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Abstract

Bose-Einstein Correlations (BEC) of three identical charged pions were studied itf4
hadronic 2 decays recorded with the OPAL detector at LEP. The genuine three-pion correlations,
corrected for the Coulomb effect, were separated from the known two-pion correlations by a
new subtraction procedure. A significant genuine three-pion BEC enhancement near threshold
was observed having an emitter source radius ef 0.580+ 0.004 (stat.}+ 0.029 (syst.) fm and
a strength ofAz = 0.5044 0.010 (stat.x- 0.041 (syst.). The Coulomb correction was found to
increase thaz value by~ 9% and to reduces; by ~ 6%. The measuret corresponds to a value
of 0.707+ 0.014 (stat.x- 0.078 (syst.) when one takes into account the three-pion sample purity.

A relation between the two-pion and the three-pion source parameters is discussed.

(Submitted to European Physical Journal, C)
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1 Introduction

Bose-Einstein Correlations (BEC) between pairs of identical bosons, mainiy tite system, have

been extensively studied in a large variety of interactions and over a wide range of energies [1, 2].
These correlations, which are present when the bosons are near to one another in phase space, are
used to estimate the size of the emitter of the particles and more recently in QCD-based models to
describe fragmentation and hadronisation in high energy reactions [3, 4]. The two-pion BEC effect
has lately also been discussed [5] in connection with the measurement of the W mass in the reaction
ete” — WTW~ — hadrons at LEP2.

In systems of more than two identical bosons, BEC are also expected to be present. These higher-
order correlations may affect the multi-hadron production and are also of interest in intermittency
studies [6]. Detection of the “genuine” multi-ooson BEC is complicated by the fact that they have
to be isolated from the lower-order boson correlations and therefore require large data samples. In
addition, systems of several identical charged bosons, placed nearby in phase space, are subject to
a relatively large repulsive Coulomb interaction which may suppress the BEC effect. As a conse-
guence, only relatively few higher order BEC studies of three and more charged pions have been
reported [7—13]. In those studies, mainly due to lack of statistics, it was not possible to isolate and
verify the genuine multi-boson BEC from the lower-order ones. Attempts have been made to infer
from the measured BEC of the multi-boson systems the individual contribution of each of the higher
order correlations by model dependent formulae. A significant genuine BEC signal of three identical
charged pionsie et 1tt, has been reported in a hadron-proton interaction experiment [12] and more
recently in a LEP experiment [13] where, however, the Coulomb effect was neglected.

Here we report on a BEC study of the& e et system carried out with a large sample of approx-
imately 4x 10° hadronic 2 decays, recorded by the OPAL detector at the eLEP collider during
the years 1991 to 1995. In this analysis, which takes into account the Coulomb effect, we have iso-
lated the genuine three-pion BEC and estimated the size of the emitter. In Section 2 we introduce the
extension of the two-boson BEC to the system of three identical bosons. Section 3 is devoted to the
procedure used for the Coulomb correction of the three-pion BEC and in Section 4 the experimental
details are given. In Section 5 we describe our method for the extraction of the getuifier
BEC and present the results obtained from our analysis. The relations between the two-pion and the
genuine three-pion BEC parameters are explored in Section 6. Finally, the summary and conclusions
are presented in Section 7.

2 The three-boson correlation function

In describing the three-boson BEC we follow the approach which was also adopted, for example,
in [2]. The BEC of pairs of identical bosons can be formally expressed in terms of the normalised

function ( ) I i d
P2(P1, P2 o o do
= =0 , 1

> pa(py)pa(p2) dpldpz/{dpldpz} @
whereo is the total boson production cross sectipf(,pi) anddo/d p are the single-boson density in
momentum space and the inclusive cross section, respectively. Sinpgéply, p2) andd?c/d pdp,
are respectively the density of the two-boson system and its inclusive cross section. The product of the
independent one-particle densitpg p1)p1(p2) is referred to as the reference density distribution, or
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reference sample, to which the measured correlations are compared. The inclusive two-boson density
p2(p1, p2) can be written as:

P2(P1, P2) = P1(P1)P1(pP2) +Ka(p1, P2) , 2)

whereKz(p1, p2) represents the two-body correlations. In the simple case of two identical bosons the
normalised density functioRp, defined in Eg. 1, already describes the genuine two-body correlations
and has been referred to in previous BEC studies of OPAL [14, 15] aGstleerrelation function.

