.01582(3)[8]

44 PHMC(4) 0.66186(5)[12] 0.01582(3)[8]

PHMC(3) 0.66185(5)[12] 0.01583(3)[8]

PHMC(2) 0.66185(5)[12] 0.01583(3)[8]

→ PHMC(1) 0.66185(5)[12] 0.01583(3)[8]

PHMC(0) 0.66221(5)[12] 0.01451(3)[8]

44 PHMC(10) 0.66188(5)[18] 0.01588(3)[16]

PHMC(9) 0.66188(5)[18] 0.01584(3)[16]

PHMC(7) 0.66198(5)[19] 0.01586(3)[17]

PHMC(5) 0.66198(5)[20] 0.01581(3)[17]

→ PHMC(4) 0.66201(5)[22] 0.01584(03)[18]

PHMC(3) 0.66213(5)[23] 0.01575(3)[19]

PHMC(2) 0.66215(5)[28] 0.01569(3)[22]

PHMC(1) 0.66218(5)[36] 0.01553(3)[24]

PHMC(0) 0.66272(5)[16] 0.01218(3)[8]

Table 1: The behaviour of mean values and statistical errors for the plaquette

and the lowest eigenvalue of Q̂2 as a function of Ncorr: data are obtained with

the HMC and the PHMC algorithms. For the latter we have considered the

parameters n = 8, ε = 0.036 (data set with Ncorr ranging from 1 to 10) and

n = 16, (data set with Ncorr ranging from 1 to 4). The statistics has been 21000

trajectories in all cases. We give in round brackets the naive error and in square

brackets our estimate for the true error. An arrow points towards the line where

the value of Ncorr turns out to be basically optimal. The case Ncorr = 0 in the

PHMC data refers to the results obtained with no reweighing.

we have chosen two different values of n and ε. The first one, n = 16 and ε = 0.026

corresponds to σP (W )/〈W 〉P ≈ 0.01 and is therefore considered to be close to

the optimal value. The other choice is n = 8 and ε = 0.036, which gives a value

of σP (W )/〈W 〉P ' 0.032 and is clearly far from being optimal. The mean values

for the plaquette P and eigenvalue λmin as well as the naive (round bracket)

and true (square bracket) errors are given in table 1. The value of Ncorr = 0

corresponds to the case where no reweighing is performed, which is expected to
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yield systematically wrong results. For the non-optimal choice of n and ε we

observe a strong dependence of the statistical errors on Ncorr. The lowest values

of σ are obtained only for Ncorr = 10, i.e. the largest of the considered values of

Ncorr. Even the values of σ corresponding to Ncorr = 10 are still somewhat larger

(especially for λmin) than both the statistical errors for Ncorr = 0 and from the

HMC algorithm. This behaviour closely corresponds to what is expected from the

above discussion about the statistical noise induced by the reweighing procedure.

On the other hand, when considering the optimal choice of n and ε, the statistical

errors from the PHMC algorithm do not show any visible dependence on Ncorr and

basically coincide with the ones from the HMC algorithm. Finally we remark that

in all cases the mean values are consistent among themselves within the measured

statistical errors. Moreover, the naive errors, defined according to eq.(26), are

also consistent among all cases considered here.

The behaviour of the error on the plaquette and λmin was also tested on an 84

lattice for parameter values β = 5.6, κ = 0.1585 ' κc, csw = 0. The Schrödinger

functional boundary conditions that we adopted were chosen to be the same as

for the 44 lattice mentioned above. The only difference is that the boundary

improvement coefficient was set to its 1-loop value, i.e. ct(g0) = 1.0 − 0.089g2
0.

The statistics in this case is 2700 trajectories. We refer to [4] for a more detailed

information about the algorithmic parameters and give our results in table 2.

We compare the results obtained using the PHMC algorithm (in the setup with

K = 32 replica) with the ones obtained using the HMC algorithm. We performed

also a control run for the PHMC algorithm on only 1 replicum running up to the

same statistics of 2700 trajectories. This gave completely consistent results, as

it should, of course, and provided us with a further check of our estimate of the

uncertainty on the true error given in braces in table 2. From table 2 we infer

that in this case the practically optimal value of Ncorr appears to be 2 or 3 and is

hence again reasonably small when a good polynomial approximation is chosen.

The results on the 84 lattice were obtained by taking n = 48 and ε = 0.0026,

yielding a relative fit error δ ' 0.013. This value of δ is even slightly larger

than the relative fit error corresponding to the optimal choice of n and ε on

the lattice 44, when the condition number of Q2 was about 10 times smaller.

This seems to indicate that, even if the statistical fluctuations of the correction

factor are expected to increase with the lattice volume and the condition number
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L3 × T Algor.(Ncorr) < P > < λmin(Q̂
2) >

84 HMC 0.57251(04)[12]{3} 0.001310(10)[51]{8}
84 PHMC(4) 0.57253(5)[14]{3} 0.001318(10)[50]{8}

PHMC(3) 0.57248(5)[14]{3} 0.001318(10)[50]{8}
→ PHMC(2) 0.57249(5)[15]{3} 0.001328(10)[50]{8}

PHMC(1) 0.57260(5)[19]{5} 0.001310(10)[60]{10}
PHMC(0) 0.57272(5)[12]{2} 0.001141(10)[45]{7}

Table 2: The behaviour of mean values and statistical errors for the plaquette and

the lowest eigenvalue of Q̂2 as a function of Ncorr on a 84 lattice. The notation is

the same as in table 1. The numbers in braces give our estimate of the uncertainty

on the true error.

of Q2, it might be unnecessary to take polynomial approximations more and

more severe. This might be explained by the observation that in this case also

autocorrelation times generally increase, leading to a larger number of evaluations

of the correction factor on statistically correlated gauge configurations; in some

cases, moreover, the statistical fluctuations of physical observables increase, too.

However we think that further and much more time-consuming studies are needed

to clarify the issue.

3.3 Exceptional eigenvalues

So far, we have discussed the PHMC algorithm for situations where no excep-

tional eigenvalues of Q2, i.e. those that are orders of magnitude smaller than the

average lowest eigenvalue, appear. However, the PHMC algorithm is designed to

allow especially for the occurrence of gauge field configurations carrying excep-

tionally small eigenvalues of Q2. In fact we expect the probability of generating

such configurations with the PHMC algorithm to be considerably larger than the

corresponding probability when using the HMC algorithm or exact versions of

the multiboson technique with accept/reject step.

This expectation is indeed confirmed in a real simulation, as can be seen from

Fig. 3. There we plot the distribution of the lowest eigenvalue of Q̂2 as obtained

from simulations with the HMC and the PHMC algorithms. The parameters for
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the runs were chosen to be β = 5.4, κ = 0.1379 and csw = 1.7275. The lattice

size was 83 × 16 and Schrödinger functional boundary conditions were adopted

as specified in [18].

