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We consider the production of heavy quark jets at Zhpole at next-to-leading ordgNLO) using the
Cambridge jet algorithmWe study the effects of the quark mass in two- and three-jet observables and the
uncertainty due to unknown higher-order corrections as well as due to fragmentation. We find that the three-jet
observable has remarkably small NLO corrections, which are stable with respect to the change of the renor-
malization scale, when expressed in terms of thening quark massat the m, scale. The size of the
hadronization uncertainty for this observable remains reasonably small and is very stable with respect to
changes in the jet resolution paramejer [S0556-282(99)01921-9

PACS numbgs): 13.87.Ce, 12.38.Bx, 12.38.Qk, 14.65.Fy

I. INTRODUCTION The heavy quark mass measurement was done under the
assumption of the flavor independence of the strong interac-
During the last few years significant progress has beetions with the value of the strong-coupling constaqtfixed
made in the understanding of the heavy quark jet productiofo its world average measured in other experiments. On the
in e*e™ annihilation both experimentaflyand theoretically. other hand, assuming a givénquark mass value obtained
The DELPHI Collaboration has measured the bottom-from low-energy measurements, and comparing the value of
quark masg2,3] analyzing thee®e™ annihilation into the  a, measured from the heavy quark three-jet final state with
three-jet final state with heavy quarks using recent next-tothe one measured from the production of light quarks, one
leading order theoretical predictions for this process10]. can perform a test of the flavor universality of the strong
The DELPHI resulft for the Durhan{11] jet clustering algo-  interaction. Such a test was performed recefgly2,14 and
rithm no deviation from the QCD prediction was found. The next-
to-leading order QCD predictions with heavy quark mass
mp(my)=2.67+0.25 sta) = 0.34 had = 0.27theoy GeV, corrections from Refd4-10 were used in these studies.
(1) There are three main sources of uncertainties in the

DELPHI analysis. The first one has a statistical nature. The
was the first measurement of thequark mass far above the second error is due to the uncertainty in the hadronization
production threshold and it is the first experimental evidenceorrections. It was evaluaté¢8] using different Monte Carlo
(at the 2—30 level of the running of a fermion mass, as models simulating the hadronization process. The third one
predicted by the standard model. Recently, the SLAC Largés due to our ignorance of higher-order perturbative correc-
Detector Collaboration has also analyzed the three- and foutions in the theoretical predictions at the partonic level. The
jet data using the Durham and several Jade-like jet algolast uncertainty was estimated by varying the renormaliza-
rithms [12]. These results have been used to obtain a valugon scale in the calculations and by using different renormal-
for the b-quark mass[13] which is compatible with the ization schemes, i.e., expressing intermediate results in terms

above DELPHI result. of either the perturbative pole quark mass or the running
quark mass.
The value of théb-quark mass measured at theeak(1)
*On leave from JINR, 141980 Dubna, Russian Federation. is found to be in good agreement with the determinations of
See[1] for a review of recent experimental results. the b-quark mass at low energy froMi- and B-meson spec-
2The modified minimal subtraction schem@$) definition for the  troscopy[15], when compared at the same scale. However,
running mass at the, scale was used. the uncertainties irmy(m;) are larger. Thus, it would be
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desirable to reduce this error by finding new observablesor this pair of particles, and, ¥;;<y., the two particles are

which may show a better theoretical and hadronization proprecombined into a pseudoparticle according to Bg. But if

erties. Yij>Yc. the softer particle from this pair is assigned to a
In this paper we study quark mass effects in heavy quarkesolved jet. This last step is called “soft freezing.”

jet production by using the Cambridge jet clustering algo- Because of the additional step in the jet-finding iterative

rithm [16,17]. We also study the possibility of reducing the procedure, the Cambridge scheme turns out to be more com-

uncertainties in the measurement of thguark mass at the plex and has a number of peculiar propertieg]. Let us

Z pole. We consider two jet observables and estimate thenention only one example. In Jade-like algorithms, includ-

errors in their theoretical predictions due to the unknowning Durham, one can always define a transition valugof

higher orders by varying the renormalization scale and consuch that a multiparton event classified as-jgt event be-

sidering different renormalization schemes. We discuss alsoomes an+ 1-jet event, when the value of; is slightly

the size of the uncertainty due to the hadronization processlecreased. However, as pointed ouf29], this property is

Some preliminary results of this study were reported inlost in the Cambridge algorithm, since, due to the presence

[18,19. of the ordering parameter, the sequence of clustering de-
pends on the value of.. As a result the number of jets is
II. THE CAMBRIDGE ALGORITHM AND THE DECAY not a monotonic function of. and it can change by a non-
Z—3 JETS AT THE NEXT-TO-LEADING ORDER unit number at some transition value yyf.