Thus one has

Co=Ry = 1+ Kz (p1, p2) , (3)

whereK (p1, P2) = Ka(p1, p2)/[P1(p1)p1(p2)] is the normalised two-body correlation term. Since
Bose-Einstein correlation are present when the bosons are close to one another in phase space, one
natural choice is to study them as a function of the varigbleefined by

B=0fy=—(p1—P2)* =M5— 42,

which approaches zero as the identical bosons move closer in phase spacep; ldettee four-
momentum vector of thigh particle,u is the boson mass arhd% is the invariant mass squared of the
two-boson system.

In the parametrisation proposed by Goldhaber et al. [@fhas the form
Co(Q2) = 1+ Ao %2 4)

wherer, estimates the size of the two-boson emitter which is taken to be of Gaussian shape. The
strength of the BEC effect, frequently referred to as the chaoticity parameter, is measuxgd by
which varies in the range 8 Ao < 1.

The inclusive density of three bosomsy( p1, p2, p3), includes the three independent boson mo-
mentum spectra, the two-particle correlatisasand the genuine three-particle correlatiBasnamely:

P3(P1, P2, P3) = P1(P1)P1(P2)P1(P3) + ) P1(Pi)Ka(Pj, Pi) + Ka(P1, P2, P3) , (5)
3

where the summation is taken over all the three possible permutations. The normalised inclusive
three-body density, is then given by
P3(P1, P2, P3)

® = palppa(p2)pa(po) 12+ K3 (P, P2, Po) ©)

Here

_ 2@ P1(P)K2(pj; k) @)
Y27 pi(py)pa(p2)pi(ps)

represents a mixed three-boson system in which only two of them are correlated, and

Ka(p1, P2, P3)
p1(p1)P1(P2)P1(P3) ’

represents the three-boson correlation. In analogy @ttone can define a correlation functi@g,
which measures the genuine three-boson correlation, by subtractindrfrtive term which contains
the two-boson correlations contribution. Thus

C: =R3—Ri2 = 1+ K3 (P1, P2, P3) , 9)
5

K3 (p1, P2, P3) = (8)



which depends only on the genuine three-boson correlations. For the study of the three-boson corre-
lations we use the variab(@; which is defined as

Q5 = zqﬁj = M5-9%,
©)

where the summation is taken over all the three differgnboson pairs anM% is the invariant mass
squared of the three-boson system. From the definition of this three-boson variable it is clear that as
Qs approaches zero so do the thoggvalues which eventually reach the region where the two-boson
BEC enhancement is observed.

The genuine three-pion correlation functiog(Qz) can be parametrised by the expression [9]
C(Qs) = 1+2hge B3, (10)

whereAs, which can vary within the limits & A3z < 1, measures the strength of the three-boson BEC
effect andr3 estimates the size of the three-boson emitter. The factor two which multhpli@sses

from the presence of two possible diagrams with exchange of all the identical pions within a triplet.
To extract from the data values for the strenigttand the emitter size;, we modified Eq. 10 to read

C3(Qs) = K(1+2\geB3)(1+£Qs), (12)

wherex is a normalisation factor and the linear tefin-£€Qs) accounts for the long range correlations
arising from charge and energy conservation and phase space constraints. High€sbeders for
the long range correlations were found not to be needed in the present analysis.

3 The Coulomb correction

The observed BEC of identical charged bosons is suppressed by the Coulomb repulsive force. To
account for this effect a correction to the measured BEC distribution is requiréth(Qb) is the
two-boson correlation in the presence of the Coulomb effect then it is related to theSHe.)

through the functiors,(Qz), so that

C2(Q2) = G2(Q2)C5 " (Q2) - (12)

In the case that the reference sample is a Monte Carlo generated data without the Coulomb effect,
G2(Q2) can be expressed by the Gamow factor [17]:

G2(Q2) = 2m/ (™M -1), (13)

wheren = deme1e21/Q2. Here g and e are the charges, in positron units, of the two bosons having

a mass ofl, andaenm is the fine-structure constant. Recently alternative Coulomb corrections [18, 19]

for the two-boson system have been proposed, which are based on non-Gaussian parametrisations.
These could not be extended to the three-pion system and therefore were not used in our analysis.