Clearly, the distribution obtained from the PHMC algorithm stretches to much

smaller values of λ. However, after reweighing with the correction factor, the

average lowest eigenvalue obtained in this case from the PHMC algorithm takes

a value consistent with the one obtained from the HMC algorithm. In Fig. 4

we show the (Monte Carlo) time evolution of the 10 lowest eigenvalues. We

find that there is a band of eigenvalues at a level roughly corresponding to the

average lowest eigenvalue and that only occasionally an isolated eigenvalue gets

very small3. This is exactly the situation anticipated in ref. [4]. As also discussed

there, if λmin � 1, when computing the correction factor exactly on each gauge

configuration, i.e. taking Ncorr = ∞, W = det[Q2Pn,ε(Q
2)] turns out to be

proportional to λmin. Hence the correction factor serves the purpose of cancelling

divergences in certain quark Green functions. In the following discussion we

neglect the distinction between the operator Q2, which is certainly the relevant

one for quark Green functions, and some preconditioned form of it, which may

be conveniently used in the update and reweighing procedures. Indeed, doing so

does not affect our conclusions and keeps the discussion more general.

In practise the evaluation of the correction factor on gauge configurations carrying

exceptionally small eigenvalues may be problematic, since the badly conditioned

operator Q2Pn,ε(Q
2) has to be inverted and Ncorr is usually taken to be a finite

(relatively small) number.

We see from eq.(18) that the quantity [Q2Pn,ε(Q
2)]−1η is needed for the evalu-

ation of the reweighing factor as described above. The inversion of Q2Pn,ε(Q
2)

is performed by using a CG algorithm, where suitable vectors are multiplied by

Q2Pn,ε(Q
2) several times. As discussed in [24], the multiplication of Q2Pn,ε(Q

2) is

affected by rounding-error effects, which can be kept on a tolerable level in nor-

mal situations. However, on gauge configurations carrying exceptionally small

eigenvalues of Q2, these rounding-error effects might be significantly amplified,

especially for the components of [Q2Pn,ε(Q
2)]−1η having non-vanishing projection

on the low lying mode eigenvectors.

3In some rare cases we have observed that the same happens for two or three eigenvalues.

21



Figure 3: The distributions of the lowest eigenvalue λmin of Q̂2 as obtained from

the HMC and the PHMC algorithms. The quantity P (λmin) denotes the number

of eigenvalues for a given bin, normalized by the total number of eigenvalues.

Both runs have the same statistics.
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Figure 4: The Monte Carlo time evolution of the five lowest eigenvalues from

a simulation using the PHMC algorithm. We denote by the stars the lowest

eigenvalue and for the open circles the remaining ones.
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In order to see the potential problems arising from taking a finite value of Ncorr,

let us introduce the eigenvalues λj and eigenvectors |λj〉 of Q2,

Q2|λj〉 = λj|λj〉 . (28)

Then the correction factor W = exp(w[η, U ]) of eq.(18) becomes

w[η, U ] =
∑
j

|〈λj|η〉|2Rn,ε(λj)(1 + Rn,ε(λj))
−1 . (29)

Since Rn,ε(λ) → −1 as λ → 0, all random fields η that have a sizeable projection

on the low–lying modes of Q2 yield very large negative values of w and hence

exponentially small values of W are obtained. The dominant contributions to the

correction factor will come when the projection of the fields η on the exceptional

modes is almost zero. In practise the correction factor is evaluated stochastically

by setting Ncorr to a small value and taking for the correction factor on a given

gauge configuration U the following noisy estimate:

W [U ; Ncorr] = N−1
corr

Ncorr∑
j=1

W [ηj, U ] . (30)

It is, of course, very unlikely that a field η with almost vanishing projection on

the zero mode will be generated. As a consequence, the noisy estimate of the

reweighing factor obtained on a gauge configuration carrying low–lying modes of

Q2 is likely to be very imprecise. On the other hand, an exact evaluation of the

reweighing factor of eq.(30) with Ncorr = ∞ will give that W ∝ λmin as desired.

The above discussion makes it clear that the computation of the correction factor,

as explained above for “normal” situations, should be generalized to deal with

the case where exceptional eigenvalues occur. To this end we introduce another

infrared cut-off parameter ε̃ � ε and write the partition function as

Z =
∫
DUDφ†DφDη†Dη WBWIR e−(Sg+SP +Sη)

SP = SP [U, φ] = φ†Pn,ε(Q
2[U ])φ

Sη = η†η (31)

where now the original correction factor W is split into two parts, an “infrared”

part,

WIR =
∏

λj≤ε̃

[1 + Rn,ε(λj)] (32)
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and a “bulk” part

WB[η, U ] = exp
{
η†⊥[Rn,ε · (Q2 · Pn,ε)

−1]η⊥
}

, (33)

where

|η⊥〉 = |η〉 −∑
j

θ(ε̃− λj)|λj〉〈λj|η〉 . (34)

The infrared part of the correction factor WIR is very much in the spirit of ref.[7],

where also the underlying assumption was taken that only a few isolated small

eigenvalues occur. Exact observables are now computed through

〈O〉 = 〈WBWIR〉−1
P 〈OWBWIR〉P . (35)

In order to guarantee the exactness of the simulation algorithm, ε̃ has to be

fixed in a given simulation. We give in appendix A a derivation of eq.(33) which

explicitly shows how the splitting of the original correction factor W into WB and

WIR is fully determined a priori by the choice of ε̃. Of course, when no eigenvalues

smaller than ε̃ occur, WIR = 1 and it has not to be computed. In the case that

such eigenvalues occur, the two correction factors WB and WIR can be computed

by evaluating all eigenvalues λj ≤ ε̃ and the corresponding eigenvectors.

Obviously, WB in eq.(33) receives no contribution from the low-lying modes (λj ≤
ε̃) of Q2. This property of WB justifies the expectation that a noisy reweighing

with WB in eq.(35) can be performed by choosing a small, finite value for the

number of η-field “updates” NB. From this point of view, the statistical noise

induced by reweighing with WB is expected to be quantitatively very similar to

the one induced in “normal” situations by the reweighing factor W , eq.(5) and

the values for NB should in practise be similar to the values usually chosen for

Ncorr.

We have tested the modified correction factor in practise by taking a gauge config-

uration carrying a mode of Q2 with an exceptionally low eigenvalue (about 3 ·106

times smaller than the highest one). Indeed, the estimate of det[Q2Pn,ε(Q
2)] ob-

tained from the original reweighing factor W is very imprecise and converges very

slowly to the correct value when increasing Ncorr. As a consequence one finds a

large variance of W as a function of η. On the other hand, the improved estimate

of W [U ] given by WIR[U ]WB [U ; NB], where

WB[U ; NB] = N−1
B

NB∑
j=1

WB[ηj , U ] (36)
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and ε̃ = ε/10, is much less noisy already for pretty small values of NB. In fact,

the fluctuations are fully analogous to the case when no exceptional eigenval-

ues are present. More quantitative information on this point will be given in a

forthcoming publication [19].

