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ABSTRACT

We amplify previous discussions of the �ne-tuning price to be paid by supersymmetric models

in the light of LEP data, especially the lower bound on the Higgs boson mass, studying in par-

ticular its power of discrimination between di�erent parameter regions and di�erent theoretical

assumptions. The analysis is performed using the full one-loop e�ective potential. The whole

range of tan � is discussed, including large values. In the minimal supergravity model with

universal gaugino and scalar masses, a small �ne-tuning price is possible only for intermediate

values of tan�. However, the �ne-tuning price in this region is signi�cantly higher if we require

b � � Yukawa-coupling uni�cation. On the other hand, price reductions are obtained if some

theoretical relation between MSSM parameters is assumed, in particular between �0, M1=2 and

A0. Signi�cant price reductions are obtained for large tan� if non-universal soft Higgs mass

parameters are allowed. Nevertheless, in all these cases, the requirement of small �ne tuning

remains an important constraint on the superpartner spectrum. We also study input relations

between MSSM parameters suggested in some interpretations of string theory: the price may

depend signi�cantly on these inputs, potentially providing guidance for building string models.

However, in the available models the �ne-tuning price may not be reduced signi�cantly.
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1 Introduction

To paraphrase Saint Augustine: "May Nature reveal supersymmetry, but not yet." This seems

to be the message from LEP and other accelerator experiments, so far. There are tantaliz-

ing pieces of circumstantial evidence for supersymmetry at accessible energies, including the

measured magnitudes of the gauge coupling strengths [1, 2] and the increasing indication that

the Higgs boson may be relatively light [3, 4]. On the other hand, direct searches at LEP

and elsewhere have so far come up empty-handed. In the case of LEP 2, the physics reach for

many sparticles has almost been saturated, though the direct Higgs search still has excellent

prospects.

In this context, it is natural to wonder whether the continuing absence of sparticles should

disconcert advocates of the Minimal Supersymetric Extension of the Standard Model (MSSM).

After all, the only theoretical motivation for the appearance of sparticles at accessible energies

is in order to alleviate the �ne tuning required to maintain the electroweak hierarchy [5], and

sparticles become less e�ective in this task the heavier their masses. Since the problem of

�ne-tuning is a subjective one, it is not possible to provide a concise mathematical criterion

for deciding whether enough is enough, already. Moreover, the �ne tuning can be discussed

only in concrete models for the soft supersymmetry breaking terms, and any conclusion refers

to the particular model under consideration. The �ne-tuning price may also depend on other,

optional, theoretical assumptions.

The idea which we prefer to promote here is that, along with the overall increase in the

�ne-tuning price imposed by the data, any sensible objective measure of the amount of �ne

tuning becomes an interesting criterion for at least comparing the relative naturalness of various

theoretical models and constraints, and { within a given framework { of di�erent parameter

regions.

We have recently shown that the latest LEP and other data which constrain the MSSM

parameters signi�cantly increased the requisite amount of �ne tuning [6] compared with pre-

LEP days. We used one particular measure [7, 8], namely �0 � maxijai=M2
Z(@M2

Z=@ai)j,
where the ai are the input parameters of the MSSM (for other measures of �ne tuning, see

[9]). Our tree-level analysis clearly demonstrated several qualitative trends but, as an obvious

improvement, one should use the best available theoretical tools to evaluate the �ne tuning,

including in particular the full one-loop e�ective potential of the MSSM [10, 11]. Secondly,

one should update the analysis with the most recent experimental information, in particular

on the mass of the Higgs boson [12] and the new result for BR(b! s) [13].

With the above improvements in hand, in this paper we address anew the question of the

necessary amount of �ne tuning, with a particular view to the power of the �ne-tuning price to

discriminate between di�erent parameter regions and di�erent theoretical assumptions.

In Section 2 we recall our measure of �ne tuning and discuss its various qualitative aspects

in the supergravity-mediated scenario with universal gaugino and scalar masses (the minimal

supergravity model). The particular role of the Higgs boson mass is elucidated. In Section 3
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we present our full one-loop results for small and intermediate tan � in this model. In the �rst

place, we con�rm previous �ndings [10, 11] that including the full one-loop e�ective potential

reduces the apparent amount of �ne-tuning by about 30% at moderate tan � � 10, and by

much larger factors for both small and large tan�. On the other hand, the latest experimental

lower limit Mh > 90 GeV for low tan� increases the price again, so that the �ne-tuning price

we �nd for low tan� is not very di�erent from that in [6]. In the minimal supergravity model,

for intermediate tan�: 3 < tan � < 15, there still exist domains of the parameter space with

moderate, O(10%), �ne-tuning. This result is obtained after including all available experimental

constraints, including in particular b! s, but with no constraint on the Yukawa sector.

In Section 4 we address the question of bottom-quark/tau Yukawa-coupling (b� �) uni�ca-

tion [14] in the minimal model for small and intermediate tan� <� 30. We show that inclusion

of one-loop corrections to the bottom-quark mass substantially enlarges the tan� region where

b � � uni�cation is possible, albeit at the expense of a higher �ne-tuning price. Furthermore,

the interplay of the constraints from b � � uni�cation and b ! s decay and the dependence

on tan� is understood. The minimal model with both b � � uni�cation and the b ! s con-

straint imposed has no regions of small �ne tuning. However, it is stressed that b! s decay

is an optional constraint, which can be relaxed if we admit some departure from the minimal

model, e.g., some avour structure in the up-squark mass matrices. Given such a generalization,

regions with low �ne tuning exist with or without b� � uni�cation.

In Section 5 we emphasize the dependence of the �ne-tuning price on the choice of the

set of independent soft mass parameters in a given model. In particular, we �nd that in the

minimal supergravity model �0 may be signi�cantly reduced if the parameters �0 and M1=2

or A0 (depending on the value of tan �) are considered as linearly dependent on each other.

In some stringy models these parameters are indeed not independent, although the correlation

may not be linear. As is briey discussed in Section 6, we �nd that in one class of such

models �0 may be minimized only in unphysical regions of the parameter space corresponding

to small sparticle masses and/or the absence of electroweak symmetry breaking. Within the

physical region of parameters in the models studied, the �ne-tuning price may not be reduced

signi�cantly.

