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Abstract

Hadronic radiation provides a tool to distinguish different topologies of colour

flow in hard scattering processes. We study the structure of hadronic flow corre-

sponding to Higgs production and decay in high–energy hadron–hadron collisions.

In particular, the signal gg → H → bb̄ and background gg → bb̄ processes are shown

to have very different radiation patterns, and this may provide an useful additional

method for distinguishing Higgs signal events from the QCD background.
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1 Introduction

The distribution of soft hadrons or jets accompanying energetic final–state particles in
hard scattering processes is governed by the underlying colour dynamics at short distances
[1–4] . The soft hadrons paint the colour portrait of the parton hard scattering, and can
therefore act as a ‘partonometer’ [1–12]. Since signal and background processes at hadron
colliders can have very different colour structures (compare for example the s–channel
colour singlet process qq̄ → Z ′ → q′q̄′ with the colour octet process qq̄ → g∗ → q′q̄′), the
distribution of accompanying soft hadronic radiation in the events can provide a useful
additional diagnostic tool for identifying new physics processes.

Quite remarkably, because of the property of Local Parton Hadron Duality (see for
example Refs. [2, 3, 13]) the distribution of soft hadrons can be well described by the
amplitudes for producing a single additional soft gluon. This distribution takes the form
of a soft ‘antenna pattern’ distribution multiplying the leading–order hard scattering
matrix element squared. Confirmation of the validity of this approach comes from recent
studies of the production of soft hadrons and jets accompanying large ET jet and W+jet
production by the CDF [14] and D0 collaborations [15] at the Fermilab Tevatron.

One of the most important physics goals of the CERN LHC pp collider is the discovery
of the Higgs boson [16]. Many scenarios, corresponding to different production and decay
channels, have been investigated, see for example the studies reported in Refs. [17, 18].
While final states containing leptons and photons are relatively background free, they
generally have very small branching ratios. In contrast, the more probable decay channels
involving (heavy) quarks have large QCD backgrounds. The question naturally arises
whether hadronic radiation patterns could help distinguish such signals from backgrounds.
We have in mind the following type of scenario. Suppose an invariant mass peak is
observed in a sample of (tagged) bb̄ events. If these correspond to Higgs production,
then the distribution of accompanying soft radiation in the event1 will look very different
from that expected in background QCD production of bb̄ pairs. One could imagine, for
example, comparing the topologies of the hadronic flows ‘on and off resonance’.

In this study we will consider the hadronic radiation patterns for two of the standard
Higgs processes at LHC: direct production gg → H → bb̄ and associated production
qq̄′ → WH → ℓνℓbb̄. Although the non-zero b–quark mass is largely irrelevant when
computing the radiation patterns, we will also consider the case when the final–state
quark mass is large, so that our analysis can also be applied for example to H → tt̄. Our
Higgs analysis is a natural extension of the studies of Refs. [9, 19], where the antenna
patterns for Z ′ in pp̄ collisions and leptoquark production in ep collisions were calculated
and shown to be different from those of the QCD backgrounds.

The analysis presented here should be regarded as a ‘first look’ at the possibilities

1We take this to mean the angular distribution of hadrons or ‘minijets’ with energies of at most a few

GeV, well separated from the beam and final–state energetic jet directions.
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offered by hadronic flow patterns in searching for the Higgs. Of course, ultimately there
is no substitute for a detailed Monte Carlo study including detector effects. However the
results presented here indicate that the effects can be potentially large, and therefore that
more detailed studies are definitely worthwhile.

The paper is organised as follows. In the following section we consider direct pro-
duction and qq̄ decay of the Higgs boson, first for massless and then for massive quarks.
Section 3 extends the analysis to associated production and Section 4 presents our con-
clusions.

