
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN{EP/98-86
May 22, 1998

A next-to-leading order QCD analysis of the spin

structure function g1

The Spin Muon Collaboration (SMC)

Abstract

We present a next-to-leading order QCD analysis of the presently available data on

the spin structure function g1 including the �nal data from the Spin Muon Collab-

oration (SMC). We present results for the �rst moments of the proton, deuteron
and neutron structure functions, and determine singlet and non-singlet parton dis-

tributions in two factorization schemes. We also test the Bjorken sum rule and �nd

agreement with the theoretical prediction at the level of 10%.
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1 Introduction

We present a perturbative QCD (pQCD) analysis in next-to-leading order (NLO)
of the world data on polarized lepton-nucleon deep inelastic scattering (DIS). The data
used in this analysis include the �nal results [1] presented by the Spin Muon Collaboration
(SMC). From the world data we determine the �rst moments of the polarized structure
functions.

The accuracy of the experimental data on the polarized structure function g1(x) has
improved signi�cantly in the past few years. All experiments have con�rmed the small
values of the �rst moments of g1 of the nucleon, thus con�rming the violation of the Ellis-
Ja�e spin sum rule [2] and the small contribution of quark spins to the nucleon spin (a0
in the naive quark parton model). Motivated by the availability of accurate experimen-
tal data, theoretical tools to analyze them have been advanced, e.g. NLO calculations in
pQCD for the spin structure functions. The nucleon spin can now be separated into some
of its components in the framework of pQCD. Of special interest is the role played by the
polarized gluon distribution. It has been suggested [3] that if the polarized gluon distribu-
tion is found to be signi�cant, it could explain the small value of the quark contribution
to the proton spin.

The Bjorken sum rule [4] is a relation between the �rst moments of the spin structure
functions of proton and neutron. It is a fundamental result of QCD �rst derived using
current algebra. Most experimental e�orts in the past have been oriented towards the
direct con�rmation of this relation. The determinations of the �rst moments from the
experimental data depended on extrapolations due to the limited kinematic range of the
experiments. In this paper we address this issue within the framework of pQCD: we �rst
present a pQCD analysis of the world data assuming the Bjorken sum rule to be valid,
and discuss the uncertainties in the analysis and their origins. We then release the Bjorken
sum constraint and check if the available data and the theoretical framework of pQCD
allow a test of the Bjorken sum rule.

A number of theoretical papers have been published on this topic over the last few
years [5, 6, 7, 8]. The E154 collaboration has recently presented their pQCD analysis of
the data [9]. The SMC has published results in which the pQCD analysis was used to
evaluate the �rst moments �p;d;n1 at a �xed Q2 [10, 11, 12], but a detailed description of
the procedure of the pQCD analysis was not given. We do that in this paper.

In the pQCD analysis, apart from the published data from other collaborations at
CERN, SLAC and DESY, we use a new and �nal set of data [1] from SMC which includes
improved values of g1 at low x obtained by requiring the presence of a high energy hadron
in the �nal state. In addition, an improved value of the beam polarization (w.r.t. our
previous publications [10, 11, 12]) was used in the evaluation of the asymmetries. We study
the impact of each experimental data set and the sources of theoretical uncertainties on
the �rst moments of the spin structure functions and on the polarized parton distributions.

In section 2, after a brief overview of the theoretical framework needed for the pQCD
analysis, we describe the method used. We performed this analysis using two di�erent
mathematical approaches and computer codes. With the improved data available today,
we determine the polarized parton distributions and study their stability. A comparison
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w) Now at University of Mainz, Institute of Nuclear Physics, 55099, Germany
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of results obtained in the two programs allows us to do this. We discuss the main features
of the two programs used for calculating the Q2 evolution emphasizing their di�erences
and similarities, and compare the results obtained. The choice of the factorization scheme
has been discussed extensively in [6, 15]. It has been shown analytically that the choice is
arbitrary, and that one can translate results from one scheme to the other. We chose two
widely used schemes in the �eld of polarized DIS and present results based on world data
in those two schemes. Recently, theoretical [8] as well as experimental [9] collaborations
have presented results on the determination of the strong coupling constant �s using
pQCD analyses of the spin structure function data. We present our result and comment
on it. Towards the end of section 2 we discuss in detail the experimental systematic
and theoretical sources that contribute to the total uncertainty in the polarized parton
distribution functions (PDF).

Section 3 discusses the results, namely the �rst moments of the spin structure
functions, the quark and gluon parton distribution functions, and the evaluation of the
Bjorken sum rule. We present two evaluations of the Bjorken sum rule: one from the QCD
�t in NLO and another from a �t restricted to the non-singlet part of the spin structure
function.

2 The QCD Analysis - Procedure and Uncertainty Estimation

2.1 Introduction: Experimental Measurement of g1
In polarized DIS experiments the asymmetry, Ak, of the cross sections for parallel

and antiparallel orientations of the beam and target spins,

Ak =
�"# � �""

�"# + �""
(1)

is measured. The evaluation of the asymmetry, Ak, requires knowledge of the incident
beam and target polarizations, and of the dilution factor which accounts for the fact that
only a fraction of the target nucleons is polarizable. The asymmetry, Ak, and the spin-
dependent structure function, g1, are related to the virtual photon-nucleon asymmetries,
A1 and A2, [16] by

Ak = D(A1 + �A2); g1 =
F2

2x(1 +R)
(A1 + 
A2); (2)

in which the factors � and 
 depend only on kinematic variables and on the nucleon mass,
while the depolarization factor D depends on kinematic variables and the ratio of total
photoabsorption cross sections for longitudinally and transversely polarized virtual pho-
tons R = �L=�T. The structure function g1 is computed using Eq.(2) and parametrizations
for F2 [1] and R. For x < 0:12 a parametrization of R based on the data from Ref. [13] was
used, while for x > 0:12 the parametrization in Ref. [14] was used. For other experimental
aspects of the g1 measurement see [1, 12].

In the pQCD analysis presented in this paper we use the �nal SMC proton and
deuteron data from [1] with Q2 > 1 GeV2, the proton data from the EMC [17], the proton
and deuteron data from the E143 collaboration [18, 19, 20], and the neutron data from
the E142 [21], the E154 [22] and the HERMES [23] collaborations.