In Section 7 we discuss the case of large tan � > 30. Our main conclusion is that it remains

attractive (with small �ne-tuning) for non-universal Higgs boson mass parameters at the GUT

scale. Section 8 contains our conclusions.

2 Measure of Fine Tuning and Tree-Level Discussion

We �rst specify more precisely the �ne-tuning criterion we use. Following [7, 8], we consider

the logarithmic sensitivities of MZ with respect to variations in input parameters ai:

�ai =
ai

MZ

@MZ

@ai
(1)
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Note that here we take derivatives of MZ and not, as in [6], of M2
Z : hence our �ai are smaller

by factors 2, other things being equal. We then de�ne

�0 � maxj�ai j (2)

It is clear that the �ne tuning can be discussed only in concrete models for the soft super-

symmetry breaking terms, and with a speci�ed scale for their generation. Calculation of the

derivatives (1) requires minimization of the e�ective scalar potential written in terms of the

ai. In the �rst approximation one may use (as we did in our previous paper) the tree-level

form of the potential, but it is known [10] and has been strongly re-emphasized recently [11]

that reliable quantitative analysis requires use of the full one-loop e�ective potential. This

is particularly important for low and large values of tan �, where one-loop corrections to the

tree-level potential are decisive for electroweak symmetry breaking. In this paper we follow the

one-loop approach of [10].

It is, nevertheless, useful to discuss �rst certain qualitative features of our analysis starting

with the tree-level potential:

V = m2
1jH1j2 + m2

2jH2j2 + B�(�H1H2 + � �H1
�H2)

+
1

8
(g2 + g02)(jH1j2 � jH2j2)2 +

g2

2
j �H1H2j2 (3)

The derivatives (1) then read

�ai =
2

(t2 � 1)2

X
j

(�
ciBc

j
� + cjBc

i
�

�
t(t2 + 1)

"
aiaj

M2
Z

+
aiaj

M2
A

#

�cij1
"
(t2 + 1)

aiaj

M2
Z

+ 2t2
aiaj

M2
A

#
� cij2 t2

"
(t2 + 1)

aiaj

M2
Z

+ 2
aiaj

M2
A

#)
(4)

where t � tan � and the coe�cients c
ij
1;2, c

i
B and ci� are de�ned by

m2
1;2

�
M2

Z

�
=
X
ij

c
ij
1;2aiaj c

ij
1;2 = c

ji
1;2

B
�
M2

Z

�
=
X
i

ciBai (5)

�
�
M2

Z

�
=
X
i

ci�ai

The numerical values of the coe�cients c
ij
1;2, c

i
B and ci� can be found by solving the renormalization-

group (RG) equations [15, 16] for the running from some initial scale down to MZ .

The most popular model, with some phenomenological backing, is the MSSM with universal

gaugino and scalar masses (M1=2; m0) at the input supergravity scale (or GUT scale), and a

universal trilinear (bilinear) supersymmetry breaking parameter A0(B0). The model is then

formulated in terms of these four parameters and the �0 parameter. Important features of this

model are strong correlations between soft terms: all scalar mass parameters are assumed to be
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equal. At present we do not have any convincing theory of soft terms and might equally well

contemplate the possibility of other patterns for them, for instance of non-universal Higgs-boson

masses and/or di�erent sets of independent parameters. The amount of �ne tuning depends

on this choice, as discussed in Section 5. However, in this and the following Section we discuss

the universal case with �ve independent parameters (the minimal supergravity model).

Several qualitative e�ects in the �ne tuning of soft terms can be seen already from (4). In

particular, we can discuss the typical magnitude of the derivatives taken with respect to the �ve

parameters of the minimal supergravity model, with the scale of the generation of soft terms

taken to be MGUT = 2� 1016 GeV. As an example, we consider the region of small tan�, not

far from the quasi-infrared �xed-point solution for the top-quark Yukawa coupling, in which

the �ne tuning is generically larger than for intermediate values of tan �.

Using analytic solutions obtained in [15] for the coe�cients cij1;2, c
i
B and ci� as an expansion

in the parameter

y � Yt=Y
FP
t (6)

where Y FP
t is the �xed-point value for the top-quark Yukawa coupling Yt � h2t =4�, we can

calculate the derivatives in eq. (4) explicitly. In the limit y ! 1 one gets:

��0 = � 2

(t2 � 1)2

"�
t2 + 1

�2 �2

M2
Z

+ t2
 

4
�2

M2
A

� 1� M2
A

M2
Z

!#

�M1=2
� t2 + 1

(t2 � 1)2

"�
7t2 � 1

�M2
1=2

M2
Z

+ t

 
�M1=2

M2
Z

+
�M1=2

M2
A

!
+

12t2

t2 + 1

M2
1=2

M2
A

#

�A0
� � t(t

2 + 1)

(t2 � 1)2

"
�A0

M2
Z

+
�A0

M2
A

#
(7)

�B0
� 2t(t2 + 1)

(t2 � 1)2

 
�B0

M2
Z

+
�B0

M2
A

!

�m0
� 1

(t2 � 1)2

"
(t2 + 1)(t2 � 2)

m2
0

M2
Z

� 2t2
m2

0

M2
A

#

where we may consider the region t � tan � � (1:5�2) to be consistent with our approximation

y � 1 - qualitatively similar conclusions can be drawn for other values of tan�, as long as the

bottom quark Yukawa coupling is much smaller than Yt. The parameter � at the scale MZ is

related to its initial value �0 by the equation �2 � 2�2
0(1 � y)1=2. We note that the largest

derivatives are ��0 and �M1=2
, and they are of opposite signs. For instance, for all parameters

of order MZ (a situation already strongly excluded by the present experimental constraints)

both are already greater than � 10 for tan � � 1:5. They increase quadratically with the values
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of the parameters, and this is the reason why large �ne tuning is found for low tan� within

the experimentally-acceptable parameter range. The derivative �A0
is also sizeable and may

also play an important role, since large negative A0 may be necessary [19] to satisfy the present

Higgs-boson mass limit [12]. The derivative �m0
is typically of little importance. For a given

parameter set, the necessary �ne tuning is determined by the maximal derivative (2). Any

such set should be chosen consistent with the present experimental data and the constraints

(correlations) imposed by proper electroweak symmetry breaking (see for instance [10, 20]).