For a given three charged bosons system, with boson pairs h@yimalues ofqs 2, 01,3 andap 3,
the Coulomb correctiofs3 can be approximated, in terms of t@e function by [9]:

G3(Q3) = (G2(01,2)G2(a2,3)G2(01,3)) (14)
6



where the average is taken over all experimentally accessible valggsvatiich satisfy the condition
QB =33 j -

The functionG3(Qs) can be evaluated through Eq. 14 or by using a slightly more precise for-
mulation proposed in [20]. In our analysis the differences between the results of these two methods
were smaller than the statistical errors so that the simpler method was sufficiently accurate for our
purposes.

4 Experimental setup and data selection

4.1 The OPAL detector

Details of the OPAL detector and its performance at the LE® ecollider are given elsewhere [21].
Here we will describe briefly only those detector components pertinent to the present analysis, namely
the central tracking chambers.

Besides a silicon microvertex detector, the central tracking chambers consist of a precision ver-
tex detector, a large jet chamber, and additiarethambers surrounding the jet chamber. The vertex
detector is a 1 m long, two-layer cylindrical drift chamber that surrounds the bearh pipe jet
chamber has a length of 4 m and a diameter.@fr8. It is divided into 24 sectors ip, each equipped
with 159 sense wires parallel to the beam ensuring a large number of measured points even for parti-
cles emerging from a secondary vertex. The jet chamber also provides a measurement of the specific
energy lossdE/dx, of charged particles [22]. A resolution 0f-34% ondE/dx has been obtained,
allowing particle identification over a large momentum range. Ztleambers, 4 m long, 50 cm wide
and 59 mm thick, allow a precise measurement ofztheordinate of the charged tracks. They cover
polar angles in the regidrcoq0)| < 0.72 and 94% of the azimuthal angular range. All the chambers
are contained in a solenoid providing an axial magnetic field of 0.435 T. The combination of these
chambers leads to a momentum resolutioagf pr ~ 1/(0.02)2+ (0.0015 pr)2, wherep; in GeV/c
is the transverse momentum with respect to the beam direction. The first term under the square root
sign represents the contribution from multiple Coulomb scattering [23].

4.2 Data selection

The analysis was performed with the OPAL data collected at LEP with centre of mass energies on
and around the Zpeak with the requirement that the jet andhambers were fully operational.

The hadronic £ decays were selected according to the number of charged tracks and the visible
energy of the event [24]. We applied the same track qualitydx cuts described in a former
OPAL BEC study of two identical charged pions [14]. Furthermore, events with a thrust angle of

| cogBnrust)| > 0.82 with respect to the beam axis were rejected. Finally we accepted only events
with a relative charge balance {{h* —n~)|/(n" +n~) < 0.25, wheren™ andn™ are respectively

the observed numbers of positively and negatively charged tracks. Following these criteria a total of
2.65x 10° hadronic 2 decay events were used in the analysis.

To avoid configurations with overlapping tracks, we rejected pion pairs if their invariant mass was

LA right-handed coordinate system is adopted by OPAL, where-tinds points to the centre of the LEP ring, and
positivezis along the electron beam direction. The an@esdq are the polar and azimuthal angles respectively.
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less than @1 GeV and if the opening angle between them in the plane perpendicular to the beam axis
was less than.05 rad. In the present analysis all charged tracks are assumed to be pions. From Monte
Carlo (MC) studies [24] we have estimated that the average pion purity of our charged track sample is
89.3% with a systematic uncertainty &f2.2% and a negligible statistical error. Thus the pion purity

of the three charged track system is3+ 5.3%.