) ) ) _ _ . With the above definitions one can show that the cross

The Cambridge16] jet clustering algorithm is a modified  gection of thee* e~ annihilation into three jets calculated at
version of the popular Durhaiii1] algorithm that has been the |eading ordefLO) is the same in both Cambridge and
introduced recently in order to reduce at lgw the forma-  pyrham algorithms. This happens because only three-parton
tion of spurious jets with low transverse momentum par-fing|-state configurations contribute at LO to the three-jet
ticles. Consequently, compared to Durham, it allows one tQ;gss section. Instead, the four-jet production cross section at
explore regions of smalley,, while still keeping higher- ine LO is different in the two schemes.
order corrections relatively small. It is important to note that  a¢ next-to-leading ordeNLO) the predictions for the
at low y. the statistical experimental error for three-jet andtnree-jet production cross section for the two algorithms are
four-jet production is expected to be smaller, and the sensiitierent. Schematically, the NLO calculation ef e”—3

tivity to the quark mass increases. o _ jets was performed as follows. In this case the three-jet cross
In the Durham algorithm one finds the minimal test vari- section receives contributions not only from one-loop cor-
abley;; defined as rected three-parton final states, but also from four-parton
min(E2 E2) processes. In the latter process two o_f th_e four partons are
yij=2 T (1-cosb;)), 2) com_blned in or_der to produce a three-Je_t final state. T_he ul-
S traviolet (UV) divergences encountered in the calculation of

_ . o ) the three-parton contribution at the one-loop level were re-
for aII. po§S|bIe pair combmanons of the particles and com-y,4yed by the renormalization of the parameters of the QCD
pare it with the jet-resolution parametsf,. In Eq. (2) Ei | agrangian. The infraretiR) divergencesremaining in this
and E; denote the energies of parhc?esgndj, 6ij is the  part, which are due to the presence of massless gluons in the
angle between their three momenta i the center-of- |55, \ere canceled in the final result for the three-jet tran-
mass energy squared.yifj<y., the two particles andj are  g;tjon probability by adding an appropriate contribution from

combined into a new pseudoparticle with momentum the four-parton final state. In the latter contribution, which is
b 4D 3) a purely tree-level one, the IR divergences appear due to the
Pk=PiT P radiation of soft and/or collinear massless gluons. To sepa-

rate the IR divergent part of the four-parton contribution, the
phase-space slicing methddee[21], and references cited
therein has been used. In this method the integration over a

The Cambridge algorithm is defined by the same test varithin slice at the edge of the phase spazentaining the soft
and the collinear singularitigsis performed analytically.

able, Eq.(2), and the same recombination rule, Eg), as X ”» :
Durham. The new ingredient of the Cambridge algorithm is! "€ the IR singularities coming from three- and four-
parton final states are canceled analytically. The remaining

the so-calledbrdering variable 4 )
finite pieces from both three-parton and four-parton pro-
Vij=2(1—cosb;)). (4) cesses are integrated numerically over the three-jet phase
space defined by the specific jet algorithm. The four-jet cross
In this algorithm, first, the pair of particles, which has mini- section at the leading order, which is IR finite, is also ob-
mal ordering variable;; , is selected. Then one computgs  tained by numerical integration over the four-jet part of the
four-parton phase space.

The procedure is repeated again and again ygtity, for
all pairs of (pseudgparticles. The number ofpseudgpar-
ticles at the end defines the number of jets.