Among the experimental constraints, a special role is played by the Higgs-boson mass limits.

This e�ect can be isolated by imposing all the available experimental constraints except the

lower limit on Mh. For a chosen value of tan�, we get then some minimal value of �0, and the

corresponding parameter set determines the mass of the Higgs boson

M2
h = M2

Z cos2 2� +
3�

4�s2W

m4
t

M2
W

2
4log

 
M2

~t2
M2

~t1

m4
t

!
+

 
M2

~t2
�M2

~t1

4m2
t

sin2 2�~t

!2

� f(M2
~t2
;M2

~t1
) +

M2
~t2
�M2

~t1

2m2
t

sin2 2�~t log

 
M2

~t2

M2
~t1

!#
(8)

where f(x; y) � 2� (x+ y)=(x� y) log(x=y). We display in (8) only the one-loop formula valid

for MA
>
� 3MZ [17], which is a good approximation to the two-loop RG-improved prescription

[18] used in our numerical studies. Due to the logarithmic dependence of M2
h on the physical

stop masses squared (which in turn are functions of the initial parameters) any departure from

the \best" value of Mh, for �xed tan � and in the range allowed by the other constraints,

transmits itself into an approximately exponential rise of �0. This happens for Mh changing

in both directions, towards values both smaller and larger than the \best" value. Thus, for a

given tan�, the Higgs boson mass is a crucial probe of �ne tuning. We also recall [18] that the

Higgs boson mass is maximal for large j ~Atj � jAt � � cot�j. Since At is given by [15]

At � (1� y)A0 �O(1� 2)M1=2; (9)

maximizing Mh requires � > 0 and large negative A0. Hence the derivative �A0
may be large

in the low tan � region.

3 Results for Low and Intermediate tan �

In this Section we discuss our full one-loop results in the minimal supergravity model with

�ve independent parameters. It is appropriate to begin by re-emphasizing that the �ne-tuning

criterion is not a rigorous mathematical statement, but rather an intuitive physical preference

and hence remains necessarily subjective. (For instance, as already mentioned, our present

de�nition di�ers by a factor 2 from the one used in [6].) Nevertheless, for a chosen measure

of �ne-tuning, one can study in this model relative changes in the amount of �ne tuning as
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a function of changing experimental limits and of the considered parameter range. Here we

emphasize this use of the naturalness criterion.

We �rst recall the experimental constraints used in this analysis. The data we take into

account include the precision electroweak data reported at the Jerusalem conference [4], which

are dominated by those from LEP 1. We constrain MSSM parameters by requiring that ��2 < 4

in a global MSSM �t [21, 22, 23, 24]. The main e�ect of this constraint is a lower bound on

the left-handed stop: M~tL
>
� 300� 400 GeV [23]. We also take into account the direct LEP 2

lower limits on the masses of sparticles [25] and Higgs bosons. For the latter, we base ourselves

on the recent data reported in [12]. We use the limit Mh > 90 GeV which, strictly speaking,

is valid for the Standard Model Higgs boson. This is approximately valid also for the MSSM

Higgs boson for small tan�, although there still exist small windows in the parameter space

where the experimental limit is lower. We neglect this possibility in the present analysis.

The �nal accelerator contraint we use is the recently-measured value of the b! s branch-

ing ratio 2 � 10�4 < B(B ! Xs) < 4:5 � 10�4 at the 95% C.L. [13]. The interpretation of

this measurement in the MSSM is still subject to some uncertainty, because not all the O(�s)

corrections have yet been calculated. Resumming large QCD logaritms of the type log(MW=mb)

up to next-to-leading order (NLO) accuracy has recently been accomplished [26]. These cal-

culations are identical in the SM and the MSSM. The initial numerical values of the Wilson

coe�cients at the scale � � MW are, however, di�erent in the two models. In our analysis we

have used for them two-loop results available for the standard W�t and H�t [27] contributions,

and only the leading-order results for the chargino-stop contribution [28]. The uncertainty due

to O(�s=�) corrections to them has been, however, included as in [29, 23]. Those references

also contain extensive discussions of the role played by the b! s measurement in constraining

the parameter space of the MSSM.

An important role may also be played by non-accelerator constraints, in particular the relic

cosmological density of neutralinos N0, if these are assumed to be the lightest supersymmetric

particles, and if R parity is absolutely conserved. Both of these assumptions may be disputed,

and a complete investigation of astrophysical and cosmological constraints is beyond the scope

of this analysis (for steps in this direction, see [30]).

One-loop corrections to the e�ective potential are taken into account as in [10], using the

decoupling method of [31]. Numerical calculation of the derivatives �ai is also explained in

[10]. Electroweak symmetry must, of course, be broken, and this requirement imposes strong

constraints on the allowed parameter region. The main e�ect is that � > max(M1=2; m0).

In Figs. 1 to 3 we show �0 � maxj�ai j as a function of some mass parameters and some

physical masses, for tan� = 1:65, 2.5 and 10. The results are in agreement with the qualitative

discussion of Section 2 and with the results of [6], but the inclusion of one-loop corrections to the

scalar potential sizeably decreases the �ne-tuning price. For the same experimental constraints

(in particular the same lower limit on Mh), the minimal value of �0 is for tan � = 1:65 a

factor of � 3 � 4 smaller than in [6] (remember the factor 2 in the present de�nition of �0),

in agreement with previous �ndings [10, 11]. For tan � � O(10), one-loop corrections give

much smaller e�ects, with typically a 30% reduction. In Figs. 1 to 3 we observe a very strong
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Figure 1: The price of �ne tuning for tan � = 1:65, as a function of various variables in the

minimal supergravity model. An upper limit of 1.2 TeV on the heavier stop mass is imposed

in the scanning. All experimental constraints described in the text are included. In all plots,

except for �0 versus Mh, the bound Mh > 90 GeV is included. The mass of the lighter physical

chargino and of the heavier physical stop are denoted by mC1 and M~t2 , respectively.
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Figure 2: As in Fig. 1, but for tan� = 2:5.
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Figure 3: As in Fig. 1, but for tan � = 10.