2 Hadronic radiation patterns for signal and back-

ground processes

We begin by considering the hadronic radiation patterns for the signal (gg → H → qq̄+g)
and background (gg → qq̄ + g) production of a massless qq̄ pair. The impact of non–zero
quark masses will be considered later. The radiation pattern is defined as the ratio of the
2 → 3 and 2 → 2 matrix elements using the soft–gluon approximation for the former. The
dependence on the soft gluon momentum k then enters via the eikonal factors (‘antennae’)
[20]

[ij] =
pipj

(pik)(pjk)
. (1)

For the QCD background process g(p1)g(p2) → q(p3)q̄(p4) + g(k) we have

1

g6
s

|M3|2(gg → qq̄ + g) =
1

2
(t2 + u2)

[(

1 − 1

N2
c

)

1

tu
− 2

s2

]

{

Nc

CF

[12] + [34]
}

− 1

8
(t2 + u2)

[(

1 − 2

N2
c

)

1

tu
− 2

s2

]

{

Nc

CF

[12; 34]
}

+
1

8
(t2 − u2)

[

1

tu
− 2

s2

] {

Nc

CF

([14] + [23] − [13] − [24])
}

, (2)

with s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2, and

[ij; kl] = 2[ij] + 2[kl] − [ik] − [il] − [jk] − [jl] . (3)

This is to be normalised by the matrix element for the leading–order scattering process
g(p1)g(p2) → q(p3)q̄(p4):

1

g4
s

|M2|2(gg → qq̄) =
1

2
(t2 + u2)

[

1

Nc

1

tu
− 1

CF

1

s2

]

. (4)
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The antenna pattern is then

RQCD = g−2
s

|M3|2(gg → qq̄ + g)

|M2|2(gg → qq̄)
. (5)

Note that because of the non–trivial colour structure of the leading–order Feynman di-
agrams, see Fig. 1(a), there is no simple factorisation of the eikonal factors. This is in
contrast to the signal (Higgs) process, for which

RH = g−2
s

|M3|2(gg
H→ qq̄ + g)

|M2|2(gg
H→ qq̄)

= 2Nc[12] + 2CF [34] , (6)

with the same momentum labeling. The two terms correspond to gluon radiation off the
initial state gluons (colour factor Nc) and the final–state quarks (colour factor CF ). With
colour–singlet exchange in the s–channel (Fig. 1(b)), there is no interference between the
initial– and final–state emission, in contrast to the QCD background antenna pattern.
It is this feature which will give rise to significant quantitative differences between the
radiation patterns (see below).

p1

g gq

q

q

g

g

g

g

p3 p2 p3

p4p1p4p2
q

q

q

(a)

(b)

H

Figure 1: The colour flow diagrams for the processes (a) gg → qq̄ and (b) gg → H → qq̄.

The next step is to define the kinematics. The four momenta are labelled by

a(p1) + b(p2) → c(p3) + d(p4) + g(k) , (7)
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where the gluon is assumed soft relative to the two large-ET partons c and d, i.e. k ≪
ET . Ignoring the gluon momentum in the energy-momentum constraints, working in the
subprocess centre–of–mass frame, and using the notation pµ = (E, px, py, pz), we have

pµ
1 = (ET cosh η, 0, 0, ET cosh η) ,

pµ
2 = (ET cosh η, 0, 0,−ET cosh η) ,

pµ
3 = (ET cosh η, 0, ET , ET sinh η) ,

pµ
4 = (ET cosh η, 0,−ET ,−ET sinh η) ,

kµ = (kT cosh(η + ∆η), kT sin ∆φ, kT cos ∆φ, kT sinh(η + ∆η)) . (8)

This is the appropriate form for studying the angular distribution of the soft gluon jet
relative to the large–ET jet 3, the separation between these being parametrised by ∆η
and ∆φ. In terms of these variables, the soft gluon phase space is

1

(2π)3

d3k

2Ek

=
1

16π3
kT dkT d∆η d∆φ . (9)

We will be particularly interested in the shape of the radiation pattern as a function of the
variables ∆η and ∆φ. Note that the direction of the soft gluon is measured with respect
to the p3 jet. Thus for massless 2 → 2 scattering, collinear singularities are located at
∆η = 0, ∆φ = 0 and ∆η = −2η, ∆φ = π.