As in our previous publications [10], we assume that the deuteron structure function
gd1 is related to the proton and neutron structure functions gp1 and gn1 by

g
p
1 + gn1 =

2gd1
(1� 3

2
!D)

; (3)
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where !D = 0:05� 0:01 is the D-wave state probability in the deuteron.

2.2 Theoretical Framework

The structure function g1 is related to the polarized quark and gluon distributions
through

g1(x; t) = 1
2
he2i

Z 1

x

dy

y

h
C

q
S(

x
y
; �s(t))��(y; t)

+ 2nfC
g(x

y
; �s(t))�g(y; t)C

q
NS(

x
y
; �s(t))�qNS(y; t)

i
; (4)

where he2i = n�1f
Pnf

k=1 e
2
k is the average squared quark charge, t = ln(Q2=�2) where � is

the QCD scale parameter, �� and �qNS are the singlet and non-singlet polarized quark
distributions

��(x; t) =
nfX
i=1

�qi(x; t); �qNS(x; t) =
nfX
i=1

(e2i =he2i � 1)�qi(x; t); (5)

and C
q
S;NS(�s(t)) and Cg(�s(t)) are the quark and gluon coe�cient functions. The x and

Q2 dependence of the polarized quark and gluon distributions is given by the DGLAP
equations [24],

d

dt
��(x; t) =

�s(t)

2�

Z 1

x

dy

y

h
P S
qq(

x
y
; �s(t))��(y; t) + 2nfPqg(

x
y
; �s(t))�g(y; t)

i
; (6)

d

dt
�g(x; t) =

�s(t)

2�

Z 1

x

dy

y

h
Pgq(

x
y
; �s(t))��(y; t) + Pgg(

x
y
; �s(t))�g(y; t)

i
; (7)

d

dt
�qNS(x; t) =

�s(t)

2�

Z 1

x

dy

y
PNS
qq (

x
y
; �s(t))�qNS(y; t); (8)

where Pij are polarized splitting functions.
The full set of coe�cient functions [25] and splitting functions [26] has been com-

puted up to next-to-leading order in �s. At next-to-leading order the splitting functions,
the coe�cient functions and in general the parton distributions depend on the renor-
malization and factorization schemes, while the physical observables, such as g1, remain
scheme-independent. Parton distributions in di�erent schemes can be di�erent but they
are related to each other by well-de�ned transformations [15].

Two widely used schemes in the pQCD analysis of the spin structure function data
are the MS scheme [27] and the Adler-Bardeen (AB) [6] scheme which is a modi�ed MS
scheme. In the MS scheme the �rst moment of the gluon coe�cient function Cg is equal to
zero, which implies that the gluon density �g(x;Q2) does not contribute to the integral
�1 =

R 1
0 g1(x)dx (See Eqn.4). In the AB scheme the axial anomaly (� �s(Q

2)�g(Q2))
contributes explicitly to �1. The �rst moments of the singlet quark distribution in the
two schemes di�er by an amount proportional to �s�g:

��MS(Q
2) = ��AB � nf

�s(Q
2)

2�
�g(Q2) (9)

where �g(Q2) is the value of �g that one obtains in an analysis performed in the AB
scheme. Since at leading order the �rst moment of the polarized gluon distribution behaves
as 1=�s, the scheme dependence in Eqn. 9 persists at all Q2 and is potentially large if the
�rst moment of the gluon distribution is large [3].
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2.3 Method of QCD Analysis

Polarized parton distributions are extracted from experimental structure function
data in the following way. One needs an initial functional form for the parton distributions
at an initial Q2 = Q2

i . It needs to be 
exible enough to allow for the description of the
low x as well as the high x behavior of the data and to connect the high and low x

behaviors with a minimal number of free parameters. In this spirit we parametrize the
initial polarized parton distributions at a starting Q2 = Q2

i as

�f(x;Q2) = N(�f ; �f ; af) �f x
�f (1� x)�f (1 + af x); (10)

where N(�; �; a) is �xed by the normalization condition,

N(�; �; a)
Z 1

0
x�(1� x)�(1 + ax)dx = 1;

and �f denotes ��, �qNS, or �g. With this normalization the parameters �g; �NS, and
�S are the �rst moments of the gluon, the non-singlet quark and the singlet quark dis-
tributions at the starting scale, respectively. We evolve the initial parton distributions
to the Q2 of the data points using Eqs.(6-8) and evaluate g1 with Eq.(4). We determine
a �2 using this calculated g1, g

calc
1 (x;Q2), the measured gdata1 (x;Q2), and its statistical

uncertainty �statg
data
1 (x;Q2) as:

�2 =
nX
i=1

h
gcalc1 (x;Q2)� gdata1 (x;Q2)

i2
(�statgdata1 (x;Q2))2

: (11)

Here n stands for the number of experimental data points used in the pQCD �t. We
minimize this �2 by changing the initial parton distribution coe�cients �f ; �f ; �f and
af to get the best �t parton distribution at the initial Q2

i . Only statistical errors on
the data were used in the �t. Various systematic uncertainties, being correlated, had to
be handled separately and will be discussed in Section 2.7. Unless otherwise mentioned
we chose the initial scale, Q2

i = 1 GeV2. Since most of the experimental data lie in
the range 1 < Q2 < 10 GeV2, when it was relevant to study the Q2

i dependence of a
result, we have done so using Q2

i = 10 GeV2 as the upper limit for the initial scale.
The normalization of the non-singlet quark densities �p;nNS are �xed using the neutron and
hyperon � decay constants and assuming SU(3) 
avor symmetry: �p;nNS = (�)3

4
gA
gV

+ 1
4
a8.

We use jgA=gV j = F + D = 1:2601 � 0:0025 [28] and F=D = 0:575 � 0:016 [29]. In
the analyses in this paper which test the Bjorken sum rule the value of gA=gV will be
made a free parameter in the �t. In order to be able to estimate the e�ect of the yet
unknown higher-than-NLO corrections to this analysis, the factorization scale, M2, and
the renormalization scale, �2, in this analysis were taken to be of the form M2 = k1 �Q2

and �2 = k2 � Q2 with k1 = k2 = 1 for the standard �t. The variation in the factors
k1;2 and its role in the uncertainty estimation is discussed in Section 2.7. The value of
�s(M

2
Z) = 0:118� 0:003 [28] was used in the analysis. Some tests were done to study the

determination of �s(Q
2) from the spin structure function data. They will be discussed in

Section 2.6.