9



dependence of �0 on Mh, which has been explained in Section 2. In consequence, the new

lower limit Mh
>
� 90 GeV [12] pushes, for tan� = 1:65, the minimal value of �0 into the range

� O(100) (� O(200) with the de�nition of �0 used in [6]). We note the increase by a factor 3

in the minimal �0 with the change in the lower bound on Mh from 80 to 90 GeV. The results

in all three Figures are qualitatively similar except for the overall decrease in the �ne-tuning

price with increasing tan �. One more di�erence is that the � < 0 branch of solutions has

disappeared at tan� = 1:65. For so small a value of tan�, as explained earlier, negative � is

no longer compatible with the present bound Mh > 90 GeV.

The �ne tuning decreases with increasing tan�, with values of �0 marginally reaching

�0 � 10 for 3 < tan � < 15. This is shown in Fig. 4a, where we plot (solid line) the minimal

�0 as a function of tan � for Mh > 90 GeV. Also in Fig. 4a we show similar plots, but for

hypothetical lower limits on the Higgs boson mass Mh > 100, 105, 110 and 115 GeV. We notice

that for Mh > 115 GeV the �ne-tuning is large for all values of tan � < 30. It is also interesting

to observe that the bulk of the parameter range shown in Figs. 1 to 3 gives interestingly large

�ne tuning, even for intermediate values of tan �. Finally, given the striking dependence of �0

on Mh, it is interesting to see its dependence on tan� under the assumption that we know the

Higgs boson mass. In Fig. 4b this dependence is plotted for the hypothetical values Mh = 95,

100, 105, 110 and 115 GeV. For values Mh � 105 GeV, �0 as a function of tan � has a clear

minimum, which moves towards larger values of tan� with increasing Mh.

4 Bottom-Tau Yukawa Uni�cation and b! s Decay

Up to now, we have been discussing �ne tuning in the minimal supergravity model, without

any constraints imposed on Yukawa couplings at the GUT scale. One important remark is that,

in such a framework, the b ! s decay, although constraining for the parameter space, does

not have any impact on the necessary amount of �ne tuning. The results for the minimal �0

presented in Figs. 1 to 3 and 4a does not depend at all on the inclusion of b! s decay among

our experimental constraints for tan� <
� 15, and are negligibly modi�ed for tan� up to 30.

This is no longer true if we impose some constraints on the Yukawa sector, which is discussed

in this Section and Section 7.

One interesting possibility is b� � Yukawa-coupling uni�cation at the GUT scale [14]. It is

well known that exact b�� Yukawa-coupling uni�cation, at the level of two-loop renormalization

group equations for the running from the GUT scale down to MZ , supplemented by three-loop

QCD running down to the scale Mb of the pole mass and �nite two-loop QCD corrections at

this scale, is possible only for very small or very large values of tan �. This is due to the fact

that renormalization of the b-quark mass by strong interactions is too strong, and has to be

partly compensated by a large t-quark Yukawa coupling. This result is shown in Fig. 5a. We

compare there the running mass mb(MZ) obtained by the running down from MGUT , where we

take Yb = Y� , with the range of mb(MZ) obtained from the pole mass Mb = (4:8�0:2) GeV [34],

taking into account the above-mentioned low-energy corrections. These translate the range of

the pole mass: 4.6 < Mb < 5.0 GeV into the following range of the running mass mb(MZ):
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Figure 4: Fine-tuning measures as functions of tan�. In panels (a),(c) and (e), lower limits on

the Higgs boson mass of 90 GeV (solid), 100 GeV (long-dashed), 105 GeV (dashed) 110 GeV

(dotted) and 115 GeV (dot-dashed) have been assumed. In panels (b), (d) and (f), Mh has been

�xed to 95 GeV (solid), 100 GeV (long-dashed), 105 GeV (dashed) 110 GeV (dotted) and 115

GeV (dot-dashed). Panels (a) and (b) correspond to independent M1=2, A0 and � parameters.

In panels (c), (d) and (e), (f), linear dependences M1=2 = cM��0 and A0 = cA��0, respectively,

have been assumed.
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Figure 5: a) The running mass mb(MZ) obtained from strict b� � Yukawa coupling uni�cation

at MGUT = 2 � 1016 GeV for di�erent values of �s(MZ), before inclusion of one-loop super-

symmetric corrections. b) The minimal departure from Yb = Y� at MGUT measured by the ratio

Yb=Y��1, which is necessary for obtaining the correct b mass in the minimal supergravity model

with one-loop supersymmetric corrections included.

2:72 < mb(MZ) < 3:16 GeV. To remain conservative, we use �s(MZ) = 0:115(0:121) to obtain

an upper (lower) limit on mb(MZ).

It is also well known [35, 36] that, at least for large values of tan �, supersymmetric �nite

one-loop corrections (neglected in Fig. 5a) are very important. These corrections are usually

not considered for intermediate values of tan � but, as we shall demonstrate, they are also very

important there and make b� � uni�cation viable in much larger range of tan � than generally

believed (see also [37]). However, one has then to pay a higher �ne-tuning price!

One-loop diagrams with bottom squark-gluino and top squark-chargino loops make a con-

tribution to the bottom-quark mass which is proportional to tan� [35, 36]. We recall that,

to a good approximation, the one-loop correction to the bottom quark mass is given by the

expression:

�mb

mb

� tan �

4�
�

�
8

3
�sm~gI(m2

~g;M
2
~b1
;M2

~b2
) + YtAtI(�2;M2

~t1
;M2

~t2
)

�
(10)

where

I(a; b; c) = �ab log(a=b) + bc log(b=c) + ca log(c=a)

(a� b)(b� c)(c� a)
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Figure 6: One-loop supersymmetric corrections to the b-quark mass as functions of various

parameters for tan� = 10 (left panels) and 30 (right panels), assuming the minimal supergravity

scenario and imposing all experimental cuts except for the b! s constraint. Acceptable values

of Mb are obtained for �mb=mb < �0:14 for tan � = 10 and �mb=mb < �0:1 for tan � = 30,

corresponding to the regions below the solid horizontal lines.
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and the function I(a; b; c) is always positive and approximately inversely proportional to its

largest argument. This is the correction to the running mb(MZ). It is clear from Fig. 5a that

for b � � uni�cation in the intermediate tan � region we need a negative correction of order

(15-20)% for 3 <� tan� <� 20, and about a 10% correction for tan � = 30. According to (10),

such corrections require � < 0, and their dependence on some other parameters is shown in

Fig. 6.