We remark that the problem of inverting the operator Q2Pn,ε(Q
2) in the sub-

space orthogonal to the one spanned by the low–lying modes of Q2 is always well

conditioned, even in the presence of an exact zero mode. The evaluation of η⊥
can be done by computing all the eigenvectors of Q2 corresponding to eigenvalues

smaller than ε̃. Since, as shown in Fig.1, there are usually only a few isolated

eigenvalues below ε̃, these eigenvalues and the corresponding eigenvectors can be

calculated reliably by using the techniques described in [29].

The level of precision needed in computing the low-lying eigenvalues and the cor-

responding eigenvectors of Q2 is determined by requiring that the uncertainties in

WIR and WB, induced by the uncertainties on these eigenvalues and eigenvectors,

be negligible (with respect to the statistical fluctuations of WIR and WB). Using

the fact that Rn,ε(λ) ' −1 + cλ, with c = O(ε−1), the relative uncertainty on

each factor in the product of eq.(32) can be estimated (for λ � 1) as

[1 + Rn,ε(λ)]−1δ[1 + Rn,ε(λ)] ' λ−1δλ , (37)

where δλ denotes the uncertainty on a given eigenvalue λ. On the other hand, the

uncertainties in the determination of the eigenvectors corresponding to eigenval-

ues smaller than ε̃ directly affect the evaluation of |η⊥〉, eq.(34), and hence WB,

eq.(33).

The discussion above makes very straightforward the software implementation of

the proposed reweighing procedure: once a value for ε̃ has been set, the program

has just to check on each generated gauge configuration whether the lowest eigen-

value of Q2 is smaller than ε̃. Only in the affirmative case, of course, does the

correction factor WBWIR actually differ from the usual one and an evaluation of

WIR is required.

It might be observed that, if the PHMC update ever generates gauge configura-

tions with a significant fraction of the modes of Q2 belonging to very low eigen-

values, the above described reweighing procedure becomes computationally very

expensive. This is certainly true, but in that case troubles are also expected in the

evaluation of quark propagators by ordinary CG–like inverters. Indeed, it is likely
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that in such a situation a relatively precise knowledge of all the low–lying modes

is needed even for evaluating the fermion Green functions. This can be done by

splitting each quark propagator into two parts: the first part, to which only the

low-lying modes contribute, should be expressed in terms of the known eigenval-

ues and eigenvectors; the second part, to which no low-lying modes contribute,

should be evaluated by inverting the operator Q in the subspace orthogonal to

the one spanned by the low–lying modes of Q2.

4 Rounding errors in the PHMC algorithm

Rounding errors may become in principle a problem for all simulation algorithms.

Each algorithm is designed to produce field configurations according to a prob-

ability distribution, related to the Boltzmann factor of a given Euclidean field

theory. The danger is that when implementing a code for some finite precision

computer, rounding errors may render the probability distribution of the actually

produced field configurations somewhat different from the desired one. In par-

ticular, when using molecular dynamics kind of algorithms like the HMC or the

PHMC algorithms, the equations of motion, integrated numerically by a symplec-

tic integrator, lack in principle the reversibility condition, resulting in an inexact

algorithm. It is still an open question for what situations this systematic error of

the molecular dynamics kinds of algorithm will become important in practise.

The problem of rounding errors ought to be studied especially for the PHMC

algorithm. As the discussion in section 2.2 showed, for an efficient computation

of δSP in the PHMC algorithm, the product representation of the polynomial

Pn,ε should be used. However, the stability of the numerical construction of

the polynomial in the product representation depends strongly on the ordering

of the monomial factors in eq. (7). Particularly “bad” orderings easily lead to

substantial precision losses or even numerical overflow. As demonstrated in [24]

(see also [30]), there exist, fortunately, orderings of the monomial factors (or

equivalently the roots of the polynomial) such that rounding errors can be kept

on a perfectly tolerable level.

Still, the rounding errors appearing for a particular ordering scheme applied in a

given situation should be monitored carefully. In the generation of the pseudo-
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fermion fields φ one could in principle resort to numerically stable recursion re-

lations. However, as discussed above, it is very easy to monitor the rounding

errors in this case by evaluating the difference of eq.(14). In the evaluation of the

correction factor, on the other hand, it is in general advisable to use a recursion

relation [27, 28] in order to obtain a sufficiently precise result. In the following

we will first discuss the rounding-error effects appearing in the construction of

Q2Pn,ε(Q
2): this is the polynomial of highest degree among the ones which occur

in the PHMC update and all the different polynomials of lower degree are nu-

merically constructed by using the same ordering of monomial factors. We then

turn to a discussion of the magnitude of reversibility violations.

4.1 Rounding errors from the product representation

As shown in [24], the Clenshaw recursion relation provides a very stable and

precise way to evaluate the polynomial Q2Pn,ε(Q
2) = 1 + Rn,ε(Q

2), even when 32

bit precision is employed everywhere, but in internal products and other sums

over the whole lattice. This gives us the possibility of evaluating the size of the

rounding errors when the polynomial Q2Pn,ε(Q
2) is constructed in its product

representation, eq. (7). Following [24] we consider the vector

Φorder ≡ Q̂
√

cn(Q̂− rn) · . . . · √c1(Q̂− r1)Q̂RG (38)

where we have taken the preconditioned matrix Q̂ as it was used in all our nu-

merical tests. The label “order” can stand for a particular monomial ordering

scheme. In the following we will only discuss the bit reversal and Montvay’s

schemes, which were found in [24] to be the most precise. We refer again to [24]

for a definition of the ordering schemes employed here. Given the numerical sta-

bility of the Clenshaw recursion, a good measure of rounding errors, when only

32 bit precision is employed, is the quantity

∆order =
1√
N
‖Φorder − ΦClenshaw‖ . (39)

In table 3 we give the results for ∆order for the bit reversal and Montvay’s ordering

schemes. All results have been obtained on an 83 × 16 lattice with Schrödinger

functional boundary conditions as used for the computation for the O(a) improved
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Table 3: The quantity ∆order eq. (39) is given for the bit reversal (BR) and

Montvay’s ordering schemes.

n ε δ ∆BR ∆Montvay

16 0.0030 0.310 3.1(1)10−6 3.0(1) · 10−6

32 0.0030 0.054 3.3(1)10−6 3.0(1) · 10−6

64 0.0022 0.0045 4.5(1)10−6 4.2(1) · 10−6

100 0.0022 0.0002 8.4(2)10−6 6.4(2) · 10−6

100 0.0010 0.0034 9.0(2)10−6 6.4(2) · 10−6

100 0.0005 0.0218 10.8(2)10−6 7.8(2) · 10−6

action [18]. The parameters of the runs were β = 6.8, κ = 0.1343 and csw =

1.42511.

We have chosen the constants ck, eq.(7), to be all identical. Choosing the ck’s

different from each other (while keeping fixed their product which guarantees

the proper normalization of Pn,ε ), changes the results in table 3 at most at

the 10% level. The results of table 3 are qualitatively very similar to the ones

reported in [24]. They show a growth of rounding errors in the construction of the

polynomial Pn,ε as n and ε−1 increase (see the behaviour for n = 100). However,

the magnitude of rounding errors for the cases considered in table 3 are perfectly

tolerable. In particular, no evidence for numerical instabilities or large rounding

error effects has been observed. Since all our simulations are performed using

either the bit reversal or Montvay’s ordering schemes for a range of values of

n and ε covered by the ones given in table 3, we conclude that our numerical

simulations are safe against rounding errors coming from the use of the product

representation for the polynomial Pn,ε.