5 Analysis and results

The BEC analysis used the hadronftdecay data of OPAL where in each event all possible® e
combinations were taken as the data sample. For the reference distribution we used a Monte Carlo
generated sample [25] 06410° JETSET 7.4 events which have passed a full detector simulation [26]
but do not include BEC and Coulomb effects. This JETSET Monte Carlo program, which includes
most of the known resonances which decay intortfier and retree it final states, was carefully

tuned to the OPAL data [27]. Here one should note thatthett™ systems of the measured data
contain one pair of identical pions and therefore cannot be used as a reference sample. Thus:

N**(Qs)
M=++(Qs) ’

whereN*+*(Qz3) is the number of ther"e" 1" data combinations ard***(Qs) is the correspond-

ing number of Monte Carleott " 1tt combinations at the san@s value. The Monte Carlo sample

was normalised to the data in@s region far away from any observable BEC enhancement. This
was achieved by requiring that the integrated number of the Monte Carlo entries @ ttege

1.6 — 2.0 GeV was equal to that of the data. The meas®Rg3) distribution is shown in Fig. 1la

in the range of @ < Q3 < 2.0 GeV. The data points belowZb GeV have relatively large errors,

and a lower three-track separation efficiency of identical charged tracks. Therefore a lower limit of
0.25 GeV was imposed on the analysis. In the figure a clear enhancement is observed in the region
belowQs =1 GeV. This enhancement can be interpreted as coming from both the known two-pion
and from the genuine three-pion BEC.

Rs(Qs) = (15)

5.1 The extraction of the genuine three-pion BEC

To extract the genuine three-pion BEC one has to subtractRs§@s) the contribution coming from
the well known two-pion BEC. In our analysis this last contribution is evaluated from the mixed-
chargedt" et TT7 combinations of the data. To this end, it is convenient to reviRit€s) as follows:

N==5(Qs) 14 N=5(Qs) —M**(Q3) 14 5+(Qa)
M+EE(Qz) M=E£(Qs) a M=E£(Qs)

The total excesd™**(Qs) above the Monte Carlo expectation has two contributions. The first from
the two-pion BEC®, **(Qs), and the second from the genuine three-pion BEG;d Qs), so that:

R3(Q3) = (16)

5(Qs) = 8 (Qa) + Jyonuind ) - (17)
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Figure 1: Therc're et BEC measured distributions, without Coulomb correction, as a function of
Qsz. (a) the measure®s(Qz) and Ry 2(Q3) distributions before subtraction of the two-pion BEC
and (b) theC3(Qs) distribution after the subtraction of the two-pion BEC. These measurements are
represented by points with statistical error bars. The solid line in (b) represents the fit result of Eq. 11,
in the range @5< Q3 < 2.0 GeV, to the measurez(Qs) distribution.




From this it follows that what should be subtracted fr&3(Q3) to obtain the genuine three-pion

BEC, is:
8, " (Qa)

R12(Q3) = I\/Izi?(Qg)

Because we utilise for the subtraction the same events used fgg(fg) measurement, there exists
in every event with given charged multiplicity and charge balana®= |n™ —n~| values a relation
betweend; == (Qs) and 57 (Qz) = N*+T(Q3) — M**F(Qg). HereN*+7¥(Qjy) is the number of
TETE T combinations in the data a7 (Qz) is the corresponding number of combinations for
the MC generated sample properly normalised to the data iQ4mange of 16 — 2.0 GeV.

(18)

If we definen™*T as the number aft"1t"Tt" combinations in a given event, then it can be related
to n***, the number oft" rt* Tt combinations. A straightforward combinatorial calculation yields
that for an event with givem andA values, one has:

ntEF m— A?
=3(1+4 . 19
nt++ ( * mZ—4m+3A2> (19)
In our analysis we utilise, after the application of the appropriate cuts, all the hadrociecays
lying within a wide range of multiplicity and charge balance. If we defime*= /n**T) as the ratio
n*++ /n*+F averaged over all multiplicity and charge balance values in our data, then:
n:l::l::l:

3+ (Q9)ds = <nﬂ¢> x [547(Qa)dQs. (20)

The integrations are carried out over tgregion wheres; =+ (Qs3) andd*+7 (Qs) are different from
zero. We further verified from MC studies that, to a good approximation, relation (20) holds also in
its differential form, that is:

T+

34(Q0) = (s ) ¥ 87(Q). (21)

The averagén**+ /n**T) depends on the multiplicity and the charge balangedistributions of
the data sample. Using the MC hadronftd&cay sample we determined, by counting the number of
combinations in th€z range of 16 — 2.0 GeV, that/n**F /n**+) = 3.69 with a negligible statistical
error. The same value is obtained when the MC sample is replaced by the data sample. This value
shifts to 371 when theQs range is enlarged to.3— 2.0 GeV. We also studied the variation of this
ratio on the pion purity. To this end we evaluated this ratio from the MC sample using only tracks
which were generated as pions with the result that™ /n**+) = 3.70. The effect of the shift from
3.69 to 3.71 on the BEC parameters was found to be negligible in comparison to the statistical errors
and to other systematic uncertainties (see Table 2).