We notice that, as expected from (10), b � � uni�cation is easier for tan� = 30 than for

tan � � 10. In the latter case it requires At
>
� 0, in order to obtain an enhancement in (10) or at

least to avoid any cancellation between the two terms in (10). This is a strong constraint on the

parameter space. Since At is given by (9), b�� uni�cation requires large positive A0 and not too

large a M~g (i.e., M1=2). In addition, the low-energy value of At is then always relatively small,

and this explains the stronger upper bound on Mh seen in Fig. 6 (for a similar conclusion, see

[37]). We see in Fig. 5b that, for tan� <
� 10, the possibility of exact b� � uni�cation evaporates

quite quickly, with a non-uni�cation window for 2 <
� tan� <

� 8� 10, depending on the value of

�s. However, we also see that supersymmetric one-loop corrections are large enough to assure

uni�cation within 10% in almost the whole range of small and intermediate tan �.

For tan� > 10, the qualitative picture changes gradually. The overall factor of tan �, on

the one hand, and the need for smaller corrections, on the other hand, lead to the situation

where a partial cancellation of the two terms in (10) is necessary, or both corrections must be

suppressed by su�ciently heavy squark masses. Therefore, as seen in Fig. 6 , b� � uni�cation

for tan � = 30 typically requires a negative value of At, and is only marginally possible for

positive At, for heavy enough squarks. A similar but more extreme situation occurs for very

large tan� values, which will be discussed in Section 7. It is worth recalling already here that

the second term in (10) is typically at most of order of (20-30)% of the �rst term [36], due to (9).

Thus, cancellation of the two terms is limited, and for very large tan � the contribution of (10)

must be anyway suppressed by requiring heavy squarks. This trend is visible in Fig. 7a already

for tan � = 30. The Higgs-boson mass is not constrained by b � � uni�cation, since At can be

negative and large. Finally, we observe that, for any value of tan�, the one-loop correction

to mb(MZ) (10) remains approximately constant after simultaneous rescaling of �, M1=2 and

m0. Since proper electroweak breaking correlates � with M1=2 and m0, the loop correction to

mb(MZ) is weakly dependent on sparticle masses.

Returning now to the �ne-tuning price, we show in Fig. 7b the dependence of �0 on tan�,

with exact b� � uni�cation imposed as an additional constraint on the parameter space. This

dependence is shown both without and with b ! s decay included among the experimental

constraints, and we �rst focus on the case with b ! s excluded. A comparison with Fig. 3

(where b� � uni�cation was not imposed) shows a substantial increase in the �ne-tuning price

for tan � = 10. This follows from the large values of A0 needed in this case for b� � uni�cation

(see the strong dependence of �0 on A0 in Fig. 3) and from the simultaneous ease in satisfying

the b ! s constraint for tan � � 10 (as will be discussed shortly). On the other hand, for

tan � = 30 it is easy to have b� � uni�cation. Hence, the price �0 to be paid without imposing

the b ! s constraint in Fig. 7b (dashed line) is essentially the same with or without b � �

uni�cation (actually, it is slightly below the value seen in Fig. 4a for the case without b � �
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Figure 7: a) Lower limits on the lighter (dotted lines) and heavier (solid lines) stop and on

the CP�odd Higgs boson A0 (dashed lines) in the minimal supergravity scenario with b � �

Yukawa coupling uni�cation, as functions of tan�. Upper (lower) lines refer to the case with

the b ! s constraint imposed (not imposed). b) The corresponding �ne-tuning price with the

b! s constraint imposed (solid line) and not imposed (dashed line).

uni�cation but with the b! s constraint included).

We turn our attention now to a deeper understanding of the b ! s constraint and its

interplay with b � � uni�cation. The �rst point we would like to make is that b ! s decay

is a rigid constraint in the minimal supergravity model, but is only an optional one for the

general low-energy e�ective MSSM. Its inclusion depends on the strong assumption that the

stop-chargino-strange quark mixing angle is the same as the CKM element Vts. This is the case

only if squark mass matrices are diagonal in the super-KM basis, which is realized, for instance,

in the minimal supergravity model. However, for the right-handed up-squark sector such an

assumption is not imposed upon us by FCNC processes [38]. Indeed, aligning the squark avour

basis with that of the quarks, the up-type squark right-handed avour o�-diagonal mass squared

matrix elements (m2
~U
)13RR and (m2

~U
)23RR are unconstrained by other FCNC processes. Therefore,

in the limit that the other avour o�-diagonal matrix elements are zero, and for su�ciently

small (m2
~U
)23RR, the couplings of charginos to stops and strange quark read

Lint � ��s
�
cijRPR + cijLPL

�
C�

j
~ti (11)

with

c1jR � e

sW
Z1j?
+ V ?

ts sin �~t � Z2j?
+

 
htV

?
ts + hc

(m2
~U
)23RR

M2
~cR
�M2

~t1

!
cos �~t

c
2j
R � e

sW
Z

1j?
+ V ?

ts cos �~t + Z
2j?
+

 
htV

?
ts + hc

(m2
~U
)23RR

M2
~cR
�M2

~t2

!
sin �~t
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c1jL = �hbV ?
tsZ

2j
� sin �~t c2jL = �hbV ?

tsZ
2j
� cos �~t (12)

where Zij
� are matrices diagonalizing the chargino mass matrix (de�ned in [32]), the ht;b;c are

Yukawa couplings and the ~ti are stop mass eigenstates: ~tR = � sin �~t~t2 + cos �~t~t1. The factor

(�Rm2)23 can be considered as a free parameter of the low-energy MSSM. Indeed, there exist

GUT models [33] that predict the mixing factor in the vertex �s~tkC
�

i to be considerably di�erent

from the CKM matrix element Vts. We conclude that only a small departure from the minimal

supergravity model is su�cient to relax the b ! s constraint, and it is interesting to study

separately its impact on the �ne-tuning price.