4.2 Reversibility violations

For the purposes of this section, the evolution of the gauge field in the molecu-

lar dynamics part of the PHMC algorithm can be summarized as follows: some

initial field configuration of the gauge fields Ux,µ and their conjugate momenta

πx,µ, {Uin, πin}, is evolved from a fictitious Monte Carlo time t = 0 to the final
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configuration {Uend, πend} at t = T , with T usually set to T = 1 in production

runs. This evolution is determined by the “equations of motion”, derived from a

Hamiltonian H = 1
2

∑
x,µ π2

x,µ + S, where S is the total action. At t = T , the con-

figuration {Uend, πend} is subject to an accept/reject step using the values of the

Hamiltonians Hin and Hend, as measured on the initial and final configurations,

respectively.

We recall that in evolving the gauge field configuration in the Monte Carlo time

a great flexibility is allowed. The imposed restrictions are –from a practical point

of view– that the acceptance rate determined by Hend−Hin should be reasonably

large, about 80%, and –from a principal point of view– that the evolution in the

Monte Carlo time ought to be reversible in order to guarantee detailed balance

and consequently the correct importance sampling.

The method of choice for the Monte Carlo time evolution is to evolve the sys-

tem with the equations of motion using a leap-frog integrator. It was found, in

particular when machines with only 32-bit precision arithmetic are used, that

due to rounding errors, violations of the reversibility condition are encountered.

What is worse, it appears that the equations of motion correspond to those of a

classical chaotic system with a positive Liapunov exponent [31, 32, 33, 34, 35].

As a consequence, rounding error effects are exponentially amplified along the

integration of the equations of motion.

Using a leap-frog integrator –in particular on an APE machine with 32-bit arith-

metic as in this work– needs therefore an estimate of violations of reversibility. As

it was discussed at length in [24], in the PHMC algorithm some orderings of the

monomial factors in the product representation can lead to large rounding-errors

effects with a possible strong influence on reversibility violations. We therefore

checked the magnitude of the reversibility violations when using the subpolyno-

mial, the bit reversal and Montvay’s ordering schemes as described in [24]. These

tests were performed with the same parameters as in Section 4.1. In particular,

the polynomial parameters were chosen to be n = 64 and ε = 0.0022.

To measure the reversibility violations, we simply started from the final config-

uration {Uend, πend}, reversed the sign of the step size dt and integrated back to

reach the reversed configuration {Urev, πrev}. In all our tests we used the higher

order leap-frog integrator as suggested in [36] (i.e. eq.(6.7) of that reference with

n = 4). Our step size was chosen to be dt = 0.05 for both the forward and the
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backward integration and the value of the trajectory length was T = 0.75. On

the initial and the reversed configurations we measured the corresponding Hamil-

tonians Hin and Hrev and the plaquettes Pin and Prev averaged over the gauge

configuration. The difference of these quantities, dH , dP and the norm difference

dU of the gauge links

‖dU‖2 = ‖Uin − Urev‖2 =
1

36V

∑
x,µ,α,β

|Ux,µ,α,β
in − Ux,µ,α,β

rev |2

dH = |Hin −Hrev|
dP = |Pin − Prev| (40)

serve as our quantitative measure of the reversibility violations. In eq.(40) the sum

extends over the lattice points, the 4 forward directions and the colour indices.

Table 4: Reversibility violations for the PHMC and HMC algorithms, comparing

different root orderings for the PHMC algorithm, subpolynomial (SP), bit reversal

(BR) and Montvay’s ordering scheme. BR∗ indicates that the roots are calculated

in 64-bit arithmetic.

Scheme 〈‖dU‖〉 〈dH〉
SP 9.45(1) · 10−6 2.1(2) · 10−2

BR 1.293(1) · 10−6 4.0(9) · 10−3

BR∗ 1.292(1) · 10−6 2.8(8) · 10−3

Montvay 1.277(1) · 10−6 3.4(9) · 10−3

HMC 6.7(2) · 10−7 1.4(6) · 10−3

Our results, averaged over 32 configurations are given in table 4 for the subpoly-

nomial (SP), the bit reversal (BR) and Montvay’s ordering scheme. We compare

with the corresponding results from the HMC algorithm, using there the same

number of steps and an equal step size as used in the case of the PHMC algorithm.

For the HMC algorithm, in the Conjugate Gradient solver we have chosen a stop-

ping criterion requiring that the squared norm of the residual vector, normalized

by the solution vector, be less than εHMC
stop = 10−14.

One clearly sees that the subpolynomial scheme gives substantially more re-

versibility violations than the one encountered in the HMC algorithm. Within
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the errors, the size of the reversibility violations from the PHMC algorithm with

the bit reversal and Montvay’s scheme are of the same order as the ones from the

HMC algorithm. We also considered the bit reversal ordering in the case, denoted

as BR∗, when the roots and the normalization factors are computed with 64-bit

precision and then read in. Within the errors we do not find any effect. In our

tests we could find no difference in the plaquette expectation value. We conclude

that our results are not contaminated from reversibility violation effects.

As mentioned above, there is a lot of flexibility to perform the evolution of the

gauge field configuration in Monte Carlo time in the molecular dynamics part of

the HMC algorithm. The PHMC algorithm establishes an approximation of the

exact evolution. The crucial advantage of the PHMC algorithm is, of course, that

this approximation is fully controlled and can be corrected for. Another possi-

bility of approximating the Monte Carlo time evolution is to just use a larger

stopping criterion for the inverter of Q̂2. However, we think that the reversibil-

ity violations, which are certainly present, may then become dangerous: due to

rounding errors, when integrating the gauge fields backward in time, the inverter

“sees” a different gauge field configuration from the one during the forward in-

tegration. Therefore also the solution vectors will be different and when the

stopping criterion is relaxed, this difference is enhanced, possibly leading to large

reversibility violations.

This effect is amplified when one makes use of the “knowledge of the past”: the

inverter is started with an initial guess, which is the solution of the previous

inversion. This reduces the number of iterations in the inverter, since generally

the movement of the gauge fields through configuration space is smooth. The

idea may also be iterated [33]. However, in this way potential rounding errors are

amplified, since they are accumulated in the solution vectors.

A possible solution may be to choose always a constant starting vector. Then

reversibility violations only appear through the difference in the gauge field config-

uration. We tested this possibility for our implementation of the HMC algorithm

and report our results in table 5. A similar investigation has been performed in

[34]. Here we have taken the same parameters as used for table 4, averaging again

over 32 configurations.

As can be seen, already for a stopping criterion of 10−10 the reversibility violations

are substantially larger than for the severe stopping criterion, showing even a
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Table 5: Comparison of reversibility violations in the HMC algorithm using a

constant starting vector in the Conjugate Gradient solver.