In Fig. 2 we show thé***(Q3) and the(n*** /n**F) x &+ (Qz) distributions as a function

of Q3. As can be seen, the two distributions are similar in the higharegion, namely betweenD

and 20 GeV. The slight difference between the two distributions can be attributed to the systematic
uncertainties given in Table 2, in particular those listed as items (f) and (g). Thus i@4h&nge

the excess oft" 1ttt combinations is fully accounted for by the excess seen imthe"t™ due to

the two-pion BEC. In the lowe®3 region an excess @ *+(Qs) over (n*+* /n**F) x +7(Qjz)

is observed which can no longer be attributed to the two-pion BEC and is therefore identified as the
genuine three-pion BEC contributioBy,. ', Qa). Thus:

Niii(Qg) 6ii:F(Q3) niii
MEEE(Qs)  MEEE(Qq) <nj:j:qt>

10

C3(Q3) = R3(Q3) —R12(Qa3) = (22)




o (104 entries / 0.01 GeV)
e

Figure 2: (2% (Qs) and (b)(n*** /n*+7) x §*F(Qs) as functions of)3. The errors plotted are
the statistical ones. The difference between the distributions (a) and (b), in theQarge.7 GeV,
is due to the genuine three-pion BEC.

In the present analysis we have used Eq. 22 to subtract the contributions due to the two-pion BEC.

The measured distributioRy 2(Qz) is shown in Fig. 1a and the resulti3(Qz) distribution is
shown in Fig. 1b, where a significant genuine three-pion BEC enhancement is clearly present. The
solid line in Fig. 1b represents the fit result of Eq. 11 to the data. The fitted valuesamidr3 and
the correlation factop, , are given in Table 1 together with thé value divided by the number of
degrees of freedom (d.o.f.).

5.2 Evaluation of the Coulomb effect

The Coulomb correction to the genuine BEC, define®gsQs) in Eg. 14, can be applied either to

the data or to the MC reference sample. These two possibilities are not expected to yield identical
results since, unlike the MC generated sample, the data are affected by both the BEC and the Coulomb
interactions. In our BEC analysis we chose to apply the Coulomb correction to the data and utilised
the results coming from the second possibility as a measure of the systematic errors.

The Coulomb correction was accounted for by assigning to every three-pion combination of the
data a weight equal to/1G2(q1,2)G2(02,3)G2(q1,3) ). This automatically assures thHag(Qs), defined
in Eq. 14, is averaged only over all accessible experimental valugg .oUsing this procedure, the
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| Parameter| Without Coulomb Corr| With Coulomb Corr |

A3 0.462+0.012 0.504+0.010
ra [fm] 0.616+0.005 0.580+4-0.004
K 1.003+0.001 1.026+0.001
£ [Gev] —0.001+0.001 —0.015+0.001
Par +0.887 +0.883
x?/d.o.f. 218/171 190/171

Table 1: Results of the fit of Eq. 11 to the measu@g(s) distributions without (Fig. 1b) and with
(Fig. 4b) Coulomb correction carried out over the range.8606< Q3 < 2.0 GeV. The fitted values
are the genuine three-pion emittgrand the BEC strengtks together with the long range correlation
parametee and the normalisation facter The errors are the statistical ones obtained by the fits, and
Par is the correlation factor betwee andrs. The quality of the fits are presented by theiyd.o.f.
values.

Coulomb correction factor /IG3(Qz) can be evaluated at eve€y bin separately for ther e e
and therc ettt data samples. These correction factors are shown in Fig. 3a as a funct@n of
in the range from @5 to 20 GeV. The resulting Coulomb correction appliedd$iQ3), due to the
corrections toR3(Qs3) andRy 2(Qz), is shown in Fig. 3b where it is seen to rise @s decreases,
reaching the value of about 11%@$ = 0.25 GeV.