In the minimal supergravity model the dominant contributions to b! s decay come from

the chargino-stop and charged Higgs-boson/top-quark loops. For intermediate and large tan�,

one can estimate these using the formulae of [28] in the approximation of no mixing between

the gaugino and higgsinos, i.e., for MW � max(M2; j�j). We get [39]
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where ~t1(~t2) denotes the lighter (heavier) stop,

cos2 �~t =
1

2

�
1 +

p
1� a2

�
; a � 2mtAt

M2
~t2
�M2

~t1

; A
0 � GF

q
�=(2�)3 V ?

tsVtb (16)

and the functions f (k)(x) given in [28] are negative. The contribution AC is e�ectively propor-

tional to the stop mixing parameter At, and the sign of AC relative to AW and AH+ is negative

for At� < 0.

We can discuss now the interplay of the b � � uni�cation and b ! s constraints. The

chargino-loop contribution (15) has to be small or positive, since the Standard Model contri-

bution and the charged Higgs-boson exchange (both negative) leave little room for additional

constructive contributions. Hence, one generically needs At� < 0. Since � < 0 for b � � uni�-

cation, both constraints together require At > 0. This is in line with our earlier results for the

proper correction to the b mass for tan � <
� 10, 1 but typically in conict with such corrections

for larger values of tan �. In the latter case, both constraints can be sati�ed only at the expense

1This does not constrain the parameter space more than b� � uni�cation itself. Note also that, if we do not

insist on b� � uni�cation, the b! s constraint is easily satis�ed since � > 0 is possible.
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of heavy squarks (to suppress a positive At correction to the b-quark mass or a negative At

correction to b! s) and a heavy pseudoscalar A0. Hence we have to pay a higher �ne-tuning

price, as seen in Figs. 7a,b.

5 Linear Relations between MSSM Parameters

The minimal supergravity model with universal soft mass parameters discussed so far is based

on the assumption that scalar mass parameters are not independent of each other (and similarly

for gaugino masses). This has obvious implications for the question of �ne tuning, which can

only be considered once the set of initial parameters is speci�ed. In particular, one could relax

the universality assumption and study the question of �ne tuning for each sfermion avour

separately, with � ~mi
being a measure of the �ne tuning.. An increase (decrease) in the number

of initial parameters is not directly correlated with increase or decrease of the necessary �ne

tuning. For instance, suppose the parameters ai and aj with derivatives �ai and �aj are

assumed to be not independent but linearly related: ai = cijaj. In this new scenario, the

�ne tuning is measured by �aiaj = �ai + �aj . The relative magnitudes of �aiaj , �ai and �aj

depend on the relative signs of �ai and �aj , and vary from one region of parameters to another.

However, as observed in [6] and indicated in Section 2, the scalar sector has little impact on the

overall �ne tuning, since the derivatives � ~mi
are generically smaller than the other derivatives2.

Therefore, scenarios with correlated or uncorrelated scalar masses have similar �ne tuning.

The discussion in Section 2 shows that most often the largest derivatives are ��0 , �M1=2
and

�A0
and, moreover, in the phenomenologically relevant parameter space they are of opposite

signs. Let us take as an example again small tan�. We see in (7) that ��0 < 0, whereas

�M1=2
> 0 for � > 0, which is necessary to maximize Mh. Also, sign(�A0

) = �sign(�A0),

so that for � > 0, sign(��0�A0
)=sign(A0) and for negative A0 the derivatives ��0 and �A0

are of opposite signs. Since negative A0 is necessary for maximizing Mh, one expects that, by

assuming there is some theoretical reason why some of these parameters are not independent,

one may signi�cantly reduce the �ne-tuning price. It is easy to study the simplest case of linear

relations between these parameters. Linear relations are also enough to obtain substantial

reductions in the �ne tuning, as we �nd in our full one-loop numerical calculations.

We obtain the biggest reduction in the �ne-tuning price by treating M1=2 and �0, or A0 and

�0, as linearly related to each other, and the best choice depends on the value of tan �. This

is shown in Fig. 8, where we plot �0 versus �M1=2�0 and �A0�0 for several values of tan �. For

low tan � (close to the infrared quasi-�xed point) the best e�ect is obtained for the A0 � �0

correlation, with the minimal �ne tuning decreasing by a factor � 3:5. In Figs. 4c and 4e we

plot minimal values of �M1=2� and �A0� as functions of tan � for several assumed limits on Mh:

Mh > 90, 100, 105, 110 and 115 GeV, and in Figs. 4d and 4f we show similar plots but for

Mh = 95, 100, 105, 110 and 115 GeV. The strong price reductions are evident. We see that

2The important implications of relaxing universality for the Higgs-boson mass parameters in the large-tan�

scenario (see next Section) has a di�erent origin: it helps to permit electroweak symmetry breaking in a larger

part of the parameter space.
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Figure 8: Fine-tuning for correlated GUT-scale parameters (M1=2 = cM��0 in the left panels

and A0 = cA��0 in the right ones) versus �ne tuning for uncorrelated GUT-scale parameters

for several values of tan�. Universal soft scalar masses are assumed at the GUT scale.
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Figure 9: As in Fig. 1, but assuming the linear correlation A0 = cA��0 at the GUT scale.

19



Figure 10: As in Fig. 2, but assuming the linear correlation M1=2 = cM��0 at the GUT scale.
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Figure 11: As in Fig. 3, but assuming the linear correlation M1=2 = cM��0 at the GUT scale.
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Figure 12: Correlations between the GUT scale parameters for several values of tan�, assuming

the following cuts on �ne tuning. For tan� = 1:65: in the left panel, parameter sets with

�M� < 50 are indicated by stars, and sets with �M� < 100 by points, in the right panel,

sets with �A� < 20 are indicated by by stars, �A� < 30 by circles and �A� < 50 by points.