We first study the QCD and Higgs radiation patterns for central qq̄ jets, i.e. η = 0.
Using the kinematics of Eq. (8) with η = 0, Eq. (6) gives

RH |η=0 =
4

k2
T

Nc

(

cosh2(∆η) − cos2(∆φ)
)

+ CF

cosh2(∆η) − cos2(∆φ)
, (10)

and

RQCD|η=0 =
2

k2
T

N2
c

(

2 cosh2(∆η) − cos2(∆φ) − 1
)

{

(4CF − Nc)
(

cosh2(∆η) − cos2(∆φ)
)}

+
4

k2
T

2Nc

(

1 − cosh2(∆η)
)

+ CF (N2
c − 2)

Nc

{

(4CF − Nc)
(

cosh2(∆η) − cos2(∆φ)
)} . (11)

Note that the radiation patterns are independent of ET . Fig. 2 shows the dependence
of RH and RQCD on ∆η and ∆φ. It is straightforward to show that the patterns are
identical close to the beam direction,

lim
|∆η|→∞

RH,QCD =
4

k2
T

Nc , (12)
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Figure 2: The antenna patterns RQCD of Eq. (5) and RH = 2Nc[12] + 2CF [34] of Eq. (6)
for the processes gg → qq̄ + g and gg → H → qq̄ + g, with η = 0 and kT = 10 GeV. The
units of R are GeV−2.

independent of ∆φ, and close to the directions of the final–state quarks,

lim
∆η,∆φ→0

RH,QCD → 4CF

k2
T

1

cosh2(∆η) − cos2(∆φ)
. (13)

The main difference arises from the amount of radiation between the final-state quark jets.
To study this further we consider the distributions at the symmetric point Pc located at
(∆η = −η = 0, ∆φ = π/2). This corresponds to soft gluon radiation perpendicular to
the plane of the gg → qq̄ scattering, see Fig. 3. Again using the kinematics of Eq. (8), we
find for the QCD background process

RQCD|η=0(Pc) =
2

k2
T

2CF (N2
c − 2) + N3

c

Nc(4CF − Nc)
∼ 0.1304 , (14)

where the numerical value corresponds to Nc = 3 and kT = 10 GeV. In contrast, for the
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Higgs signal process we find

RH |η=0(Pc) =
4

k2
T

(CF + Nc) ∼ 0.1733 . (15)

There is therefore approximately 4/3 more radiation between the final–state jets for the
Higgs production process. This is due to the absence of a colour string connecting the
final–state quarks in the QCD background process, see Fig. 1(a).

g

g

q

q

∆η

η

∆φ = π/2
∆η = -η

Figure 3: Sketch of the kinematics for the case of observing the soft gluon perpendicular
to the event plane at the ‘symmetric point’ Pc = (∆η = −η, ∆φ = π/2).

The QCD background process does, however, have colour strings connecting the
initial– and final–state quarks, and this leads to an enhancement of soft radiation be-
tween the jets in the plane of the scattering. We can illustrate this by considering the
radiation patterns around the direction of the final state quark. In particular we introduce
(as in [9]) the variables (∆R, β), where

∆η = ∆R cos β , ∆φ = ∆R sin β . (16)

For fixed ∆R > 0, varying β between 0 and 2π describes a circle in the (∆η, ∆φ) plane
around the quark direction. In addition, if we fix ∆R = π/2 then the symmetric point
Pc corresponds to β = π/2 (or equivalently 3π/2), and the soft gluon is in the 2 → 2
scattering plane for β = 0, π. Figure 4 shows the dependence of the radiation patterns
RH,QCD on β for ∆R = π/2, as before for η = 0 final–state quarks. At β = π/2 we
have RH > RQCD, as discussed above, whereas at β = 0, π we have RQCD = RH .2 The
shape of the β distribution therefore provides a powerful discriminator between signal and
background.

2In fact, the equality of the distributions at β = 0, π is true for all ∆R.
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Figure 4: The dependence of the antenna patterns RH and RQCD on the angular variable
β defined in Eq. (16). The units of R are GeV−2.

How does the interjet radiation enhancement depend on the jet rapidity η? Again we
consider the symmetric point located at Pc = (∆η = −η, ∆φ = π/2). At this point RH

is completely independent of η,

RH(Pc) =
4

k2
T

(Nc + CF ) . (17)

which follows immediately from Eq. (6) since [12] = [34] = 2/k2
T at Pc. The result is

slightly more complicated for RQCD. Here we find

RQCD(Pc) =
2

k2
T

1

Nc

4CF cosh2(η) (N2
c − 1) + N2

c (Nc − 2CF )

4CF cosh2(η) − Nc

. (18)

At Pc, RQCD is maximal for η = 0 with the value given in Eq. (14). As |η| → ∞ RQCD

approaches its minimum value,

lim
|η|→∞

RQCD(Pc) =
4

k2
T

CF . (19)