2.4 Comparison of two QCD Evolution Programs

The pQCD analysis by R. Ball et al. [6] has been used in our previous publica-
tions [10, 11, 12] for evolving our data from the measured Q2 to a �xed Q2 = Q2

0. In
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this paper we shall call this \Program 1". Another program for the Q2 evolution was
developed within the SMC [31]. In this paper we shall call this \Program 2". This section
comments brie
y on the evolution programs 1 and 2. In the next section we present a
comparison of results obtained with the two programs in the MS scheme. The comparison
of results for polarized parton distributions from two di�erent programs allows us to study
the reliability and stability of our results.

In program 1 the Mellin transformation of the evolution equation and the coe�cient
and splitting functions is used. The DGLAP equations are solved in the moment space
with the boundary condition of Eq. 10 at an initial scale value of Q2

i . The inverse Mellin
transformation needed to return to (x;Q2) space is performed numerically. This is CPU
intensive and the computation time goes approximately linearly with the number of data
points used in the QCD analysis. For further details on this analysis the reader is referred
to Ref. [6].

The other evolution program [31] computes the evolution in (x;Q2) variables on
a grid covering the range of the experimental data. Di�erentials in Q2 are approximated
by �nite di�erences. The convolution integrals which appear in Eqs.(4-8) are evaluated
using the exact form of the splitting and coe�cient functions and values for the distri-
bution functions interpolated between adjacent grid points. The convolution integrals of
a splitting or coe�cient function and a general parton distribution then only need to be
computed at the initialization stage of the procedure. In addition, because the parton
distributions are evaluated numerically, the method imposes no practical restrictions on
their functional forms. The computation time rises roughly linearly with the number of
nodes along the Q2 axis and roughly as the square of the number of nodes along the x
axis. This approximation of the convolution integrals produces satisfactory results if only
30 nodes are used in x, which leads to a reduction in computation time of more than two
orders of magnitude compared to a straightforward numerical integration. The Q2 region
of interest was divided into 100 steps. As a check of the accuracy of the method, the
numbers of x and Q2 points were varied from 30 to 80 and from 100 to 200 respectively
without producing any signi�cant change in the results.

2.4.1 Result of the comparison

Figure 1 shows the best �ts to the gp;d;n1 data at the measured Q2 obtained using
the two programs in the MS factorization scheme and starting the evolution from Q2

i = 1
GeV2. Since the data do not constrain the high x coe�cient, �g, for the gluon, it was
�xed to 4.0 from QCD sum rules[30] for all analyses in this paper. The coe�cients af
(see Eq. 10) for the gluon and non-singlet parton distribution functions were not used in
this comparison and we forced the nonsinglet proton and neutron distributions to have
the same coe�cients � and � as was done in [6, 8]1). Both �ts describe the data well.
The compatibility of the two programs and the invariance with respect to the initial Q2

was further tested by repeating the �ts with Q2
i = 10 GeV2. The parameters for the

two sets of �ts are given in Table 1. The quark singlet and non-singlet coe�cients for the
parton distributions are nearly the same in both �ts and their parameters are consistently
(and well) determined by the two programs. On the contrary, the coe�cients of the gluon
distribution are poorly determined in both programs, and as such the polarized gluon
distribution seems to be only marginally determined by the data. Due to the approximate

1) For the purpose of comparison of the programs such constraints and assumptions make no di�erence,

other than reducing the number of free parameters. Later in this paper when we do �ts which are

used in the evaluation of integrals we release some of these constraints.
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scale independence of (�s�g), since �s(Q
2) reduces by a factor �2 between 1 and 10 GeV2,

the �rst moment �g is expected to increase by the same factor between the two values of
Q2. The �tted values of �g are compatible within their large errors.

The parton distributions obtained in the above �ts, performed at Q2
i = 1 and 10

GeV2 in the MS scheme, evolved to a �xed Q2
0 = 5 GeV2 are shown in Fig. 2. The singlet

and non singlet quark distribution functions and their evolution in the two programs are
very similar. However, the gluon distributions show di�erences. Keeping in mind the large
uncertainty in the determination of gluon distribution coe�cients this is not surprising.

Having performed such tests we conclude that given the accuracy of the presently
available data di�erent approaches used in the Q2 evolution do indeed give consistent
results and show similar behaviors as far as the uncertainty estimates are concerned. As
mentioned before, an independent paper on the QCD analysis in Program 1 has been
published [6]. This program has been used previously in the analysis of SMC data [10,
11, 12] and required minimal modi�cation to study the evolution in the two factorization
schemes (AB and MS). In order to preserve continuity with our previous publications and
in view of the fact that the Programs 1 and 2 provide consistent results, from now on we
will present results using Program 1 exclusively.

2.5 Comparison of Results in MS and AB Schemes

The values of the �tted parameters obtained in the MS and AB schemes for the ini-
tial Q2

i = 1 GeV2 are listed in Table 2. In this comparison we have released the constraint
requiring the shape of the nonsinglet parton distribution in the proton and neutron to be
the same, i.e. we allow di�erent values of �, � in the �qNS of the proton and neutron.
The nearly equal values of the �2 show that the data are equally well described by the
analyses performed in the two schemes with the input parametrizations of Eq. 10. In other
words, the functional form of the initial parton distributions in Eq. 10 is 
exible enough
to describe the data. We observe in Fig. 3 that the �tted g1(x) distributions, evolved to
the reference Q2

0 = 5 GeV2, di�er very little in the range 0:003 < x < 0:8 in which spin
structure function data are available.

The comparison of the �tted polarized parton distributions (Fig. 4) clearly shows
how the two schemes di�er in the singlet sector. In the MS scheme �� is constrained by
the negative values of gd1(x) at low x to become negative for x <� 0.05 . The cross-over,
x0, is determined by the linear term in x (as = �1=x0). In the AB scheme, this term is
not needed because �� remains positive over the full range of the data. The polarized
gluon distribution is found to be larger in the AB scheme and is shifted to lower values
of x compared to that in the MS scheme. Di�erences of the same order between gluon
determinations in the two schemes have been reported in a previous analysis [9] by the
E154 Collaboration. Within the precision of the data, the �rst moments of the polarized
singlet and gluon distributions obtained in the two schemes are compatible with the
relation in Eq. 9 at the Q2 value of 1 GeV2.