3By the word “particles” we mean here both the real hadrons
detected at experiment and the partons entering the theoretical cal*Dimensional regularization was used to regularize both ultravio-
culation. let (UV) and infrared(IR) singularities in the whole calculation.
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Details of the NLO calculation for the Durham and some o ag(w)
other popular jet clustering algorithms were presented in Ry =1+
[4—6]. In the case of the Cambridge algorithm, although all
principal calculational steps of the three-jet heavy quark pro-
duction ine*e™ annihilation at NLO remain the same as in X
other algorithms, the practical implementation of this scheme
turned out to be more involved due to more complex realiza
tion of the Cambridge jet finder.

ao(Ye) + Mol 1)

™

bo<r_b,yc>+“sff)€1(r7,.yc,m), ®

wherer p(u) =m2()/m2 and the new functiob; is related
to by andb;, introduced in Eq(6), via

lll. THE OBSERVABLES by(rp.Ye.m) =by(ry,Ye) +20o(ry,Ye)
In this paper we study in detail the following ratio of 4 o u?
three-jet rates in the Cambridge jet algorithm: X §—Iogrb+log — |- 9
mz
b b
Rm:FSi(yc)/F ) Effectively, the use omy(u), instead oM, corresponds to
3 rgj(yc)/r' ' the use of a different renormalization scheme. Although at

the perturbative level both expressions, E@g.and(8), are
equivalent, numerically they give different answers since dif-

In the above equatioﬁgj andI"® stand, respectively, for the f t hiah d tributi lected. Th d
three-jet and the total decay widths of tAéboson with ab erent higner-order contributions are neglected. 1he sprea
of the results gives an estimate of the size of higher-order

quark in the final state. Analogously, the quantities with the

superscripti denote the sum of the decay widths into light COI;ZCS'C;ZS-Ssed in the previous section. the phase-space in-
quarks (=u,d,s) which all are considered massless. Iscu ! previou lon, P P !

The ratioRg' can be written in the form of the following te%rﬁtiofn(#p tc;)fivefo!o) in rt1he cglcu!at:jon of the NI.‘O I?ecag/_
expansion ino, width of theZ boson into three jets is done numerically. This
s numerical integration is rather time consuming. Hence, we
() () found it very convenient to fit the numerical results with
bl_ As\H Fs relatively simple analytical functions. Because very smyall
Re=1+ = a0(¥e) ¥ ro| Dolre.Ye) + == ba(rp.ye) | values are considered in the case of the Cambridge scheme,
(6)  these fits are more complex and involve more parameters
than the ones for the Durham algorithm describedih A

wherer,=M?2/s, with M, being the heavy quark pole mass, Fortran code containing the fits to the functidnsandb, (or

ands=m3 at theZ peak. b;)® can be obtained from the authors upon request. The
Let us remark that the double ratio in E¢p) differs  numerical results foRS are presented in the next section.
slightly from the oneR3?, considered if22,4] with a nor- In the next section we also give numerical results for the

malization to theZ-decay width of only one light flavor, the ratio of differential two-jet rates, defined as follows:
d quark. In contrast t&Y) , such a double ratio is equal to the

unit for a vanishingo-quark mass. The main difference be- bl
tween the two observableRS' and R3Y, is due to the tri- 2
angle one-loop diagrani®3], which give a nonzero contri-
bution even in the case of massldssquarks taken into
account by a functioray(y.) in Eqg. (6). The difference is,
however, very small numerically, smaller than 0.2%.

The functionsb, andb; in Eg. (6) describe, accordingly,
the quark mass effects at the leading and the next-to-leadi
order in the strong coupling and depend on the jet clusterin
scheme. Although, for convenience, the leading polynomial
dependence om, has been factorized out in E@6), the

exact dependence on the heavy quark mass is kept in trWhereq is the quark flavor and’?1j is the four-jet decay

functionsbg(ry,yc) andby(ry,,ye). . . )
Using the known relationship between the perturbativewr'ldthI datb thehleadmg orI(Ijer. Thi v\fx\}ue‘ﬁmy_c O'nocl)zlq'. (1?1)
pole mass and th®IS scheme running ma$g4] should be chosen small enough. We fty;=0.001 in the

numerical analysis.
The differential ratidD5' is interesting because it contains

T3 (Ye+ Aye/2) T3 (yo— Ayc/2) TP
[Foj(Yet Aye/2) = oy(ye—Aye/2) )T

10)