Note that in the large–η limit the ratio R ≡ RH/RQCD at Pc is significantly larger than
its value at η = 0:

R(η = 0,Pc) =
3N4

c − 7N2
c + 2

2N4
c − 3N2

c + 2
= 1.3285 ,

7



R(|η| → ∞,Pc) =
3N2

c − 1

N2
c − 1

= 3.25 . (20)

In other words, the difference in the signal and background radiation patterns at the
symmetric interjet point increases with increasing jet rapidities. Note that the large–Nc

limits of the ratios in Eq. (20) are simply 3/2 and 3, and also that R(η = 0,Pc) = 1 for
Nc = 2. This is illustrated in Fig. 5 which shows the dependence of R evaluated at Pc on
η and Nc.
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R


 = RH / RQCD

∆η = -η

∆φ = π/2

Figure 5: The ratio R = RH/RQCD as a function of Nc and η at the symmetric interjet
point ∆η = −η and ∆φ = π/2.

2.1 Massive quarks

So far we have only considered massless quarks. In fact for H → bb̄, with mb ≪ MH ,
this should be an excellent approximation, since the soft gluon only ‘feels’ the finite b–
quark mass very close to the jet axis, where our analysis does not in any case apply.
Far from the jet direction, and in particular at the symmetric point Pc, the effect of the
non–zero b mass will be negligible. The situation is however very different for the case of
H → tt̄, at MH

>∼ 2mt. Now mass effects are important in the radiation pattern, as we
shall demonstrate below.
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If we allow a finite mass for the produced quarks then the kinematics have to be
changed accordingly. Thus we replace the kinematics of Eq. (8) by

pµ
1 = (Eq, 0, 0, Eq) ,

pµ
2 = (Eq, 0, 0,−Eq) ,

pµ
3 = (Eq, 0, pT , Eq tanh η) ,

pµ
4 = (Eq, 0,−pT ,−Eq tanh η) ,

kµ = (kT cosh(η + ∆η), kT sin ∆φ, kT cos ∆φ, kT sinh(η + ∆η)) , (21)

i.e. we denote the energy of the quark jets by Eq and their transverse momentum by pT .
Thus

Eq = cosh(η)
√

m2
q + p2

T . (22)

We again work in the subprocess centre–of–mass frame. It is convenient to introduce the
dimensionless variable Θ as the ratio of the final–state quark mass mq to its energy

Θ =
mq

Eq

. (23)

For non–zero mq the antenna patterns receive additional contributions. For example,
the antenna pattern of RH of Eq. (6) becomes

RH
Θ = RH − CF [33] − CF [44] , (24)

where the massive equivalents of RH and RQCD are labelled with the suffix Θ. One effect
of the additional terms is to cancel the final–state collinear singularities, leading instead
to the well–known dead cone [22] phenomenon. Using the results of Ref. [21], we obtain
a somewhat more complicated expression for the massive equivalent to RQCD,

RQCD
Θ = (2Nc − 2CF + 2Y) [12] + (CF − X − Y) {[13] + [24]}

+ (CF + X − Y) {[14] + [23]} + 2Y [34] − CF [33] − CF [44] , (25)

with

X =
N2

c

4CF

[

(1 + 2µ)
(

1

U
− 1

T

)

− µ2
(

1

U2
− 1

T 2

)

+ 2(U − T )
]

×
[

1

UT
− Nc

CF

]−1
[

T 2 + U2 + 2µ − µ2

UT

]−1

, (26)

and

Y =
1

4CF

[

1

N2
c UT

+ 2

]

[

1

UT
− Nc

CF

]−1

. (27)
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The variables T , U and µ are defined as

T =
p1p3

p1p2
, U =

p1p4

p1p2
, µ =

m2
q

p1p2
. (28)

It is straightforward to show that the massless results are recovered in the limit mq(Θ) →
0.