εHMC
stop 〈‖dU‖〉 〈dH〉 〈dP 〉

1.0 · 10−14 6.58(1) · 10−7 1.1(6) · 10−3 −−
1.0 · 10−12 8.5(1) · 10−7 1.8(7) · 10−3 −−
1.0 · 10−10 2.6(4) · 10−6 7.8(1.8) · 10−3 6(3) · 10−8

1.0 · 10−8 4.7(3) · 10−5 2.0(3) · 10−1 6(1) · 10−7

difference in the expectation value of the plaquette. We conclude that on machines

with 32-bit precision arithmetic the stopping criterion can not be relaxed too

much. Since with a constant starting vector we loose the advantage of having

a reasonable first guess for the solution of the inverter, we prefer using a severe

stopping criterion and a better initial guess over relaxing the stopping criterion

and using a constant starting vector. Of course, the situation might look different

on machines with higher precision, where reversibility violations are suppressed.

We would like to point out a second effect relevant for reversibility violations.

When the stopping criterion is made large, it might happen that during the

backward integration the inverter stops one iteration before or later than on the

corresponding step in the forward integration. Since now the stopping criterion

is large, the solution vectors are very different, leading to large reversibility vi-

olations. The only way to overcome this would be to also keep the number of

iterations constant. However, we feel that with this way of accelerating the algo-

rithm the convergence of the inverter is not very well controlled, but we have not

studied this situation in detail and we do not know how a possible poor conver-

gence may affect the acceptance of the whole molecular dynamics trajectory.

5 Memory requirements

In this section we wish to discuss three possible ways of reducing memory re-

quirements. The first two ways (sections 5.1 and 5.2) result in some reasonably

tolerable computational overhead. The last way (section 5.3) was already shortly
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mentioned in [4] but it leads to a significant alteration of the dynamics.

Once again, we neglect in our discussion the technical complications arising

from the use of even–odd preconditioning, which can however be treated as in

any HMC–like algorithm. We recall here that the pseudofermion fields φ and

χk, k = 1, 2, . . ., which will enter our discussion, are assigned to arrays defined

on all lattice sites. Indeed, even if only the odd–site components are needed in

principle, we have found it convenient to make use of the even–site components

to store intermediate results in the construction of the operator Q̂ (see eq.(35) of

[24]), which connects second neighbour sites on the original lattice.

5.1 PHMC update with (Q2 − zk) monomials

It is, of course, possible to implement the PHMC algorithm by using also the

product representation

Pn,ε(Q
2) =

n∏
k=1

[ck(Q
2 − zk)] (41)

with the roots zk given in eq.(8). The variation of the action SP then becomes

δSP =
n/2∑
k=1

ck

[
δQ2 ξk−1 ⊗ ξ†n−k + δQ2 ξn−k ⊗ ξ†k−1

]
, (42)

where the auxiliary pseudofermion fields ξk, for k = 1, . . . , n− 1 are given by

ξk ≡ [ck(Q
2 − zk)] · [ck−1(Q

2 − zk−1)] · . . . · [c1(Q
2 − z1)]φ . (43)

Following the discussion in section 2.2, the evaluation of δSP in eq. (42) implies

a memory requirement of only (n/2) + 2 pseudofermion fields, which means a

reduction of basically a factor 2.

However, if one insists on using only (n/2) + 2 pseudofermion fields, it seems

impossible to avoid an overhead on the computational cost. In evaluating δSP

in eq.(42) one needs, analogously to the case discussed in Section 2.2, 3n Qφ op-

erations. There appear, however, additional n/2 Qφ operations for the following

reason. When storing only the fields ξ1, . . . , ξn/2 before starting the computation

of δSP , one is “loosing” the information about the vectors Qξ1, . . . , Qξn/2−1, which

have already been calculated as intermediate steps in the evaluation of the aux-

iliary fields ξ1, . . . , ξn/2. This information is needed since δQ2 = [δQ] Q + Q [δQ].
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A similar problem with the vectors Qξl for l = n/2, . . . , n−1 can be avoided by a

prudent usage of memory space associated with the vectors ξl. As a consequence,

with respect to the method described in Section 2.2, when using the product

representation of eq.(41), the memory requirements are basically halved at the

price of an increase of the computational cost of δSP , which can be estimated to

be about 15–20%.

5.2 Flexible trading between memory requirement and

CPU time

It is clear that in implementing the evaluation of δSP , eq.(10), one can trade off

CPU time with memory space in different ways. We sketch here the basic idea

of a flexible method for compromising between memory and CPU time, which

we have found very convenient in practical simulations. For simplicity we take

the example of a polynomial, Pn,ε(Q
2), eq.(7), with n = 100 and consider a non-

optimized version of the method that we use in practice. A fully general and very

detailed technical discussion of this method and its performance is deferred to

Appendix B.

A significant fraction of the memory is usually taken to store the gauge links,

their conjugate momenta, some pseudofermion vectors, as needed for the fermion

matrix inversion, and the dynamical pseudofermion field, φ, extracted from a

probability distribution ∝ exp [−φ†Pn,ε(Q
2)φ]. Let us imagine to divide the re-

maining storage space (assumed to be much less than what is needed for storing

n = 100 pseudofermion vectors) into three sectors. In this particular case, with

n = 100, the first and the second sector will contain 9 and the third sector only

2 pseudofermion vectors. It is clear that the third sector can be used as working

space for fermion matrix times vector multiplications, where neither the initial

vector nor the final one need to be stored elsewhere.

We have already observed in Section 2.2 that the variation δSP , eq.(10), of the

pseudofermion action SP , is a sum of n terms. Each term depends only on two

auxiliary fields, χj−1, χ2n−j (and their complex conjugates), where j is the index

over which the sum runs and the auxiliary vectors χk are defined in eq.(11). For

the evaluation of δSP one can then proceed as follows.

In a preliminary step, starting from φ, we construct the auxiliary vectors χ1, χ2,
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. . . , χ89, χ90, and store only 9 vectors, namely χ10, χ20, . . . , χ80, χ90, in the part

of the memory that we have indicated above as the first sector.

Then, in a first step, starting from the saved vector χ90, we construct the auxiliary

vectors χ91, χ92, . . . , χ98, χ99 and store all of them in the second sector. We are

now in position to evaluate the first ten contributions to δSP , namely the ones

corresponding to j = 100, 99, . . . , 91 in eq.(10). The point is that fermion matrix

times vector multiplications can be performed in such a way that the third sector

is employed to store in turn first χ100 and χ101, then χ101 and χ102, and so on, up

to χ108 and χ109.

In the second step, starting from the saved vector χ80, we construct the auxiliary

vectors χ81, χ82, . . . , χ88, χ89 and store all of them in the second sector. We are

now in position to evaluate further ten contributions to δSP , namely the ones

corresponding to j = 90, 89, . . . , 81 in eq.(10), making use of the third sector to

temporarily store the various pairs of auxiliary vectors between χ110 and χ119, as

explained above.