5.3 The correctedr=re=1et BEC distributions

The Coulomb corrected distributioR§(Q3), Ry 2(Q3) andCz(Qs) of the three-pion BEC, are shown
in Fig. 4. A clear genuine three-pion Bose-Einstein enhancement is present in tiig; legion,
from aboutQz = 0.7 GeV reaching a value @3(Qs) = 2.0 atQz = 0.2 GeV. The continuous line
in the figure represents the fit result@f(Q3) in the range @5 < Q3 < 2.0 GeV, as parametrised
in Eq. 11. The quality of this fit, given by %/d.o.f.= 190/171, represents an improvement over
the fit result obtained for the Coulomb uncorrec@gQs) distribution. The values obtained from
the fit arerz = 0.5804 0.004 fm for the emitter radius and a strengthAgf= 0.504+ 0.010, with
correlation factor op, , = +0.883. These are listed in Table 1 together with the fit resultg fand

€. A comparison between the results presented in the table shows, as expected, that theA@lue of
increases when the Coulomb correction is applied. We found\thiacreased by about 9% whereas
r3 decreased by about 6%.

5.4 Systematic errors

To estimate the systematic errors we have considered the effects xnahdrs results arising from

the choice of the data selection criteria and from the procedure adopted for the Coulomb correction.
We also investigated the effect on the results from our choice of the fitting range and the MC reference
sample. These are summarised in Table 2.

In order to estimate the systematic effects related to track and event selection the analysis was
repeated restricting the track selection criteria described in Section 4.2. To evaluate the possible

12
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| Fit variation | A3 | M3 | r3[fm] | Arz[fm] |

a. The reference fit 0.504+0.010 — 0.580+0.004 —
b. varying data selection cuts 0.519+0.017| +0.015| 0.561+0.007 | —0.019
c. MC Coulomb correction 0.4884+0.011| —0.016 || 0.586+=0.004 | +0.006

d. fitrange (25 < Q3 < 1.5 GeV 0.507+0.011| +0.003 || 0.5824+0.005| 40.002
e. fitrange B0 < Q3 < 2.0 GeV 0.471+0.011| —0.033 | 0.569+0.005| —0.011
f. addition of a long rang@% term | 0.506+0.010| 4+0.002 || 0.582+0.004 | +0.002
g. varying the MC reference sampl|e0.496+0.026 | —0.008 || 0.597+0.015| +0.017

| Total systematic error | — | 0.041 | — | 0.029 |

Table 2: Results of several fits of tli3(Qs3) parametrisation to the data given with their statistical
errors. The differenced)A3 andArz, between the parameter values of the reference fit (a) and the
others from (b) to (g) are added in quadrature to obtain an estimate of the combined systematic
uncertainty associated with the fittdg andrg values. These are given in the last row.

contribution from our choice to account for the Coulomb effect on the BEC we also applied the
Coulomb correction to the MC reference sample rather than to the data. Furthermore we considered
for the fit two alternativeQs; ranges. We also investigated the influence of adding a quadatic

term to the long range correlations. Finally, the systematic uncertainty coming from our choice of the
JETSET 7.4 MC reference sample has been estimated by repeating the analysis with the HERWIG 5.8
[28] generated sample. This alternative MC uses a totally different model of fragmentation (cluster
fragmentation) from that used by JETSET 7.4 (string formation and fragmentation). An estimate of
the over-all systematic uncertainties was obtained by summing in quadrature the differences between
each fit (b)—(g) and the reference fit (a).

The largest contributions to the over-all systematic error come from the choice of the selection
criteria and from the choice of the low€); fit range limit. As seen in Table 2, the results fgrand
A3 change by less than 4% when the Coulomb correction is applied to the Monte Carlo generated
sample. We observe thag is rather sensitive to the choice of the lov@@ylimit used as compared to
the change of3. In addition to the list given in Table 2, we also investigated other possible sources of
systematic effects, such as the choice of@aebin size used in the fit, and verified that they indeed
have negligible contributions. Finally, as noted above, the influence of the uncertainties of the ratio
(n+F /n*+£) on the subtraction formula and the fit results is also negligible.