The principal aim of the experimental collaborations is the measurement of the �rst
moments of spin structure functions gp;d;n1 . Since the analyses done in both schemes seem
to describe the g1 data equally well it does not matter which scheme we follow. In the
past we have used the AB scheme for our results [10, 11, 12]. In order to keep continuity
with those publications we use the AB factorization scheme in this paper for all further
analysis. We will call this the standard �t.
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2.6 Comments on the Determination of �s(Q
2)

The analysis presented so far starts with the spin-dependent virtual photon-nucleon
asymmetries measured by di�erent experiments. We determine from these asymmetries
the spin-dependent structure functions g1 using parametrizations of the unpolarized struc-
ture functions F2 and R. The information on scaling violations from the unpolarized
nucleon structure functions F2 (which are measured with signi�cantly better accuracy
compared to g1), is hence an input to the analysis. These scaling violations have been
studied and have led to a determination of the strong coupling constant �s [32].

Recent pQCD analyses of the spin structure functions g1 [8, 9] have also derived the
value of �s. However, in the presentation of experimental data we have shown (in Fig. 8
and Fig. 9 of [1]) for di�erent x values that no scaling violations are observed in the spin
asymmetries Ap;d

1 within the experimental uncertainties.
In spite of this, we make the value of �s(M

2
Z) (which normally is an input parameter

in the pQCD analysis) a free parameter in the �t. Table 3 shows the �tted values and
the statistical uncertainties in the parameters at Q2

i = 1 GeV2. The values change little
in comparison with those presented before in Table 2 for the AB scheme. Estimation of
uncertainties due to experimental systematic e�ects in the data and those of theoretical
origins (procedure will be described in Section 2.7) gives

�s(M
2
Z) = 0:121� 0:002(stat)� 0:006(syst: & theory): (12)

The value of �s(M
2
Z) indeed comes out to be consistent with that determined from the

pQCD analyses of the unpolarized data. As such, while the determination of �s is certainly
possible using the scaling violations of g1, with the presently available data on A1 it is
di�cult to separate the information on scaling violations due to F2 and due to A1. In
this paper we henceforth always take the value of the strong coupling constant �s(M

2
Z) =

0:118� 0:003 as given in Ref. [28].

2.7 Evaluation of Uncertainties in the Polarized Parton Distribution

Functions

Figure 5 shows the results for the parton distributions and their uncertainties. In
the calculation of the �2 (Eq.11) only the statistical uncertainty on the data points was
used. The uncertainty in the parton distribution due to this is shown (cross hatch) with
the parton distribution (bold line in the cross hatch).

To estimate the uncertainty in a parton distribution function due to the experimen-
tal systematic errors the following procedure was used. For each data set the experimental
systematic uncertainties on A1 due to all sources (�

i
syst) were added in quadrature to cal-

culate a total systematic uncertainty (�Tsyst) for that data set. The QCD �ts were then
repeated with input values of asymmetries A1��Tsyst:. The unpolarized structure function,
F2, and R used to evaluate g1 from A1 were shifted to the upper and lower limits of their
respective parametrizations to estimate their contribution to the uncertainty. Then these
experimental, F2, and R contributions were added quadratically. The resulting envelopes
of uncertainty are shown in Fig.5 (vertically hatched band) as a function of x.

In addition to the statistical and systematic uncertainties a signi�cant source of
uncertainty in the parton distribution functions comes from uncertainty in the various
input parameters to the pQCD analysis. We call them \theoretical" uncertainties. They
include uncertainties in the values of factorization and renormalization scales, the value of
�s, the functional form of the initial parton distribution function, the values of quark mass
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thresholds, and the value of gA=gV . We evaluated them by varying each of these parameters
by their known errors (whenever available). The uncertainties in the factorization and
renormalization scales are related to the uncertainty in the result due to the neglect of
higher order corrections in the pQCD analysis. This was estimated by independently
varying factorization and renormalization scale factors k1 and k2 in Section 2.3 by 2 in
both directions i.e. 0:5 � k1; k2 � 2:0. For the standard �t the value of �s(M

2
Z) = 0:118

was used. This value was varied between 0:118�0:003. Another input to our analysis is the
assumed functional form of Eq.10, the initial parton distribution function. To evaluate
its e�ect on the results two tests were done. First, we used di�erent combinations of
constraints on the parameters �f , �f , and af in Eq. 10 including also an additional term
b
p
x in the polynomial. If the con�dence level of the resulting �t was comparable to

that of the best �t, then that functional form was accepted and the result of the �t
was considered for estimating the uncertainty due to the functional form of the intial
parton distribution. Second, we started at an initial scale Q2

i di�erent from 1 GeV2 and
observed how di�erent the resultant parton distributions were when evolved to the same
common Q2

0. The theoretical systematic uncertainty bands were then added in quadrature
(as functions of x). The envelopes of such uncertainty as a function of x for singlet and
nonsinglet parton distributions are shown in Fig. 5 by the horizontally hatched bands.
The dominant uncertainties were due to the uncertainty in the factorization scale M2,
the renormalization scale �2, and due to the uncertainty in the assumed functional form
of the initial parton distributions.

3 QCD Analysis - Results

3.1 Evaluation of First Moments at Fixed Q2
0

We use all available data in the kinematic region Q2 � 1 GeV2, x � 0:003 to
evaluate �1 =

R 1
0 g1(x)dx at a �xed Q2. Starting from g1(x;Q

2) at the measured x and Q2

we obtain g1 at a �xed Q2
0 as follows:

g1(x;Q
2
0) = g1(x;Q

2) + [g�t1 (x;Q
2
0)� g�t1 (x;Q

2)]; (13)

where g�t1 (x;Q
2
0) and g�t1 (x;Q

2) are the values of g1 evaluated at Q2
0 and Q2 of the ex-

periment using the �t parameters, respectively2). We choose Q2
0 = 5GeV2 which is close

to the average Q2 of the world data set used in the analysis. In the measured range,
0:003 < x < 0:8, the contributions to the �rst moments of the nucleon structure functions
calculated from the data are given in Table 4, column 2. The �rst uncertainty is statistical,
the second is systematic and the third is due to the uncertainty in the Q2 evolution. The
method used for combining di�erent data sets is discussed in Refs. [1, 33, 34]. Figs. 6, 7, 8
and their insets show xg

p;n;d
1 respectively as a function of x. The areas under the g�t1 curves

are given in Table 4, column 3. The integrals calculated in both ways are very similar.
To estimate the contributions to the �rst moment from the unmeasured low x

(x < 0:003) and high x (x > 0:8) regions, we integrate over g�t1 calculated at Q2 = 5 GeV2

using the parameters for the parton distributions. The central values and the uncertainties
in the low and high x contributions are given in Table 5. The areas under the QCD �t
for x < 0:003 in Figs. 6, 7, and 8 and their insets correspond to the low x contribution.
The uncertainties in the low and high x integrals are obtained using the same procedure
as for the estimation of the uncertainty in the QCD evolution described in Section 2.7.