Here,I'}; andT'y; denote the two-jet decay widths of tiZe
boson with ab quark and light quarks in the final state,
correspondingly. The two-jet decay width at the ord?éug)

is calculated from the three- and the four-jet widths through
rﬁe identity

M9=r3+T3+Tg;,

2

2a4(p) | 4 mj, different information than the rati®?'. In addition, while
M3=mZ(w)| 1+ ; 37 log— |, (7 °
o

we can re-express Ed6) in terms of the running mass SAlthough, the two function®, andb, are related via Eq(9) we
mp(w). Then, keeping only terms of ordél( «) we obtain  performed independent fits for these functions.
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FIG. 1. The observableR' andD5' as a function ofy in the
Cambridge algorithm at the NLO. The dotted lines give the NLO
corrected values using E¢) for a pole mass oM,=4.6 GeV.
The dashed lines give the observables at the NLO using&tdior
a running mass afh,(my)=2.8 GeV. The renormalization scale is
fixed to u=m; and eg(m;)=0.118. For comparison we also plot
the LO results foM,=4.6 GeV (lower solid lineg and my(m;)
=2.8 GeV(upper solid lines

values ong' measured at differeny, are strongly corre-
lated, the differential rat®5' can be analyzed as a function
of y.. The whole consideration diRg' discussed above is
also applied here. Fd5' we use expansions im, similar to
those in Eqs(6) and(8), see[5], and we fit the correspond-
ing LO and NLO numerical results to simple analytical func-

tions equivalent td, andb; (b,).

IV. PERTURBATIVE RESULTS

PHYSICAL REVIEW D 60 114006

results written either in terms of the pole m@Es|. (6)] with
Mp=4.6 GeV, or in terms of the running quark massrgt
[Eg.(8)] with my(mz)=2.8 GeV. The renormalization scale
is fixed to u=m; and ag(m;)=0.118. For comparison we
also showR3' and D5' at LO when the value of the pole
mass,My,, or the running mass ah;, my(m3), is used for
the quark mass. Note that one cannot distinguish between
different definitions of the quark mass in the lower order
calculation. Mass effects monotonically grow for decreasing
Y., they are very significant for both observables and in the
case ofD5' exceed 10% for small values gf .

From this figure one sees a remarkable feature of the NLO
result in the considered range wf, 0.005<y.<0.025, for
the Cambridge scheme: the NLO corrections, in the case
when the running mass is used are significantly smaller, es-
pecially for RY', than the corrections in the case with the
parametrization in terms of the pole mass. In other words,
using the running mass at the, scale in the LO calculations
takes into account the bulk of the NLO corrections. This
situation, although does not guarantee, however, suggests
that also next-to-next-to-leading and higher-order corrections
are small for the observables parametrized in terms of the
running mass at the1, scale, i.e., one has a better descrip-
tion of mass effects in terms of a short distance parameter,
my(my), than in terms of a low-energy parameter like the
perturbative pole mass.

The theoretical prediction for the observables studied con-
tains a residual dependence on the renormalization gcale
when written in terms of the pole mass it only comes from
the u dependence imxg(u), when written in terms of the
running mass it comes from bothy(x) and the incomplete
cancellation of thew dependences betweem,(«) and the
logs of w which appear in Eq(9). The dependence om is
usually regarded as an estimate of the effect of the unknown
higher-order perturbative corrections. In Figa2we present
the u dependence of the two NLO predictions, the pole mass
prediction(NLO-M) given by Eq.(6) and the running mass
prediction[NLO-m,(m;)] given by Eq.(8), for the ratioR%'
in the rangem,/10< u<m; at a fixed value of/.. We use
the following one-loop evolution equations:

a(mg)
K

a(u)= My( ) =My(mz)K~70"Po, (1)

wherea(u) = ag(u)/ 7, K=1+a(m;) By log(u?mé) and

2
11- 5N

3 l '}’021,

F

1
,BOZZ{

with Ne=5 the number of active flavors, to obtain(uw)

and my(x) from ag(mz)=0.118 andmy(m;)=2.8 GeV.
The NLO-my(m;) result(dashed ling shows a remarkable
stability with respect to the variation of the renormalization
scale and the corrections with respect to the LO prediction
[LO-my(my)] remain small for all the values qf. Instead,