Thus the final values of the BEC parameters arge= 0.580+ 0.004 (stat.}t 0.029 (syst.) fm
andA3 = 0.504+0.010 (stat.}-0.041 (syst.), where the uncertainties of the measured parameters are
strongly dominated by the systematic errors. In Fig. 5 the 68% and 95% confidence level correlation
contours for the BEC parameters are shown. The shape of the contours is determined mostly from the
systematic errors. Accounting for the three-pion purity gf113+ 0.053, the BEC strength amounts
to A5""=0.70740.014 (stat.}+ 0.078 (syst.) for a 100% pune“Tt-1t* system. The purity error of
Ob(l)J§63, due to the uncertainty of the MC generation rates, is incorporated in the systematic error of the
A3~ value.
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Figure 5: The 68% and 95% confidence level correlation contours for the genuine three-pion BEC
parameterds; andrs after Coulomb correction. The contours are calculated from the statistical errors
and the systematic uncertainties listed in Table 2. The best values are represented by the solid circle.

6 Relation to other experimental results

A relation between the two-pion and three-pion emitter radii is derived in Ref. [9] based on the Fourier
transform of the source distribution which is assumed to be of a Gaussian shape. This relation confines
the emitter ranges as determined from a fit t83(Qs):

r2/V3 <3< r2/V2, (23)

wherers, is the two-boson BEC emitter size. Since in our analysis the emitter radius is determined
from the genuine BEC distributio®z(Qs), the previous bounds reduce to the equality:

r3 = rz/\/é. (24)

In a former OPAL analysis [15], of the two-pion BEC present in the hadrofidegays, two options

were adopted for the reference sample. The first utilised the correlations of the pairsrofin

the data and the second used the two-pion correlations of Monte Carlo generated sample. Since
in our analysis the reference samples were taken from the Monte Carlo generated events, we have
checked relation (24) with the previously measured OPAL value, obtained by the second method, of
ro = 0.793+ 0.015 fm, where only the statistical error was given. From Eq. 24 it follows that this
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value corresponds 163 = 0.561+ 0.011 fm, which is in good agreement with our value obtained
from a fit to the data ofz = 0.580+ 0.004 (stat.}t 0.029 (syst.) fm.

The BEC of thert* e et system has also been studied by the DELPHI collaboration [13] using
the hadronic £ decays measured at LEP. In that analysis, which neglected the Coulomb correction,
the following results were obtainedz = 0.6574 0.039 (stat. 1= 0.032 (syst.) fm and\3z = 0.28+
0.05 (stat. - 0.07 (syst.). The relatively large statistical errors reflect the fact that a much smaller
data sample was used than in the present measurement. Our resgjlbffore Coulomb correction,
of 0.616 fm with a statistical error a£0.005 fm, is smaller than the DELPHI result but is consistent
with it within one standard deviation. The measukgd/alue depends on the pion track purity of the
hadron sample analysed, so that caution has to be exercised when comparing the BEC strength values
of different experiments. Keeping this in mind, we note that our nfeaualue lies considerably
above that reported by DELPHI but it is still consistent with it within two standard deviations when
the systematic errors are included.

7 Summary and conclusions

The Bose-Einstein correlations of three identical charged pions, produced in hadfodérays,

have been studied after correcting for the Coulomb interaction. A significant genuine three-pion
Bose-Einstein correlation signal is observed near threshold i€4{@s) distribution obtained after

the subtraction of the two-pion correlation contribution. The radjusf the three-pion emitter and

the BEC strengtiA; are measured to be:

r3 = 0.58040.004 (stat.}-0.029 (syst.) fm and A3 =0.50440.010 (stat.}-0.041 (syst.)

where the uncertainties are dominated by the systematic errors.

The Coulomb repulsive interaction opposes the Bose-Einstein enhancement in Qgriegion
and therefore it is reasonable that in our analysis the Coulomb correction increadgddhee. This
increase amounts to about 9%. On the other hand, the Coulomb correction has a smaller effect on
thers value which is lowered by about 6%. Accounting for the three-pion purity the BEC strength
amounts t\5""® = 0.707+ 0.014 (stat.}- 0.078 (syst.) for a 100% purgTe- et system.

A relation between the two-pion and the three-pion emitter dimensions was discussed in reference
[9]. We tested this relation by using the present result and that obtained in the latest OPAL two-
pion BEC analysis [15] where approximately the same data sample was used. The proposed relation
betweerr, andrs, expressed in Eq. 24, is in good agreement with our results.
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