2) From now on the superscript \�t" indicates that the quantity was calculated using the best �t pa-

rameters of the QCD �t.
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Had we taken the traditional approach [10, 11, 12] of using Regge extrapolation in the
low x region and a constant A1 in the high x unmeasured region (bounded by A1 < 1),
we would get results using the present data consistent with those presented in Table 5,
but with signi�cantly smaller uncertainties (see [11] for a detailed discussion).

The low x contributions to the �rst moments quoted in Table 5 rely on the validity
of the assumption that the parton distribution functions behave as x� when x! 0 with
the values of � quoted in Table II for the AB scheme. Under this condition g

p
1(x;Q

2
0)

becomes negative below x ' 0:001, i.e. slightly below the lowest x data available (Fig.6).
The gd1(x;Q

2
0) becomes negative below x = 0:02 (Fig.7), while gn1 (x;Q

2
0) is negative for all

x (Fig.8). Other functional behaviors of g1 at low x (x < 0:003) have been investigated.
The resulting contributions to the moments were found to be in the range of systematic
errors quoted in Table 5.

The uncertainties in �p;d;n1 (Q2
0), forQ

2
0 = 5 GeV2 are separated by sources in Table 6.

The experiments giving the largest three contributions are listed and the remaining ones
are added together in \Other Exp.". The largest three theoretical sources of errors, namely,
the factorization and renormalization scales, the value of �s, and the uncertainty in the
form of initial parton distribution functions are also given separately. The rest of the
sources like the uncertainties in the quark mass thresholds, the values of the constants
gA=gV , a8 etc. are collected as one source and called \Others".

Our best estimate for the �rst moments �p;d;n1 (Q2
0 = 5 GeV2) over the full x range is

given in the second column of Table 7. The �rst uncertainty is statistical and the second
is systematic. The third uncertainty is due to the low and high x extrapolation and the
Q2 evolution; they are correlated and are both of theoretical origin. The third column of
this table gives the values of the �rst moments at Q2

0 = 10 GeV2 using the SMC data in
the measured x range.

3.2 �g and a0 Determination

3.2.1 �g(Q2
0) and its evolution

Our analysis performed in the AB scheme using an initial Q2
i = 1 GeV2 results in

�g =
Z 1

0
�g(Q2 = 1GeV2)dx = 0:99 +1:17

�0:31 (sta)
+0:42
�0:22 (sys)

+1:43
�0:45 (th): (14)

The procedure used to estimate the uncertainties was the same as described in Section 2.7.
When evolved to 5 and 10 GeV2 the values of �g become 1:7 and 2:0 respectively. The
analysis indicates that the uncertainty in the measurement of this quantity is large. Very
little can be said about this quantity on the basis of the present data. Measurements in
which the gluon is involved in the leading order (like the photon-gluon fusion process) are
needed, in addition to more precise DIS data on g1, for an improved determination of �g.

3.2.2 a0 determination

The values of the singlet axial current matrix element a0 determined from the �ts
are shown in Fig. 9 for values of Q2

i = 1; 4; 7; 10 GeV2 in the MS and AB schemes. The
estimated uncertainty is shown for Q2

i = 1 GeV2 only. The uncertainties at higher Q2
i are

comparable. The solid curve is a calculation for the Q2 dependence of a0 based on the
best �t performed with Q2

i = 1 GeV2 in MS scheme. The results obtained in this scheme
for higher Q2

i values fall consistently on this curve. For Q2 > 1 GeV2 the Q2 dependence
is weak and is below the sensitivity of the existing data. In the MS scheme, a0 is identi�ed
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with the integral �S of the singlet quark distribution (Table II) while in the AB scheme
the gluon contribution must be subtracted :

a0(Q
2) = �ABS � nf

�s(Q
2)

2�
�g(Q

2): (15)

Fig. 9 shows that the world data are good enough to test the above relation. In the AB
scheme at Q2

0 = 1 GeV2 we get a0 = 0:23 � 0:07(sta) � 0:19(sys) while at the same Q2
0

in the MS scheme we get a0 = 0:19� 0:05(sta)� 0:04(sys). These values are compatible
within errors as required for a scheme independent quantity and correspond to about 1=3
of the naive QPM expectation a0 = a8 ' 0:58. The errors in the a0 determined from the
analysis in the AB scheme are larger than those determined in the MS scheme because of
the correlation introduced by �g and its uncertainty in the evaluation (see Eq. 15).

The �rst moments �p;n;d can also be expressed in terms of the matrix elements a0; a3
and a8 [2]. If exact SU(3) 
avor symmetry is assumed for the axial octet current, a3 and
a8 are given by the coupling constants for neutron and hyperon decays, a3 = F +D and
a8 = 3F � D, respectively. Under this assumption and using the input values quoted in
Table 7 we obtain at Q2 = 5 GeV2 a0 = 0:13� 0:17. This result is consistent with those
obtained before (directly from QCD analysis) but note that in the measured x range the
same Q2 evolution has been used in all these results.

It has often been suggested that the di�erence between the low experimental value
of a0 and its naive QPM prediction could be explained by a large gluon contribution. The
value of �S = 0:38+0:03 +0:03 +0:03

�0:03 �0:02 �0:05 in the AB scheme (only statistical uncertainty on �S is
shown in Table II), obtained in this analysis does not support this suggestion.