2.2 Threshold behaviour (Θ = 1)

We first study the behaviour of the radiation patterns RQCD
Θ and RH

Θ in the threshold
limit in which mq = Eq = MH/2, i.e. Θ = 1. In fact setting η = 0 we can readily
derive the general expressions for the antennae for any value of Θ. Figures 6 and 7 show
the radiation patterns for various values of Θ near and at threshold. Notice how the
strong peaking structure seen in the massless case (Fig. 2) disappears as the threshold is
approached. In fact for Θ = 1, the patterns do not depend on ∆φ at all. This can be
seen from the analytic results. First, for Θ = 1 we have [34] = [33] = [44] and so, from
Eq. (6),

RH
Θ=1 = 2Nc[12] =

4

k2
T

Nc , (29)

independent of ∆η and ∆φ, see Fig. 7(d).
For RQCD

Θ at threshold, we first note from (28) that T = U = µ = 1
2

and thus

X1 = 0, Y1 =
2 + N2

c

2N2
c (4CF − Nc)

. (30)

From Eq. (25) we then have

RQCD
Θ=1 = 2 (Nc − CF + Y1) [12] + (CF − Y1) {[13] + [24] + [14] + [23]} + 2(Y1 − CF )[34]

=
2

k2
T

(

2Nc −
CF − Y1

cosh2(∆η)

)

, (31)

which depends on ∆η but not on ∆φ. For |∆η| → ∞ RQCD
Θ=1 approaches the constant

value

lim
|∆η|→∞

RQCD
Θ=1 = 2Nc[12] =

4

k2
T

Nc , (32)

and becomes equal to RH
Θ=1, as in the massless case. We also see from Fig. 6(d) that

RQCD
Θ=1 has an absolute minimum at ∆η = 0,

RQCD
Θ=1 (∆η = 0) =

2

k2
T

(2Nc − CF + Y1) =
Nc

k2
T

3N2
c − 4

N2
c − 2

, (33)
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Figure 6: The antenna patterns RQCD
Θ of Eq. (25) for the process gg → qq̄ + g with

different values of the mass parameter Θ of Eq. (23). The pseudorapidity of both quark
jets is fixed at η = 0, and the transverse momentum of the soft gluon is kT = 10 GeV. In
(d) we show the threshold result Θ = 1 (Eq = mq). The units of RΘ are GeV−2.
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Figure 7: The antenna patterns RH
Θ of Eq. (25) for the process gg → H(→ qq̄) + g with

different values of the mass parameter Θ of Eq. (23). The pseudorapidity of both quark
jets is fixed at η = 0, and the transverse momentum of the soft gluon is kT = 10 GeV. In
(d) we show the threshold result Θ = 1 (Eq = mq). The units of RΘ are GeV−2.
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which is numerically 18% lower than the large ∆η value. Note the singularity in Eq. (33)
for Nc =

√
2.

We next consider the patterns for arbitrary η and Θ. With the exception of [12] all
antennae exhibit an η dependence. We are again especially interested in the value of RH

Θ

and RQCD
Θ at the symmetric point between the two jets at Pc = (∆η = −η, ∆φ = π/2),

as the massless study suggests that at this point the differences between the signal and
background radiation patterns should be maximal. When evaluated at Pc, only [13], [14],
[23] and [24] have an explicit η dependence (∼ tanh(η)), whereas

[12] =
2

k2
T

, (34)

[34] =
2 − Θ2

k2
T

,

[33] = [44] =
Θ2

k2
T

.

All antennae that are η dependent exhibit an absolute maximum at Pc of 2/k2
T for η →

−∞ ([13], [24]) or for η → ∞ ([14], [23]) and vanish for η → ±∞ accordingly. The fact
that there is no η dependence at Pc for [12], [34], [33] and [44] immediately yields (see
Eq. (24))

RH
Θ (Pc) =

4

k2
T

(

Nc + CF (1 − Θ2)
)

(35)

for all η, i.e. the radiation between the two jets is completely independent of their separa-
tion in rapidity. This is illustrated in Fig. 8(a). Note that the massless result (Eq. (17)) is
reproduced for Θ = 0. The corresponding expression for RQCD

Θ is η dependent and reads

RQCD
Θ (Pc) =

1

k2
T

{4(1 − Θ2) + 2N2
c (N2

c − 2)(2 − Θ2)} cosh2(η) + N2
c {2 − Θ2(2 − N2

c )}
N2

c (4CF cosh2(η) − Nc)
.