For tan � = 2:5 and 5: sets with �M�;�A� < 10 are indicated by stars and �M�;�A� < 30

by points. For tan � = 30: in the left panel, sets with �M� < 3 are indicated by stars and

�M� < 10 by points, and in the right panel sets with �A� < 30 are indicated by points.
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Figure 13: Upper limit on the lighter stop (a), stau (b), chargino (c) and neutralino (d) as

functions of tan� for universal soft scalar masses at the GUT scale requiring the �ne-tuning

measures �0 (solid), �M� (dashed) and �A� (dotted) smaller than 10.
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� � O(1) is compatible with a large range of tan� values and Higgs boson masses. In Figs. 9,

10 and 11, we plot �M1=2�0 and �A0�0 as functions of various mass parameters or physical

masses, for several values of tan�. The overall pattern remains similar to the �0 case, but

with an order of magnitude or more rescaling in the absolute values of the �'s. Nevertheless,

putting some upper bound on the acceptable �ne tuning remains a strong constraint on the

superparticle spectrum. This is more clearly seen in Fig. 13, where we plot the upper bounds

on several physical masses as a function of tan �, as obtained by requiring �0 < 10. In this plot

we compare the bounds obtained for M1=2��0 and A0��0 correlations with the bounds for the

uncorrelated case (�0 < 10). As is seen clearly in Fig. 13, the upper bounds are considerably

relaxed if correlations are imposed, suggesting that it is premature to use the �ne-tuning price to

derive convincingly any upper mass limits, in the absence of deeper theoretical understanding.

6 String-Inspired Models

So far, we have discussed linear dependences among soft supersymmetry-breaking terms in a

model-independent way. We now take a more theoretical viewpoint, according to which the

soft supersymmetry breaking parameters are predicted by some physics at the GUT or string

scale. It is likely that they will emerge from the high-scale theory described in terms of more

fundamental parameters. It is also plausible that the number of these parameters, at least

of the relevant ones, is smaller than the number of soft terms. The latter will then not be

independent. Such scenarios indeed emerge in various toy supergravity/string models for soft

terms. The �ne-tuning criterion would then require some revision: even if the number of new

parameters is not smaller than the number of soft terms discussed earlier, a reparametrization

may introduce more \natural" fundamental parameters. Generically, in supergravity models,

one can write the soft terms as

ai = m3=2fi (p�) (17)

where ai is one of the soft supersymmetry-breaking terms (M1=2, m0, A0, B0), or �0, and

the gravitino mass m3=2 sets the overall mass scale. The functions fi(p�) are functions of

dimensionless parameters p� which can be regarded as, e.g., angles determining the goldstino

direction in the dilaton and moduli �eld space.

Among the questions one can ask are:

a) Does there exist a set of parameters p� which is more natural than the soft terms them-

selves, and what are their properties?

b) Are there any simple models with such parametrizations?

Within such a framework, we should study �ne tuning with respect to the parameters m3=2 and

p�. In the case of m3=2, simple dimensional analysis tells us that

�m3=2
= 1 (18)
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On the other hand, the general formula for p� is:
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As an example, we now study a simple toy model [40] in which soft supersymmetry-breaking

terms and the Higgs mixing parameter �0 are described at the GUT scale by the following

parametrization:

M1=2 =
p

3m3=2 sin �eiS

A0 = �
p

3m3=2 sin �eiS�
m2
H1

�
0

=
�
m2
H2

�
0

= m3=2

�
1� 3 cos2 �

�
�2

3 + �2
6

��
(20)

�0 = m3=2

�
1 +

p
3 cos �

�
�3e

i3 + �6e
i6
��

B0�0 = 2m3=2

�
1 +

p
3 cos � (�3 cos 3 + �6 cos 6) + 3 cos2 � cos (3 � 6) �3�6

�

where the angles �, �i determine the goldstino direction in the dilaton/moduli parameter space,

with sin � � 1 (0) corresponding to dilaton{ (moduli{) dominated supersymmetry breaking,

and the i are phases which we set to zero for simplicity in the rest of this discussion.

We now re-examine �ne tuning in this new parametrization, considering �rst the sensitivity

of M2
Z to sin �. We obtain �sin � from (19) using the soft parameters (20) and the coe�cients

cijk obtained by solving the one-loop renormalization-group equations. The resulting formula is

very complicated (remember that MZ , MA and tan� in (19) depend on the parameters p�) and

will not be given here. It is, however, not very di�cult to check that �sin � has typically several

zeroes as a function of � (for example, in the limit y ! 1 there are zeros for � = n�=2). Thus,

there are regions in the new parameter space where the sensitivity to sin � is small. However,

this does not mean yet that one can easily avoid �ne tuning, since it is necessary to check

whether the regions of small �sin � correspond to phenomenologically acceptable solutions. To

do this, we analyse M2
Z itself as a function of �. Fig. 14 shows some typical plots of M2

Z(�).

We see that M2
Z(�) is either negative or rather large (in units of m2

3=2) and positive at the

extrema, and hence not acceptable. Experimental lower bounds on the masses of superpartners

imply that the scale of supersymmetry breaking measured by m3=2 must be rather big compared

to the weak scale. From a phenomenological point of view, the interesting regions of the pa-

rameter space are only those which give positive but rather small values of M2
Z . Unfortunately,

�sin � is never very small in such regions.

We have checked this by a numerical calculation. We have scanned the (�, �3, �6) parameter

space looking for solutions with M2
Z between 0 and m2

3=2 and with MA > 0:6MZ. Such solutions
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Figure 14: Dependence of MZ on the angle � in the string parametrization of the soft terms

shown in (20) for �3 = �6 = �0:5 (solid lines) and �3 = ��6 = �0:5 (dashed lines).

exist only in quite a small part of the (�3, �6) parameter space. Moreover, they give very small

values of tan � (quite close to 1), and have �sin � always well above 100. Thus, we conclude

that the parametrization (20) cannot solve the �ne-tuning problem.

A search for more attractive models for soft terms, perhaps guided by the phenomenological

discussion of Section 5, is certainly very important.

7 Large-tan � Region

In this Section we update the status of scenarios with (at least approximate) t� b� � Yukawa

coupling uni�cation [41, 42] and discuss their �ne-tuning aspects. Such a possibility is realized,

for instance, in SO(10)�type models. For mt = 175 GeV, t � b � � uni�cation predicts large

values of tan�: tan� � 50, and the Higgs boson mass Mh
>
� 110 GeV. Clearly, if the Higgs

boson is not found at LEP 2, the phenomenological relevance of the large tan� region will be

accentuated.

Phenomenological properties of the large tan� region are well understood [10, 35, 36, 43, 44].