3.3 Determination of Bjorken Sum Rule

3.3.1 Bjorken sum rule from QCD analysis

The Bjorken sum rule is a fundamental result in pQCD. In this section we present
a method of testing this in a way consistent with the pQCD analysis presented so far.
The conventional method of testing the Bjorken sum rule (which has been used in most
experimental papers) is to evaluate the di�erence between the �rst moments of the proton
and neutron polarized structure functions at a �xed Q2

0 and to see if the relation

�p1 � �n1 =
1

6

�����
gA

gV

����� � CNS
1 (Q2) (16)

holds. Here gA=gV is the axial vector coupling constant. The coe�cient CNS
1 (Q2) has been

calculated to 4th order in �s(Q
2) [35].

Based on the pQCD analysis we have evaluated the �rst moments of the proton
and neutron structure functions at Q2

0 = 5 GeV2 given in Table 7. However, we can not
directly use them to evaluate the Bjorken sum rule because in this analysis we have taken
the �rst moments to be: �

p=n
NS = �3

4

��� gA
gV

���+ 1
4
a8, with the value of gA=gV �xed to its nominal

value of 1:2601� 0:0025 [28]. In this way the Bjorken sum rule is assumed in the analysis.
We can test the validity of the Bjorken sum rule by releasing this constraint in our pQCD
analysis and making gA=gV one of the free parameters to be �tted by the g1 data. The
best �t parameters for such a �t are given in Table 8. The experimental and theoretical
uncertainty study presented in Section 2.7 was repeated for the uncertainty estimation
for gA=gV . We obtain: �����

gA

gV

����� = 1:15 +0:03
�0:03 (sta)

+0:07
�0:06 (sys)

+0:14
�0:04 (th): (17)
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The value of gA=gV determined here is consistent with the nominal value used above.
The uncertainties (particularly theoretical) are large. The largest contribution to the
theoretical uncertainty is the factorization and renormalization scales and due to the
choice of the initial parton distributions.

The above value of gA=gV and its uncertainty when used to evaluate the value of
Bjorken sum in Eq. 16 to order O(�2

s) (consistent with all other analysis presented in this
paper) at Q2

0 = 5 GeV2 gives:

�p1 � �n1 = 0:174 +0:005
�0:005 (sta)

+0:011
�0:009 (sys)

+0:021
�0:006 (th)

= 0:174 +0:024
�0:012 ; (18)

which is in excellent agreement with the theoretically calculated value of �p1 � �n1 =
0:181� 0:003 [35] at the same Q2

0.

3.3.2 QCD evolution of gNS1
An alternative way to determine the Bjorken sum rule is by restricting the QCD

analysis to the purely non-singlet combination of the polarized parton distribution func-
tions �qNS. It is related to the structure functions, using Eq. 4,

g
p
1 (x;Q

2)� gn1 (x;Q
2) =

1

2
he2i

Z 1

x

dy

y

h
C1;NS(

x
y
; �s(t))�qNS(y; t)

i
; (19)

where t = ln(Q2=�2). The Q2 dependence of �qNS is described by the DGLAP evolution
equation for the non-singlet combination (Eq.8) and is decoupled from the evolution of
�� and �g. Thus, having g

p
1 � gn1 data points at di�erent values of Q2 allows us to

determine gA=gV by parametrizing only �qNS at an initial scale Q2
i , evolving it, and

�tting the parameters including gA=gV to the data. The advantage of this method is that
the analysis can be performed with fewer free parameters than the standard analysis
presented in the previous sections. We use the parametrization:

�qNS(x;Q
2) =

3

2

�����
gA

gV

����� �N(�; �) � x�(1� x)�; (20)

with �; �, and gA=gV being the three free parameters of the �t. However, there is a
disadvantage to this method. In order to evaluate the value of gp1 � gn1 to be used in this
�t, the values of the proton and neutron structure functions should be known ideally the
same values of x and Q2. This is true only for SMC [1] and E143 [18, 19, 20] data. The
SMC data points for gp1 and gd1 were combined as explained in Ref. [1]. The E143 data
were treated similarly. In all we obtain 44 data points for gNS1 (12 from SMC and 32
from E143). The general procedure of the analysis is the same as explained in Section 2.3
except that here it is done only with the nonsinglet parton distribution. The initial scale
Q2

i = 1 GeV2 was used in this analysis as it was in the global pQCD analysis.
The values of the �tted parameters are given in Table 9. The result of the �t at

Q2
0 = 5 GeV2 is displayed in Fig. 10. The data points evolved to the same Q2

0 = 5
GeV2 are shown with their statistical errors. The bold line is the curve calculated using
the best �t parameters. The area under this line corresponds to the Bjorken integral
�NS��t1 . The uncertainty band around this line shows the total uncertainty estimated
from the experimental systematic and theoretical sources. The uncertainty (experimental

12



systematic and that of theoretical origin) for the �tted value of gA=gV was estimated. We
get: �����

gA

gV

����� = 1:20 +0:08
�0:07 (sta)

+0:12
�0:12 (sys)

+0:10
�0:04 (th):

At Q2
0 = 5 GeV2 this value of gA=gV corresponds to the Bjorken sum:

�p1 � �n1 = 0:181 +0:012
�0:011 (sta)

+0:018
�0:018 (sys)

+0:015
�0:006 (th)

= 0:181 +0:026
�0:021 (21)

using Eq. 16 when evaluated at O(�2
s). The result for gA=gV agrees well with the nominal

value and with the results of the standard �t with gA=gV as a free parameter (Eq. 17).
Because of the smaller data set used the errors of experimental origin are signi�cantly
larger. However note that the theoretical error is slightly lower than in the case of the
standard �t.

The contribution to the Bjorken sum from the measured x region calculated from
the data points and by integrating the �tted function are given in Table 10 in columns
4 and 5, respectively. They are given for combined SMC+E143 data at Q2

0 = 5 GeV2 as
well as for SMC data at Q2

0 = 10 GeV2. In both cases the integral over the measured
x range evaluated using the data and that evaluated using the best �t parameters agree
within the statistical precision of the data. The high x contribution to the integral makes
little impact on the nonsinglet �rst moment. At both values of Q2

0 the contributions to
the integrals �NS1 from the unmeasured low x region are � 5% of the total integral with
small uncertainties. Hence we note that although the uncertainties in the �rst moments
of the proton and neutron are large (Tables V and VII), the uncertainty in the Bjorken
integral from this region is rather small.