(36)
For fixed Θ, RQCD

Θ (Pc) always shows an absolute maximum for η = 0 (see Fig. 8(b)) with
a Θ dependence which again is maximal for the massless case Θ = 0, with the value given
in Eq. (14). Once again defining the ratio of signal to background radiation patterns as
RΘ = RH

Θ/RQCD
Θ , we see that RΘ has a local maximum at Pc, the value of which depends

on η and Θ, see Fig. 8(c). The value at η = 0 is

RΘ(Pc, η = 0) =
4N2

c (4CF − Nc)(CF (Θ2 − 1) − Nc)

(N4
c + 4)(Θ2 − 1) + 2N2

c (3 − Θ2)
, (37)

which actually shows a very weak Θ dependence. It is maximal for massless quarks
(Θ = 0) with the value (= 1.3285) already given in Eq. (20), and is minimal for Θ = 1
with the value

RΘ=1(Pc, η = 0) = 4
N2

c − 2

3N2
c − 4

= 1.2174 . (38)
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Figure 8: The antenna patterns for RH
Θ , RQCD

Θ (in units of GeV−2) and RΘ at the
symmetric interjet point Pc, for different values of the quark jet rapidity η and the mass
parameter Θ. The soft gluon transverse momentum is taken to be kT = 10 GeV.
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For the massless case, R(Pc) increased with increasing jet separation (i.e. increasing
η). This is again true for the massive case, as shown in Fig. 8(c). In the limit |η| → ∞
we find

lim
|η|→∞

RΘ(Pc, η) =
4 (Nc + CF (1 − Θ2))Nc(N

2
c − 1)

2(1 − Θ2) + N2
c (N2

c − 2)(2 − Θ2)
, (39)

which is a monotonically increasing function of Θ. The values at Θ = 0, 1 are 3.25, 4.57
respectively, for Nc = 3.

In summary, the relative difference between the radiation patterns for the Higgs signal
and QCD background processes is maximal at the symmetric interjet point, as depicted
in Fig. 3. The ratio (signal/background) of the radiation patterns at this point depends
on the rapidity of the jets and the quark mass. It is smallest (R = 1.33) for massless,
central jets, and largest for massive, large–rapidity jets (R = 4.57).

2.3 Radiation inside the ‘dead cone’

A final point concerns the radiation inside the dead cone of the final–state (massive) quark
jets. In this subsection for simplicity we will only consider centrally produced jets with
η = 0 — the generalisation to forward jet production is entirely straightforward.

First we recall the result for the Higgs signal process gg → H → qq̄ for massless quarks
(see Eq. (10)),

RH |η=0 =
4

k2
T

(

Nc +
CF

cosh2(∆η) − cos2(∆φ)

)

. (40)

The second term is singular at the jet centre, ∆η, ∆φ → 0, whereas the first term rep-
resents a constant ‘pedestal’ of radiation from emission off the incoming gluons. In the
massive case (Θ > 0), however, the singularity is removed and in fact the net contribution
to the radiation pattern from the combination CF (2[34] − [33] − [44]) vanishes at the jet
centre Pdc = (∆η = ∆φ = 0), hence

RH
Θ (Pdc, η = 0) =

4

k2
T

Nc . (41)

The corresponding result for the QCD background radiation pattern inside the dead cone
is straightforward to calculate from the results already presented. We find, again for
η = 0,

RQCD
Θ (Pdc, η = 0) =

Nc

k2
T

3N2
c − 4

N2
c − 2

. (42)

Interestingly, the results (41,42) are independent of the quark mass, provided of course
that mq > 0. The effect can be seen in Figs. 6 and 7, where the value of the radiation
patterns at their minima (i.e. inside the dead cones of the quark jets) is the same for
all Θ. The signal to background ratio in the dead cone is therefore equal to the value
obtained at threshold and given already in Eq. (38).
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3 Associated Higgs Production

Higgs production in association with a W boson qq̄′ → W ∗ → WH is a potentially
important discovery channel at both the Tevatron and LHC colliders, especially for the
‘intermediate mass’ Higgs. The non–hadronic final state WH → ℓνℓγγ should be rel-
atively easy to distinguish, but unfortunately has a very small branching ratio, see for
example the recent study in Ref. [23]. This raises the question as to whether a search in
the decay channel

qq̄′ −→ W ∗ −→ W (→ ℓνℓ)H(→ bb̄) , (43)

might be feasible, especially with flavour tagging of both final–state b quarks [24]. Now
there is a potentially large irreducible background from the QCD process

qq̄′ −→ W (→ ℓνℓ) + bb̄ , (44)

when Mbb̄ ∼ MH . The signal and background processes are illustrated in Fig. 9.

q

q′
W

H
W∗

b

b

νl

l

q

q′ W

b

b

νl

l

q

q′ W

b

b

νl

l

Figure 9: Feynman graphs for the process qq̄′ → W ∗ → W (→ ℓν̄ℓ)H(→ qq̄) (associated
Higgs production) and the background process qq̄′ → W (→ ℓν̄ℓ)g

∗(→ qq̄).