Proceeding in an analogous way, we can evaluate in ten steps all the contri-

butions to δSP . Notice that in each of these steps, except the first one, nine

pseudofermion vectors, which had been computed and immediately overwritten

during the preliminary step mentioned above, are computed again. This leads to

a global computational cost, which is equivalent to about 390 Qφ operations, to

be compared with the cost of about 300 Qφ operations needed for the method

discussed in section 2.2 (for a single evaluation of δSP ). This increase of the com-

putational cost is just the price to be paid for evaluating δSP in the case n = 100

by using only 20 (instead of 100) auxiliary pseudofermion vectors. A similar re-

sult, with somewhat better compromise between memory and CPU time, is found

for any value of the degree n of the PHMC polynomial when using the generalized

version of this method which is described in Appendix B.

Let us conclude with a general remark about the well-known problem of large

memory requirements, which is in principle common to all algorithms for dynam-

ical fermions relying on a polynomial approximation of some negative power of

the Dirac operator. The method presented in this section clearly shows that this

problem, even for a polynomial of very high degree n, is in practice much less

severe for the PHMC algorithm than for the multiboson algorithm. This is a

consequence of the fact that the number of dynamical pseudofermion fields is n
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in the multiboson algorithm and only one in the PHMC. This allows in the latter

case for a balance between the conflicting requirements of minimizing the number

of auxiliary pseudofermion fields and maximizing the computational efficiency.

5.3 Introducing more pseudofermion fields

The last method of reducing memory requirements that we have studied amounts

to introducing more pseudofermion fields and distributing the monomial factors

of the polynomial Pn,ε(Q
2) among them. Let us consider the action

S
(m)
P = S

(m)
P [φ, U ] =

m∑
i=1

φ†ip
(i)
n,ε;m(Q)φi . (44)

In eq.(44) we have introduced m positive definite subpolynomials p(i)
n,ε;m(Q) each

of degree 2n/m such that their product yields Pn,ε(Q
2). In this way, one has to

have memory space for only m + n/m pseudofermion fields in practise and hence

would significantly reduce the memory requirements.

However, it is clear already at this stage that by changing m the dynamics of the

algorithm will change: for m = 1 we recover our PHMC algorithm. For m = n we

are in the case of the original multiboson algorithm and would have an increase of

the autocorrelation time with n. It might be hoped, however, that by choosing m

small enough, the dynamics is not changed too much and that in this way again

a reduction of memory requirements can be achieved.

It should be emphasized that when using the action eq.(44) special care has to be

taken for the ordering of the roots in order not to generate unwanted effects that

come purely from rounding errors. Without going into detail here, we note that

by using e.g. the bit-reversal scheme, a suitable ordering of the roots avoiding

rounding-error effects can be obtained. In addition, we checked that by running

the program with 64-bit precision our results, quoted below, did not change.

We have done several tests for different choices of m in the range m ∈ [2, 10].

We report our results obtained in the SU(2) gauge theory with two flavours of

dynamical Wilson fermions. We set csw = 0 and take a lattice of size 83 × 16

with periodic boundary conditions. We have considered two choices of the bare

parameters, β = 2.12, κ = 0.15 and β = 1.75, κ = 0.165, using the subpolynomial

and the bit-reversal ordering schemes of monomial factors.
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The effects for different choices of m should most clearly appear in the Hamilto-

nian

H =
1

2

∑
x,µ

3∑
c=1

(πc
µ(x))2 + Sg[U ] + S

(m)
P [φ, U ] , (45)

used in the molecular dynamics part of the PHMC algorithm. In eq.(45) πµ

denote the momenta conjugate to the gauge fields. We monitored the differences

between the initial and final Hamiltonians in a molecular dynamics trajectory. For

all parameters considered in table 6 we always started from the same thermalized

gauge field configuration and kept the step size dt = 0.04 and the number of steps

Nstep = 10 fixed.

In table 6 we give our results for the differences of the initial and final Hamilto-

nians Hend−Hin, of the gauge links ‖Uend−Uin‖ and of their conjugate momenta

(‖πend − πin‖), as measured at the beginning and at the end of a trajectory. The

definition of ‖Uend−Uin‖2 is analogous to the definition of ‖Uin−Urev‖2, eq.(40),

with a normalisation factor of (16V )−1 because the gauge group is now SU(2).

Finally, we define

‖πend − πin‖2 =
1

12V

∑
x,µ,c

|(πc
µ(x))end − (πc

µ(x))in|2 . (46)

Table 6: The differences of the initial and final values of the Hamiltonian, the

momenta and the gauge links. Results are obtained on a 83 × 16 lattice at

β = 1.75, κ = 0.165, in the SU(2) gauge theory.

n ε (m, order) Hend −Hin ‖πend − πin‖2 ‖Uend − Uin‖2

64 0.0015 (1, BR) 0.63 0.301 0.0657

64 0.0015 (1, SP) 0.63 0.301 0.0657

64 0.0015 (8, BR) 28.1 1.170 0.0357

64 0.0015 (8, SP) 40.9 1.158 0.0354

64 0.0005 (1, BR) 1.33 0.310 0.0655

64 0.0005 (8, BR) 101 0.856 0.0222

As the results shown in table 6 indicate, the behaviour of the molecular dynamics

part of the algorithm looks such that in the case with m = 8 one typically gets

larger time discretisation effects. This is clearly seen by the values of Hend−Hin.
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At the same time, the difference in the momenta ‖πend − πin‖ becomes larger,

too, while the difference in the gauge links ‖Uend − Uin‖ becomes smaller than

in the case m = 1. This might be explained by the fact that the gauge links

are always normalized to SU(2) matrices and that they counteract the behaviour

of the momenta to render the difference Hend − Hin small. The results depend

also on the distribution of the monomial factors among the subpolynomials p(i)
n,ε;m,

eq.(44), as the comparison between the bit-reversal and the subpolynomial cases

shows. When reducing the value of ε we again find even more different results, as

shown by the last two lines of table 6. Tests performed with gauge group SU(3)

and Schrödinger functional boundary conditions revealed a similar qualitative

behaviour.

We conclude that, in order to get a reasonable acceptance rate in the cases with

m > 1, one is forced to reduce the value of dt substantially, resulting in a higher

cost of a simulation. It seems to us that the case m = 1, i.e. the PHMC algorithm

is most efficient. Of course, we cannot exclude that there are other possibilities

of choosing subpolynomials that give a reduction of memory requirements and

do not worsen the dynamical behaviour of the algorithm. On the other hand, the

solution to the problem of memory requirement discussed in section 5.2 appears

to be already satisfactory.

6 Conclusions

We gave in this paper a detailed description of the PHMC algorithm, which relies

on a combination of the HMC algorithm and the multiboson technique to simulate

dynamical fermions [5, 4]. We discussed the computational cost of the algorithm,

checked that rounding-error effects that can appear are under control and showed

possible ways to reduce memory requirements.