3.3.3 Comments on Bjorken sum rule determination

In Section 3.3.1 we have presented a determination of the Bjorken sum rule, based
on the �nal SMC data set and all other published data on g1. The result was obtained in a
NLO QCD analysis by directly �tting the value of gA=gV . This is our best determination
of the Bjorken sum in a fully consistent way based on pQCD using the world data set.

The result we obtain is consistent with the expected value and we con�rm the
Bjorken sum rule with an accuracy of � 10%. It also agrees well with the results of the
NLO QCD analysis of the E154 collaboration [9]. Our estimate of the uncertainty is larger
for the following reason: we have taken the view that the errors due to the factorization
and renormalization scales and those due to �s are uncorrelated where as they have treated
them as correlated. If we follow their approach, the uncertainties become comparable.

The method used in Section 3.3.2 to test the Bjorken sum rule from gNS1 is potentially
very precise with regard to the theoretical uncertainty. It leads to a con�rmation of the
Bjorken sum rule at the level of � 15%. At present this method su�ers from a limited
statistical accuracy but it is expected to be more powerful once the very precise data on
g
p
1 from E155 [36] become available and are combined with the existing data on gn1 from
E154 [22].

4 Conclusions and Summary

We have performed a next-to-leading order pQCD analysis of the world data on
polarized deep inelastic inclusive scattering, including new data from SMC. The results
of the pQCD �t are used to evaluate contributions to the �rst moment of g1 over the
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entire x range. Consistent values of the singlet axial charge a0 are obtained from the �rst
moments and from the �t parameters.

The experimental data constrain the quark singlet and non-singlet distributions
rather well. This was tested using two di�erent analysis programs. The polarized structure
functions are equally well reproduced by �ts in the MS and the AB factorization schemes,
although the shapes of the singlet distributions are found to be di�erent. The singlet and
nonsinglet quark distributions are well determined, while the gluon distribution is only
poorly constrained by the �ts. The gluon �rst moment is found to be positive but has an
error of the order of 100 % of its value. The singlet axial charge is found to be � 1=3 of
the value expected from the naive QPM.

Inclusion of the strong coupling constant �s as a free parameter in the �t results
in a value for �s in excellent agreement with the one obtained from the observation of
scaling violations in unpolarized DIS data. However, this determination based on g1 also
involves F2 and hence is not independent of the determination of �s from F2.

The Bjorken sum rule has been tested in two di�erent ways: in a global pQCD
analysis and in an analysis restricted to the non-singlet part of g1 performed using a
subset of the available data. In both cases jgA=gV j was left as a free parameter of the �t.
The sum rule is found to be veri�ed in both cases, within an accuracy of about 10% for
the global �t and 15% for the non-singlet �t.

In the near future, the additional high precision data from SLAC E155 are expected
to improve the accuracy of the QCD �t. However due to the absence of data in the low
x region, contribution to the �rst moment from this region is expected to be the largest
source of uncertainty. Improved determinations of the polarized gluon distribution will
be obtained by dedicated experiments e.g. COMPASS [37] at CERN and PHENIX and
STAR experiments at the RHIC-Spin [38]. Measurements of the spin structure function in
the presently inaccessible low x region using the HERA polarized collider [39] will provide
crucial information on the low x behavior of g1 and also allow access to the polarized
gluon distribution in that region.
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Figure 1: Comparison of the two programs in the MS Scheme. Data on gp;d;n1 from CERN
experiments (left column), SLAC and DESY experiments (right column) are shown at
their measured Q2 with their statistical errors. The results of the QCD �ts using the two
programs at the measured Q2 of the data are shown by continuous and dashed lines in
each plot. Note that some of the �ts for SLAC and DESY experiments (right column) are
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Table 1: Comparison of results for the �tted parameters obtained with the two programs.
The results are given for �ts with an initial scale Q2

i = 1 GeV2 and Q2
i = 10 GeV2. All

�ts are performed in the MS scheme. The uncertainties are statistical only.

Q2
i = 1 GeV2 Q2

i = 10 GeV2

Parameter Program 1 Program 2 Program 1 Program 2

�S 0:19+0:04
�0:05 0:18+0:04

�0:05 0:18+0:04
�0:07 0:12+0:08

�0:17

�S �0:46+0:12
�0:11 �0:43+0:13

�0:13 �0:61+0:12
�0:13 �0:72+0:10

�0:16

�S 3:05+0:38
�0:35 3:23+0:41

�0:38 3:81+0:43
�0:42 3:60+0:63

�0:43

aS �13:0+1:2
�1:4 �12:2+1:3

�1:5 �21:0+2:9
�4:0 �22:9+5:2

�6:8

�g 0:21+0:27
�0:21 0:38+0:29

�0:28 0:22+0:19
�0:18 0:61+1:80

�0:55

�g 0:48+3:24
�1:36 1:02+1:44

�1:25 0:56+0:75
�0:94 �0:44+1:30

�0:48

�NS �0:11+0:05
�0:05 �0:12+0:05

�0:05 �0:29+0:03
�0:03 �0:29+0:03

�0:03

�NS 1:69+0:16
�0:16 1:68+0:15

�0:15 2:22+0:16
�0:15 2:12+0:16

�0:15

�2 127:4 119:8 122:6 118:8

d.f. 133� 8 133� 8 133� 8 133� 8
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Table 2: Comparison of results of the QCD �ts at Q2 = 1 GeV2 in the MS scheme and
the AB scheme. The errors are statistical only.

Parameter MS AB

�S 0:19+0:04
�0:05 0:38+0:03

�0:03

�S �0:48+0:11
�0:10 1:20+0:29

�0:27

�S 3:29+0:40
�0:37 4:08+0:63

�0:58

aS �13:8+1:3
�1:5 (0:0)

�g 0:25+0:29
�0:22 0:99+1:17

�0:31

�g 0:33+2:05
�1:05 �0:70+0:23

�0:20

�
p
NS �0:19+0:09

�0:08 �0:15+0:09
�0:08

�
p
NS 1:35+0:23

�0:21 1:42+0:23
�0:22

�n
NS 0:06+0:14

�0:13 0:01+0:13
�0:12

�nNS 2:59+0:52
�0:48 2:48+0:51

�0:46

�2 122:9 126:3

d.f. 133� 10 133� 9

Table 3: The best �t parameters of the pQCD �t when �s(M
2
Z) was made a free parameter.