We wish to study the radiation patterns for the processes (43) and (44), in analogy
with the gg → (H →)bb̄ study of the previous section. We first notice that the colour
flows are exactly the same as those for the 2 → 2 scattering processes qq̄ → H → bb̄ and
qq̄ → g∗ → bb̄ [21]. We can therefore immediately write down the antenna patterns of the
soft gluon radiation:

RWH
Θ = 2CF {[12] + [34]} − CF [33] − CF [44] . (45)
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RWg
Θ =

1

Nc

[14; 23] + 2CF {[13] + [24]} − CF [33] − CF [44] , (46)

with the momenta labelled as q(p1) + q̄′(p2) → W + b(p3) + b̄(p4) and [14; 23] defined in
Eq. (3). Note that the Higgs pattern is the same as for gg → H → bb̄ apart from colour
factor replacement Nc → CF for the initial–state [12] antenna.

In order to illustrate the quantitative differences between these radiation patterns it
is necessary to define appropriate kinematics. Since the leading order processes are now
effectively three–body final states, it is convenient to make some simplifying assumptions.
Thus we assume that the H and the W are produced with zero rapidity, and that the
b and b̄ quarks have equal energy and have polar and azimuthal angles ϑb and αb with
respect to the H direction. This configuration is illustrated in Fig. 10 and corresponds to
the four momenta

pµ
1 = (

√
ŝ/2, 0, 0,

√
ŝ)

pµ
2 = (

√
ŝ/2, 0, 0,−

√
ŝ)

pµ
H = (EH , pTH , 0, 0)

pµ
W = (EW ,−pTH , 0, 0)

pµ
3 = (Eb, pb cos(ϑb), pb sin(ϑb) sin(αb), pb sin(ϑb) cos(αb))

pµ
4 = (Eb, pTH − pb cos(ϑb),−pb sin(ϑb) sin(αb),−pb sin(ϑb) cos(αb)) . (47)

Conservation of energy and momentum gives

EH = 2Eb =
ŝ + M2

H − M2
W

2
√

ŝ
, pTH =

√

E2
H − M2

H , pb =
√

E2
b − m2

b , cos(ϑb) =
pTH

2pb

.

(48)
The pseudorapidities and azimuthal angles of the b and b̄ quarks are readily found to be

tan(φb,b̄) =
p(b,b̄)y

p(b,b̄)x

= tan(ϑb,b̄) sin(αb,b̄) , (49)

such that αb,b̄ = π
2

corresponds to φb,b̄ = ϑb,b̄, and

ηb,b̄ =
1

2
ln

(

Eb + p(b,b̄)z

Eb − p(b,b̄)z

)

. (50)

The soft gluon momentum is defined relative to the b–quark jet:

kµ = (kT cosh(ηb + ∆η), kT cos(φb + ∆φ), kT sin(φb + ∆φ), kT sinh(ηb + ∆η)) . (51)

Note that the opening angle (2ϑb) between the two b quarks is a function of the partonic
subprocess energy

√
ŝ. The dependence is illustrated in Fig. 11. Note that at threshold

(
√

ŝ = MW + MH) 2ϑb = 180◦.
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Figure 10: The kinematics for back–to–back Higgs(→ bb̄)–W production. The variables
are defined in Eq. (47).

Let us now study the radiation patterns in more detail. We assume parameter values
of MH = 130 GeV, mb = 4.3 GeV and MW = 80.33 GeV, and we again fix the transverse
momentum of the soft gluon to be kT = 10 GeV. The first thing to note is that for
the symmetric configuration defined above, the radiation pattern for the signal process is
independent of the azimuthal angle αb. This follows from the absence of antenna involving
both initial– and final–state quarks in (45). In contrast, there is no such symmetry for
the background process (46).