The effects of the correction factor that is introduced to render the algorithm

exact, was studied in detail. Special emphasis was put on the fact that the

PHMC algorithm samples the configuration space very differently compared to

the most commonly used HMC algorithm. In particular, some evidence was given

that the region of gauge configuration space characterized by the presence of low

lying modes of Q2 is explored much better when using the PHMC algorithm.
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Of course, it is important to compare the performance of the PHMC algorithm

with the one of the HMC algorithm. The work presented here lays the ground

for such an investigation of the performance of the PHMC algorithm on which

we will report in a separate publication [19]. There we will also show further

evidence that the PHMC algorithm samples configuration space differently from

the HMC algorithm and discuss consequences for physical observables.

Acknowledgements

This work is part of the ALPHA collaboration research programme. We are most

grateful to S. Aoki, B. Bunk, R. Sommer, P.Weisz and U. Wolff for many useful

discussions and helpful comments. In particular we thank U. Wolff for a critical
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A Derivation of eq.(33)

We start again from the nf = 2 lattice QCD partition function, eq.(31):

Z =
∫
DUDφ†DφDη†Dη WB[η, U ]WIR[U ] e−(Sg+SP +Sη)

SP = SP [U, φ] = φ†Pn,ε(Q
2[U ])φ

Sη = η†η . (47)

The splitting of the original correction factor W into two parts, an “infrared”

part,

WIR[U ] =
∏

λj≤ε̃

[1 + Rn,ε(λj)] = det(Ln,ε,ε̃[U ]) , (48)

and a “bulk” part,

WB[η, U ] = exp
{
η†[1− Ln,ε,ε̃ · (Q2 · Pn,ε)

−1]η
}

, (49)

follows in a natural, unbiased way from the introduction of an operator which

acts on pseudofermion fields and depends on ε̃, n, ε and the gauge configuration

U :

L = Ln,ε,ε̃[U ] = 1 +
∑
j

|λj〉〈λj|Rn,ε(λj)θ(ε̃− λj) . (50)
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Since the index j runs over all the eigenvalues of Q2, the operator L, which can be

diagonalised simultaneously with Q2, has eigenvalues given by 1+Rn,ε(λj) for the

modes of Q2 with λj ≤ ε̃ and by 1 otherwise. Due to the properties of the relative

fit error function Rn,ε(λ) = λPn,ε(λ)−1, the operator L is Hermitean and strictly

positive, if all the λj’s are strictly positive: a zero mode of L appears only in one–

to–one correspondence with a zero mode of Q2. In particular, the operator L has

exactly the same infrared behaviour as the operator Q2Pn,ε(Q
2) = 1+Rn,ε(Q

2), if

modes with λj ≤ ε̃ are present. However, because of the θ functions appearing in

its definition, L is not a smooth functional of the (lattice) gauge field, in contrast

with the operator Q2Pn,ε(Q
2).

It is then straightforward to show that eq.(49) can be rewritten in the form of

eq.(33) by introducing the pseudofermion field vector |η⊥〉 as in eq.(34).

B Optimizing memory requirements

We present here a general and flexible method for some optimal trading of CPU

time with memory requirement in the implementation of the PHMC algorithm,

which turns out to be very convenient in practical simulations.

Suppose that we wish to use the PHMC algorithm with the polynomial Pn,ε(Q
2),

eq.(7), where only the degree n is relevant for the present discussion, following the

implementation described in Section 2.2. Suppose also that the lattice size and

the memory capacity of our computer are such that, in addition to gauge fields,

their conjugate momenta and other working arrays, only N + 1 pseudofermion

fields can be stored. One of these must necessarily be the “dynamical” field φ

extracted from the probability distribution exp [−φ†Pn,ε(Q
2)φ]: so we are left

with the possibility of using at most N auxiliary pseudofermion fields during

the evaluation of δSP , eq.(10). Since for N ≥ n it is possible to use the method

described in Section 2.2, we consider here only the case N < n, which corresponds

to the situation of a relatively small storage capacity.

We have already observed in Section 2.2 that the variation δSP , eq.(10), of the

pseudofermion action SP , is a sum of n terms. Each term depends only on two

auxiliary fields, χj−1, χ2n−j (and their complex conjugates), where j is the index

over which the sum runs. We remark that in evaluating δSP it is convenient to
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compute first the term in the sum with j = n, then the one with j = n − 1,

etc., down to the last with j = 1. Indeed, in this way, the auxiliary fields χl,

with l ≥ n are required in the following, natural order: first χn, then χn+1, etc.,

up to χ2n−1. Given this situation, the basic idea of our method is to divide the

available storage space for N auxiliary pseudofermion fields into three parts:

• (a) A fixed storage part, where only M of the auxiliary fields χ1, . . . , χn

should be stored; let us denote them by χi1 , . . . , χiM .

• (b) A first working space part, where K pseudofermion fields can be stored;

this storage space should be large enough to construct χn−1 starting from

χiM , as well as χim−1 starting from χim−1 , for all m = 1, 2, . . . , M − 1.

• (c) A second working space part, where 2 pseudofermion fields can be

stored; this allows, for any given l ≥ n, to construct and store the field

χl+1, starting from the field χl, while keeping it stored, too.

The relation M + K + 2 ≤ N must of course be satisfied4. This relation and

the above requirement about the size of the part (b) of the storage space impose

restrictions on the possible choices of the integers M and K, as well as of the

set of integers IM ≡ {i1, i2, . . . , iM}, satisfying i1 < i2 < . . . < iM < n. For the

moment, let us assume that a choice of M , K and IM exists which satisfies our

requirements; we discuss below some examples and their practical performance.

It is clear that under these assumptions the evaluation of δSP can be performed

following the strategy sketched in the steps below.

• In a preliminary step, starting from χ0 ≡ φ, construct all the auxiliary fields

χj , with j ≤ iM and store only χi1 , . . . , χiM in the sector (a).

• Set iM+1 = n, i0 = 0. Then go through the following recursive pro-

cedure, where s is an integer labelling the steps of the recursion: s =

1, 2, . . . , M, M + 1.

• For a given value of s, let us define the auxiliary integers p = iM+1−s and

q = iM+2−s. Then the step s can be described as follows. Starting from χip

4We leave for the moment the freedom of using only part of the available memory, i.e. taking
M + K + 2 < N .
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construct the fields χip+1, . . . , χiq−1 and store them in the sector (b). Then

evaluate the contributions to δSP , eq.(10), with j = iq, iq − 1, . . . , ip + 1

(just in this order), using the sector (c) to construct and temporarily store

in turn the relevant auxiliary fields χ2n−iq , χ2n−iq+1, . . . , χ2n−ip−1.

It may happen that only part of the sector (b) has to be used in the step with

s = M + 1. It is also important to remark that in the steps with s > 1 a new

evaluation of the auxiliary fields χj is required, for all values of j < iM and not

belonging to IM . Indeed, these auxiliary fields were already constructed and then

overwritten during the preliminary step mentioned above. The CPU time needed

for their recomputation in the M steps with s > 1 represents the price to be paid

for computing δSP using a number of auxiliary fields less than the degree of the

PHMC polynomial. On the other hand, no such recomputation occurs in the step

with s = 1.