In Fig. 1 we present the results for the two observableshe NLO-M,, prediction(dotted ling has noticeably stronger

studied,RS' and DY', as functions of the jet-resolution pa-
rametery. in the Cambridge algorithm. We plot the NLO

dependence on the renormalization scale. The NLO correc-
tions in this case remain sizable for all the valuesuofind
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5, 1 we use Eq(7) at u=M, and again Eq(11) to perform the
E (a) CAMBRIDGE y, =.01 evolution fromu =M, to u=m; and finally get a value for
099 |- ¢
- m,(my). The two procedures, denoted as Nb@¢m,) and
098 NLO-_I\/Ib, respectively, give a different answer si_nce diffe_r-
s LO-m,(m;) ent higher orders have been neglected in the intermediate
097 - S eeccccmcccmmmmmmmm e steps. The maximum spread of the two results in the whole
E e NLO-my(m,) u-range under consideration can be interpreted as an esti-
006 F T mate of the size of higher-order corrections, i.e., of the the-
= NLO-M, oretical error in the determination of the bottom-quark mass
0.95 L from the experimental measurementR} .
094 | We see from Fig. @) that the first approach is very stable
= with respect to the choice of the scale used in &j. The
093 LO-M, obtained b-quark mass,my(m;), varies only =50 MeV
E. T when the scale is varied in the range=m;, and u
0.92 0 20 40 60 80 100 =m,/10. In the same range @f, the estimated error in the
Durham algorithm was foung#] to be =200 MeV. On the
u (GeV) contrary, if one uses Ed6) the extracted quark mass has a
strong scale dependence, especially for smallalues and
S 34 the estimated error is very sensitive to the choice of the
) - (b) R,bi(y _=.01)=.966 smallest possible value of the renormalization scale. Cutting
o 33F 3"e > T
= = CAMBRIDGE as before aj.= mzllo,' thg extracted pqle mass varies in the
EN 32 range=300 MeV which is translated inta 240 MeV for
3 = my(my). Let us note that a furthet-=20 MeV should be
g 3 = added due to the uncertainty in the strong-coupling constant
s | NLO-m,(m;) 1-loop Aag(m,)=+0.003.
E N oS Although, our observables are formally of ordéx«s)
29 = NLO-my(m;) 2-loop and, therefore, compatible with the use of one-loop
28 . renormalization-group equatioRGE’s) to connect the run-
= N NLO-M. 1-I ning parameters at different scales, as a check of the stability
27 | Se. =My, 1-loop : :
- ... of our results we have also repeated the analysis using two-
26 E NLO-M, 2-loop™~~-~..__ loop evolution equationf25]
2.5 E L1 | I | L1 | L1l | L1 a(mz)
(i} 20 40 60 80 100 a(p)= EDETRY
1(GeV) K+a(mz)bs| L+a(my)by K
FIG. 2. (a) Renormalization scale dependence for a fixed value 1+a(my)c,
of y.. Same labels as in Fig. (b) Extracted value ofn,(m;) from my(Mz) = mb(M)Kgom, (12

a fixed value oﬂ?g' using either the pole mass expressidiLO-
My) in Eqg. (6) or the running mass expressi@NLO-my(my)] in where L=logK and ¢;=g;—Db;g, with b;=p51/8,, ;
Eq. (8) as explained in the text. Solid lines obtained by using one-_ /8. and

. . . ; Yi!Bo
loop running evolution equations to connect the results at different

scales and dashed lines obtained by using two-loop expressions. 1

_1 102 38N _ 202 20
'81_1_6 _g Fls 71_1_6

T—gNF}. (13

increase for decreasing. Note also that, as one would ex-

pect, for low values o the two NLO predictions, in terms g 56 of two-loop RGE's corresponds to the dashed lines
of the running mass and in terms of the pole mass, becomiﬁ Fig 2(b). Again a value of the quark mass extracted via the
very close_ to each Othegl‘ running mass parametrization remains more stable with re-
_For a given value oR;" we can solve Eq(6) [or Eq.(8)]  gpect to variation of the scaje and changes only slightly.
with respect to the quark mass. The result, shown in Rio). 2 The mass extracted through the pole mass receives a signifi-

for a fixed value ofR3', depends on which equation was cant shift of 200 MeV when the two-loop RGE'S are used.
used and has a residual dependence on the renormalization

scaleuw. The curves in Fig. @) are obtained in the following
way: first from Eq.(8) we directly obtain for an arbitrary
value of u betweenm; and mz/10 a value for the bottom- In the DELPHI analysis on the measurement of the
quark running mass at that scate,(«), and then using Eq. b-quark mass effects based on the Durham jet clustering al-
(11) we get a value for it at th& scale,m,(m,). Second, gorithm the impact of the fragmentation process on the ob-
using Eq.(6) we extract, also for an arbitrary value @f servabIeRg' was studied/3] and quantified by adding in

betweerm, andm,/10, a value for the pole maddl,. Then  quadrature two different source of errors. The first uncer-