A more striking difference is seen if we vary
√

ŝ. According to Fig. 11 the angle
between the final–state quarks decreases with increasing

√
ŝ with the effect that the two

quark jets eventually merge for large centre–of–mass energies. Figs. 12 and 13 show the
signal (45) and background (46) radiation patterns for the average value (

√
ŝ = 310 GeV)

and for an extreme value (
√

ŝ = 14 TeV) respectively.3 The azimuthal angle αb is fixed
at 90◦ in both cases. For

√
ŝ = 310 GeV the opening angle between the b and the b̄

quarks is approximately 100◦. As αb = 90◦ the b− b̄ plane is orthogonal to the qq̄′ −WH

3Notice that at threshold,
√

ŝ0 = MH+MW , the b and b̄ are produced back–to–back, and the discussion

is almost identical to the direct production case studied earlier, apart from colour factor differences arising

from having incoming quarks instead of gluons.
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Figure 11: The opening angle of the bb̄ quark pair as a function of the partonic subprocess
energy

√
ŝ.

scattering plane (see Fig. 10) and thus ηb = ηb̄ = 0. We see immediately that the main
feature of our direct production study described earlier still holds. The most striking
difference between the signal RWH

Θ and the background RWg
Θ is the relative suppression

of radiation between the b–quark jets for the latter. There is a factor of approximately 2
difference between signal and background radiation in the interjet region, in qualitative
agreement with the results obtained for direct Higgs production. If we now increase the
subprocess centre–of–mass energy the two b–quark jets merge, forming a narrow colour
singlet and octet state for the signal and background respectively. The situation for the
extreme case

√
ŝ = 14 TeV is shown in Fig. 13. Notice that for the signal process the

soft gluon radiation becomes trapped in a very small tube. Outside the merged jets the
radiation pattern completely flattens out. In contrast, for the background process there
is still significant radiation between the initial– and final–state quark directions. In fact
the distribution here is essentially identical to that for the qq̄′ → Wg process studied in
Ref. [10]. In other words, the radiation pattern acts as a ‘partonometer’ [9] in measuring
the colour charge of the outgoing large pT partonic system.
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4 Conclusions

We have studied the distribution of soft hadrons or jets accompanying the production and
qq̄ decay of light Higgs bosons at high-energy hadron colliders, and compared the distri-
butions with those of the irreducible QCD backgrounds. We find significant differences
between the signal and background distributions, which suggests that the study of the
topology of hadron flow in such events could provide an important additional discrimina-
tory tool. For example we have shown (see Fig. 2) that the distribution of soft hadrons
transverse to the scattering plane in centrally produced H → bb̄ events is approximately
4/3 larger than that for QCD gg → bb̄ events with the same kinematics, while close to
the beam axis and final–state jet directions the signal and background distributions are
the same. The differences result from the different colour flow in the two processes.

Although in this paper we have focused on light Higgs bosons with a dominant bb̄ decay
mode, we would like to make some additional remarks concerning heavier Higgs bosons.
Consider, for example, the ‘gold–plated’ gg → H → Z0Z0 → 4l± discovery channel for a
heavy (MH > 2MZ) Standard Model Higgs boson. The dominant irreducible background
comes from the qq̄ → Z0Z0 process. In the language of Section 2, the antenna patterns
for these signal and background processes are simply 2Nc[12] and 2CF [12] respectively.
In other words, soft hadrons or jets with fixed transverse momentum should be uniformly
distributed in the (η, φ) plane in both cases, but with an enhancement of 9/4 for the signal
relative to the background. A simple on–/off–resonance comparison should therefore show
a significant difference.

Our results are based on the soft–gluon/LPHD hypothesis [13]. The success of this
approach has recently received a new quantitative confirmation from experiments at the
Tevatron pp̄ collider. However, it will be important to extend our work by incorporating
a realistic Monte Carlo simulation which will allow detector effects to be included. We
believe that the results presented in this paper make such an effort very worthwhile.
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Figure 12: The antenna patterns (in units of GeV−2) for the signal RWH
Θ (Eq. (45)) and

the background RWg
Θ (Eq. (46)) for associated Higgs production at subprocess centre–of–

mass energy
√

ŝ = 310 GeV. The directions of the incoming quarks q and q̄′ and of the b
and b̄ quarks are indicated.
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Figure 13: Same as Fig. 12 but now for a subprocess centre–of–mass energy of
√

ŝ =
14 TeV.
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