Let us come now to the determination of M , K, and IM as functions of n and

N . We recall that the chosen values of M and K must satisfy:

M + K + 2 ≤ N , (M + 1)(K + 1) ≥ n , (51)

where the second condition is equivalent to the above requirement on the size

of the part (b) of the storage space. From the description of our strategy for

computing the variation of SP , it should be clear that this condition guarantees

that all of the n terms appearing in eq.(10) for δSP can actually be evaluated.

For any choice of M and K compatible with eq.(51), the set of integers IM can

be defined as follows:

im = n− (M −m + 1)(K + 1) , m = 1, 2, . . . , M . (52)

On the other hand, with respect to the simple method of Section 2.2, the com-

putational overhead, due to the need of evaluating twice some of the auxiliary

fields, is given in units of Qφ operations by:

Cextra = iM −M = n− 1− (K + M) ≥ n−N + 1 . (53)

The optimal choices of M and K are the ones which minimize Cextra, i.e. maximize

M +K, compatibly with eq.(51): this amounts to saturating the bound M +K +

2 ≤ N and yields Cextra = n−N + 1. In table (7) we illustrate the performance
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of this method for evaluating δSP in some typical cases. Moreover, that table

also contains results obtained by using a modified version of the method, which

is useful in cases when a very limited storage space is available.

This modified version relies on the fact that it is not strictly necessary to keep

constant, during the various steps of the computation of δSP , the size of the parts

(a) and (b) of the storage space. Indeed, we may only require that the parts (a)

and (b) have a constant global size, measured by the sum M + K. We will see

that the freedom of varying the size of the single parts (a) and (b) allows for

reducing the minimal storage required for the computation of δSP .

For instance, after the step with s = 1 the auxiliary field χiM is no longer needed;

which means that in the step with s = 2 we may take the parts (a) and (b) to

have size M − 1 and K + 1, respectively. For the same reason, after each step

we may decrease by one unit the size of the part (a) and increase by one unit

the size of the part (b), ending with a part (b) of size K + M in the step with

s = M + 1. It is then clear that, with a suitable definition of the integers in

IM , the computation of δSP can be performed following exactly all the steps of

our method, as explained above. Of course, the meaning of the integers M and

K is now different: they only give the size of the parts (a) and (b) during the

preliminary step and the step with s = 1.

The conditions to be fulfilled by the admissible choices of M and K, as functions

of n and N , are also modified, as well as the corresponding definition of IM .

While the condition M + K + 2 ≤ N remains obviously valid, the definition

(52) and the second condition in eq.(51) should be replaced, respectively, by the

recursive definition:

iM+1 = n

iM+1−s = iM+2−s − s−K , s = 1, 2, . . . , M + 1 (54)

(55)

and by the condition

i1 ≤ K + M + 1 . (56)

On the other hand, the computational overhead with respect to the simple method

of Section 2.2 can be shown to be still given by eq.(53). As a consequence, the

optimal choices of M and K are the ones that maximize the sum M + K and
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are compatible with the new conditions necessary for the full evaluation of δSP .

In the following we will refer to the two versions of the method presented in this

section, the one with fixed size of the parts (a) and (b) of the memory and the

one with variable size of the same parts, as to the basic and the modified version,

respectively. The two versions are compared in table (7), for a few values of n

in the range relevant for current day simulations using the PHMC algorithm. In

order to give an idea of the criticality of the simulations, we also quote the typical

condition number of Q2, denoted by k(Q2), for the values of n considered.

For each value of n , we consider different values of N : the minimal one (N =

N ′
min) needed for using the modified version, the minimal one (N = Nmin) needed

for using the basic version, N = n/2 (in order to compare with the method of

Section 5.1) and N = n − N ′
min. In table (7) a prime is used to denote the

quantities relative to the modified version of the computational method under

study.

From table (7) we can see that the method presented in this section indeed enables

one to save a significant amount of storage space at the price of a very moderate

computational overhead. Namely, memory requirements are reduced by a large

factor, which increases with n and is about 5÷9 for the considered values of n. On

the other hand, the relative computational overhead, as measured by Cextra/3n,

eq.(53), increases very slowly with n, approaching asymptotically the value 1/3.

It is also important to remark that these numbers refer to the maximal memory

saving that can be achieved by the method. However we can see from table (7)

that for each value of n many other choices of N are allowed, which correspond

to a different balance between memory saving and computational efficiency. Such

a flexibility makes it very easy to optimize the balance between memory saving

and computational efficiency in any simulation setup, which represents a clear

advantage of the method presented in this section in comparison with the ones

discussed in Sections 2.2 and 5.1.

Let us come now to the comparison between the basic and the modified version

of the method presented in this section. The latter version turns out to be

more effective than the former in saving memory, as expected: we always find

N ′
min ≤ Nmin in table (7), where the dots stand for cases when the basic version

does not allow for a full evaluation of δSP . However, for values of N allowed in

both versions, there is no difference in the computational overhead between the
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Table 7: Performance for the two versions of the method of Section 5.2 for com-

puting δSP , eq.(10). The notation is defined in the text: (M0, K0) denote, in the

basic version of the method, the choice of (M, K) that minimizes, for given n and

N , both Cextra and M itself. The corresponding primed quantities are relative to

the modified version. Note that the minimal value of Cextra corresponding to the

given values of n and N is always realized.

n k(Q2) N (M0, K0) Cextra Cextra/3n (M ′
0, K

′
0) C ′

extra C ′
extra/3n

50 770 11 . . . . . . . . . (7, 2) 40 0.267

50 770 15 (4, 9) 36 0.240 (7, 2) 40 0.240

50 770 25 (2, 21) 26 0.173 (2, 21) 26 0.173

50 770 39 (1, 36) 12 0.080 (1, 36) 12 0.080

100 1470 15 . . . . . . . . . (11, 2) 86 0.287

100 1470 20 (9, 9) 81 0.270 (6, 12) 81 0.270

100 1470 50 (2, 46) 51 0.170 (2, 46) 51 0.170

100 1470 85 (1, 82) 16 0.053 (1, 82) 16 0.053

180 4760 20 . . . . . . . . . (14, 4) 161 0.298

180 4760 27 (11, 14) 154 0.285 (7, 18) 154 0.285

180 4760 90 (2, 86) 91 0.169 (2, 86) 91 0.169

180 4760 160 (1, 157) 21 0.039 (1, 157) 21 0.039

two versions. Finally, we remark that for given values of n and N , there are several

choices of M and K that yield the minimal overhead (Cextra = n−N +1) and are

compatible with all the necessary conditions specified above. At this level, some

further differences between the two versions appear, which are however irrelevant

in practice. In both versions, in particular, it is not possible to choose a too small

value of M , for given values of n and N , if all the necessary conditions are to be

fulfilled and the minimal overhead is to be achieved: the table (7) shows also the

lowest allowed values of M , and the corresponding ones of K, for the different

cases.
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