All parameters are given at Q2 = 1 GeV2 except for the value of �s which is given at
Q2 =M2

Z GeV2. The uncertainties are statistical only.

Parameter Value Parameter Value

�S 0:39+0:03
�0:03 �g 0:98+7:41

�0:37

�S 1:22+0:28
�0:27 �g �0:78+0:22

�0:21

�S 4:00+0:63
�0:60 �g (4:0)

�
p
NS

3
4
j gA
gV
j+ 1

4
a8 �nNS �3

4
j gA
gV
j+ 1

4
a8

�
p
NS �0:08+0:11

�0:10 �n
NS 0:04+0:14

�0:13

�
p
NS 1:53+0:26

�0:24 �nNS 2:60+0:54
�0:49

�s(M
2
Z) 0:121+0:002

�0:002

�2 125:1

d.f. 133� 10
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Table 4: First moments of the nucleon spin structure functions at Q2
0 = 5 GeV2 in the

measured x range from 0:003 to 0:8. The �rst uncertainty is statistical, the second exper-
imental systematic, and the third due to the uncertainty in evolution. For comparison,
the integral over the QCD �t is given in the third column.

Nucleon
R 0:8
0:003 g1(x;Q

2
0)dx

R 0:8
0:003 g

�t
1 (x;Q

2
0)dx

Proton 0:130� 0:003� 0:005� 0:004 0:132

Deuteron 0:036� 0:004� 0:003� 0:002 0:040

Neutron �0:054� 0:007� 0:005� 0:004 �0:048

Table 5: First moments of the structure functions at Q2
0 = 5 GeV2 from the unmea-

sured x regions and their total uncertainties due to the experimental systematics and the
theoretical sources in the evolution.

R
g�t1 (x;Q

2
0)dx 0:0 < x < 0:003 0:8 < x < 1:0

Proton �0:012+0:014
�0:025 0:003+0:001

�0:001

Deuteron �0:015+0:010
�0:023 0:000+0:000

�0:001

Neutron �0:020+0:010
�0:026 0:000+0:001

�0:001
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Table 6: Uncertainties on the �rst moments resulting from the pQCD analysis separated
by sources given in this table in three parts. In the top part the �rst moments of gp;d;n1

at Q2
0 = 5 GeV2 are given with their total experimental systematic and theoretical un-

certainties. In the central part the total experimental systematic uncertainty from above
is split into contributions from di�erent experiments, while in the lowest part the total
theoretical uncertainty is split into its sources.

Nucleon ��t1
Total

Exp. Sys.
Total
Theory

Proton

Deuteron

Neutron

0:122

0:025

�0:068

+0:007
�0:011

+0:006
�0:010

+0:007
�0:011

+0:007
�0:024

+0:006
�0:020

+0:005
�0:020

Exp. Sys. SMC E154 E143
Other
Exp.

Proton

Deuteron

Neutron

+0:005
�0:008

+0:004
�0:008

+0:005
�0:008

+0:005
�0:005

+0:005
�0:005

+0:005
�0:005

+0:000
�0:004

+0:000
�0:003

+0:000
�0:004

+0:001
�0:002

+0:001
�0:002

+0:001
�0:002

Theory Scale �s PDF Others

Proton

Deuteron

Neutron

+0:005
�0:024

+0:003
�0:020

+0:002
�0:020

+0:002
�0:004

+0:001
�0:003

+0:001
�0:003

+0:004
�0:001

+0:004
�0:001

+0:005
�0:001

+0:002
�0:002

+0:001
�0:001

+0:001
�0:001

Table 7: Table of �p;d;n1 at Q2
0 = 5 GeV2 for the world set of data (left), and at Q2

0 = 10
GeV2 for SMC (right).

�1(Q
2
0)

World
Q2

0 = 5 GeV2

SMC
Q2

0 = 10 GeV2

Proton 0:121� 0:003� 0:005� 0:017 0:120� 0:005� 0:006� 0:014

Deuteron 0:021� 0:004� 0:003� 0:016 0:019� 0:006� 0:003� 0:013

Neutron �0:075� 0:007� 0:005� 0:019 �0:078� 0:013� 0:008� 0:014
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Table 8: Best parameters at Q2 = 1 GeV2 when gA=gV is a free parameter in the �t. The
uncertainties shown are statistical only.

Parameter Value Parameter Value

�S 0:38+0:03
�0:02 �g 0:94+1:26

�0:29

�S 1:03+0:29
�0:27 �g �0:71+0:22

�0:21

�S 3:64+0:63
�0:59 �g (4:0)

j gA
gV
j 1:15+0:03

�0:03

�
p
NS

3
4
j gA
gV
j+ 1

4
a8 �nNS �3

4
j gA
gV
j+ 1

4
a8

�
p
NS �0:01+0:10

�0:10 �n
NS 0:20+0:16

�0:14

�
p
NS 1:86+0:30

�0:28 �nNS 3:48+0:70
�0:63

�2 116:1

d.f. 133� 10

Table 9: Best �t parameters for the gNS1 �t with their statistical errors.

Parameter Value

j gA
gV
j 1:20+0:08

�0:07

� �0:20+0:13
�0:12

� 1:42+0:40
�0:36

�2 52:4

d.f. 44� 3

Table 10: Integrals of the nonsinglet structure function in the measured and unmeasured
x ranges. Integrals are calculated using data (column 4) and using �t parameters (column
5) at Q2 = 5 GeV2 using the SMC and E143 data, and at Q2

0 = 10 GeV2 using only
SMC data. The indicated uncertainties in the measured x range are the statistical and
systematic uncertainties, respectively.

Data x-range Q2
0

R xmax
xmin gNS1 (Q2

0)
R xmax
xmin gNS�Fit1 (Q2

0)
GeV2

0! 0:003 5 { 0:009
SMC + E143 0:003! 0:8 5 0:174� 0:011� 0:013 0.170

0:8! 1:0 5 { 0:002
0! 0:003 10 { 0:010

SMC 0:003! 0:7 10 0:184� 0:016� 0:014 0.169
0:7! 1:0 10 { 0:004
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