Important aspects are the breaking of the electroweak symmetry and supersymmetric one-loop

corrections to the bottom quark mass and to b ! s decay. To organize our discussion, let

us begin with exact t � b � � uni�cation of Yukawa couplings in the minimal supergravity

model. The results of Section 5 can be readily used to conclude that it is not a realistic
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scenario [36]. It is su�cient to observe that, in the parameter space constrained by requiring

proper electroweak symmetry breaking, it is impossible to obtain su�ciently small one-loop

supersymmetric corrections to the b-quark mass for stop masses up to O(10 TeV) (as can be

estimated from (10). The problem is even worse if we try to be consistent with b! s decay.

The question of some interest is how far we have to depart from exact uni�cation of all

three couplings in the minimal supergravity model to obtain a more realistic parameter space.

One way of answering this question is to impose b � � uni�cation, and to study the minimal

values of the stop masses and of the �ne-tuning measure �0 which are necessary to satisfy all

the remaining constraints, as a function of tan �. This is shown in Fig. 7a and 7b, respectively,

requiring the correct value of the b-quark mass and, optionally, the correct BR(b ! s). As

we discussed in Section 4, the prediction for the latter can be modi�ed by a departure from

the minimal supergravity model that admits some avour structure in the stop mass matrices.

We see from Fig. 7a that correct Mb requires M~t2 � 0:75(1:7) TeV for tan�=45 without (with)

the b! s constraint included. The corresponding values of �0
3 are 170 and 35 respectively.

For mt = 175 GeV, tan�=45 corresponds to Yt=Yb � 1:6 (for M~ti � 1 TeV). The origin of all

these results is the extremely constraining role played by electroweak symmetry breaking in

the minimal supergravity model with Yt � Yb. In the limit Yt = Yb, the two soft Higgs boson

masses m2
H1

and m2
H2

run almost in parallel, and electroweak symmetry breaking occurs only

for very large values of M1=2 and �.

It has been pointed out in [44] that a qualitatively new situation appears in the large tan�

scenario if we relax the universality of the Higgs-doublet soft mass parameters [45, 46, 44]. This

is because the correlation � � M1=2 is no longer necessary for proper electroweak symmetry

breaking, and one obtains solutions with � �M1=2 � O(MZ): as discussed in [44], the hierachy

m2
H1
� m2

H2

>
� m2

0 is necessary for this. In consequence, in this scenario the supersymmetric

loop corrections (10) to mb(MZ) can be small. It is, therefore, interesting to repeat the analysis

in this case. Since it is easy to obtain acceptable physical Mb, even for Yt = Yb = Y� , we restrict

our analysis to this case. We study the case tan � = 50 and impose Mb = 4:8� 0:2 GeV, i.e.,

2:72� 3:16 GeV for mb(MZ).

In Fig. 15 we show some results for �0 as a function of several mass parameters, with all

the constraints included except for b ! s. Only � < 0 is possible since, as is clear from

Fig. 5a, only negative one-loop supersymmetric corrections are compatible with the correct

bottom-quark mass. Moreover, the correction has to be small enough and, therefore, At tends

to be negative and squarks must be relatively heavy. Due to the hierachy m2
H1
� m2

0, the

pseudoscalar A0 is heavy enough to assure a small amount of �ne tuning 4: �0 � 10 is possible.

This result makes the large tan � region quite acceptable from the naturalness point of view.

If we insist on being consistent with b! s decay, the �ne-tuning price increases to � >
� 40,

as seen in Fig. 16. This happens for reasons similar to those discussed for tan� = 30 in the

minimal model, and the discussion at the end of Section 4 applies unchanged to the present

3For large tan� it is important to consider the derivatives of MZ and tan�, since the latter are proportional

to tan� and can be large.
4Typically the dominant derivatives are (ai= tan�)(@ tan�=@ai) � � tan�((Bci�ai + �ciBai)=M

2

A).
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Figure 15: The price of �ne tuning for tan� = 50 and t� b� � Yukawa coupling uni�cation, as

a function of various variables in models with non-universal Higgs boson masses. The b ! s

constraint is not included.
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Figure 16: The same as in Fig. 15, but with the b! s constraint included.
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case.

Finally, we remark that the non-universal Higgs boson masses discussed here give solutions

with higgsino-like neutralinos. Thus, such scenarios generically lead to a rather low neutralino

dark matter density [30].

8 Conclusions

Comparing the situation before and after LEP, the �ne-tuning price in the minimal supergravity

model has increased signi�cantly, largely as a result of the unsuccessful Higgs boson search.

Comparing di�erent values of tan�, we �nd that naturalness favours an intermediate range.

Fine tuning increases for small values because of the lower limit on the Higgs mass, in particular,

and increases for large values because of the di�culty in assuring correct electroweak symmetry

breaking.

Additional theoretical assumptions may have a signi�cant impact on the �ne-tuning price.

For example, requiring b�� Yukawa-coupling uni�cation would increase the price signi�cantly at

intermediate tan�, whereas imposing certain linear correlations between mass parameters could

diminish it substantially. One particular class of models imposing such have been motivated

from string constructions: unfortunately, those currently available do not seem to reduce the

�ne-tuning price signi�cantly, so naturalness considerations do not favour these models to any

substantial extent. However, the search for realistic theoretical models which do reduce the

�ne-tuning price is a very interesting issue.

We have found that b ! s decay is a potentially important constraint for large tan�,

but we would argue that it should be regarded as optional. The avour structure of squark

couplings could di�er from those of the quarks, and there are no direct FCNC limits on avour

violation among superpartners of the up quarks.

A �nal comment concerns the region of very large tan �. In this case, the �ne-tuning price

can be reduced quite substantially by allowing non-universal soft mass parameters for the Higgs

bosons. This is in contrast to the situation at lower tan�, where non-universal mass parameters

do not reduce the price signi�cantly.

We re-emphasize that naturalness is subjective criterion, based on physical intuition rather

than mathematical rigour. Nevertheless, it may serve as an important guideline that o�ers

some discrimination between di�erent theoretical models and assumptions. As such, it may

indicate which domains of parameter space are to be preferred. However, one should be very

careful in using it to set any absolute upper bounds on the spectrum. We think it safer to use

relative naturalness to compare di�erent scenarios, as we have done in this paper.
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