V. HADRONIZATION CORRECTIONS

114006-5
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Hadronization Uncertainty

. —— Chad

0.1

FIG. 3. Comparison of the hadronization un-
certainty (opa9 Obtained when using either the
Cambridge or Durham algorithm. The dashed
curve shows the mass correction at LO for the
pole massM,=4.6 GeV. The dotted curve in-
dicates the value of the difference between the
LO predictions for the two mass value®,
=4.6 GeV andm,(m;)=2.8 GeV. The Cam-
bridge algorithm is observed to have a larger
stable region ory. than Durham reaching at the
same time a higher sensitivity to both the mass
Cambridge correction and the difference between the two LO
predictions.

0.08

0.06

0.04

&
L

10°
Ye

-
o
-
(-]

tainty o, Was obtained by varying the most relevant param-y. values around 0.005 than for Durhamyatvalues around
eters of the string fragmentation model incorporated in0.02. In F|g 3 the difference between the theoretical predic-
JETSET[26] within an interval of= 2o from its central value tion of R} at LO in terms of the pole mas#l,=4.6 GeV

as tuned by DELPH([27] and explained in Ref[3]. The  with respect to that obtained using the running mass
second uncertainty,,,q Was the result of analyzing the de- my(mz)=2.8 GeV is also shown. A higher sensitivity to
pendence on the fragmentation model itself by comparinghis difference is again found for the new Cambridge jet
the HERWIG [28] model withJETSET[26]. The difference on algorithm in the valid, flaty. region (y.>0.004) thus en-
the fragmentation correction factors obtained for each modetbling a more significant test on which of both predictions
were considered as a source of systematic errors. This in faagrees better with data.

was the largest contribution to the total error of the measure-

ment. The final correction adopted was the average of those

two models and théragmentation modalincertainty ¢qq VI. CONCLUSIONS

was taken to be half of their difference. The total error due to

the lack of knowledge on the hadronization process was ex- /& have calculated the next-to-leading order QCD cor-
pressed as rectlons to the heavy quark three-jet production cross section

in e"e” annihilation as well as the leading-order four-jet

> > production cross section using the new Cambridge jet clus-
Thad ¥e) = Vol Vo) + Timod Yo) (14 tering algorithm. The hadronization corrections were also es-

timated. Comparing with previous studies, this algorithm al-

which at y,=0.02 in the Durham scheme was,,{(Y.) lows one to extend the analysis into a region of smaller

=0.007[3] and its dependence as a functionygfis shown values of the jet resolution parameter, downyte=0.004,

in Fig. 3. The decision of the measuralyiginterval region, ~Where the sensitivity to the heavy quark mass effects in-

y.>0.015 was also connected to the fragmentation correccrease.

tion which was required to be relatively flat and the four-jet In particular, we have studied in detail the double ratio

contribution small €2%). For comparison purposes, an R3 and the differential double ratll . We have compared

equivalent analysis has been performed using the new Canthe NLO results expressed in terms of the perturbative pole

bridge jet reconstruction algorithm and the results obtainednass and in terms of the running mass of the heavy quark at

are also presented in Fig. 3. A larger flat region is ob- them; scale. We found that the NLO corrections in the case

served in the case of Cambridge with respect to Durhanwhen the running mass was used are remarkably small. This

which can be extended up tn.=0.004 with the four jet is especially true forRY', where tree-level expressions in

contribution still being small=8%. The total absolute error terms of my(m;) give a very good approximation to the

is higher for Cambridge than for Durham but the relativecomplete NLO result, which, when expressed in terms of

sensitivity to the mass correction is higher for Cambridge atmy(m;), is almost independent of the renormalization scale.
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