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1. = THE SIGNIFICANCE OF INTERMEDIATE ENERGY EXPERIMENTS FOL REGGEOLOGY

1.1. = Where does Regge stert ?

It is surprising that simple Regge type features persist
down to low energies in many reactions. As an operational definition
for the beginning of the Regge region we require that the fluctuations

in s at fixed t are quite small, say 8 A/ < 15%.

A - In near forward elastic scattering, Regge features persist

Prap ¥ 145 GeV/c. This came as a surprise to the CERN-Holland
*

group . They set out to discover Y resonances in K_p - K_p in

down to

the region pL = 1.5 = 2.5 GeV/c ty measuring the polarization. Instead

they found surpricing Regge type regularities : they observed a dip av

2 ; s ) s s ;
t ~ -0.8 GeV~, whose position is pretiy much independent of p“ak H
-~ M
similarly the position of the first zers in the polarizastion is av

2 . . . . . .
t ® -0.8 GeV for all energies in the interval.

2 e
The new Lrgonne data ) on the full angulszr disitriduticn

for the T 'p polarization at P, = 1.8 = 2.3 GeV show, for

2 e em . i
lt] < 1.5 Gev s a great similarity to the polarization =z

T
menta, Fig. 1. In fact the FESR Regge rit of Barger and Pnil

gives a good description for |t| £ 2.0 GeV® and p > 2.1 GeV/c.

B - .In inelastic reactions, we have to distinguiskh between
amplitudes where the low energy rescnances add and those where the
resonances cancel. The former type of amplitude is big a2ad shows small
fluctuations, the latter type is small and shows big fluctuations. An
example for the Tormer type is the spin-Ilip amplitude of \ » CZX,

. . a4 AT —- . . - .
for the latter type %the ncn-fiip ' p CEX. Where we can isolate the

. — d + . X
latter type, as in Ef;ot(n p) - Giotkir p), We observe strong
fluctuations up to », = 2.5 3eV/c. Wrere the former typs domirates,

ad
as in 46 /dt (N 2 CBEX fcr t £ 0, no s dependent {resonarce
S b] Y \
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¢ - In WN backward scattering, one observes dramatic dips
in G (180°) at p % 2.1 GeV/c for T 'p, T p and T pCEX. The

A(11/2%, 2420} at p, = 2.6 still appears as a marked peak and the
1r+p polarization at 2.75 GeV/c2 2) looks quelitatively very different
from the new results at 6 GeV 4). Therefore Regge type experiments in

the backward peak should not be done below p; = 4.0 or 3.5 GeV/c. An
exception is the exotic channel K+p - K+p. According to exchange
degeneracy the backward peak should be purely real, and the polarigzation
should vanish. Within statistical errors this is the case down to

= 1.80 GeV/c, see Fig. 2 5).

momenta as low as Py,

1.2. - Regge shrinkage

Regge shrinkage is dramatic at large t, (say, || ~
~ 1-3 GeV2), see the T 'p data 6) in Fig. 3, and the effective tra-

jectory in Fig. 4.

— The conclusion for the experimentalist ¢ Regge features are more dra-
matic at large t, and in the past the gross structure in t over
a large t interval has been more Illuminating than fine details near
t=o.

- The conclusiorn for the theorist : the present cut models (weak or strong)
fail badly beyond [t] ~ 0.5 GeVz, they do not reproduce the strong
shrinkage exhibited by the data, Fig. 4. One of the important taszks
is to find a reasonable cut model fcr beyond ]t[ ~ 0.5 Geve.

+

T

Regge shrinkage is also observed for p Dpackwaré scatter-

ing in the intermediate energy region, 3.25 < Pr < 5.25 GeV/c, see Fig. §

-

from Ref. 7).

/

Plots of o . can be misleading. if the cross-secticn
effective :
i a sum of geverazl terms (particularly if there is destructive interfe-
\ - . - . . - . - -
rence), 1t is clearxer to isolate a singie term, e.g., [écf/dt(h p) -

- dCf/dt(K+pZI in a pole model is the interference Term between the
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Pomeron and the vector mesons @o ,f’). Therefore it should follow a
simple power law s‘£P+wLM-2. In Fig. 6, Ref. 8), we cee that the data
follow such as a simple power law from pL = 15 GeV/c all the way down

to p, = 1.5 GeV/c. Note particularly |t| = 0.5 - 0.8 GevZ, where the
statistics for the difference are good. The fitted exponent n = OZP + 0<M
is shown on Fig. 7. We see that the shrinkage is even somewhat stronger

than o(;'p = 0.3 and <>('];,I = 0.9 Gev 2.

1.3. = Siructure in t

Regge experiments at large 1, ltl 1.0 - 3.0 GeVz, are
also important, because they teach us something about the qualitative

behaviour of the amplitudes near the points o( = 0, -1, -2.

. . . + -t
The qualitative features of the elastic K p and || "p
polarizations are simply explained by exchange degeneracy. The polari-

zation arises from a Pomeron-meson interference.

Assuming the Pomeron to be purely imaginary, non-flip and

without structure in t, the polarization becomes proportional to

Re B . Exchange degeneracy impliec that the phase of the combined
meson -1 - + -iTK

meson poles is -e for K p, -1 for K p and +1-= for

the ? term. Therefcre the polarization is

’l-%e. ~ 'm?wesom ~ 4| -for '/(+[>
~ + 08Tl . W'r
~ +l- Tt + Ts(Tp)-2(1p)

This correctly gives the structure shown in Fig. &, Refs. 9), 10) : %he
3 -
rise ~t° of K p near % = 0, the comrarapnle magnitude and positive
. . I - . 1
relative sign of K p near oA = Oy the zero of K D near L = -3,

, . . . . - £
the comparable magnitude and opposite sign for K p near A = -1, the
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zero of K—p near X = -1.5. 1In Trip it gives the well-known double
zero of the difference of the polarization at od = 0. Note that the low
energy experiments (Kip at 2.7 Gev, T ip at 5 GeV) were ﬁore useful
to Regge phenomenology than the experiments at higher momenta (available
at that time), because the former covered a larger t interval with

better statistics.

1.4. - Why experiments at intermediate energy ?

Because of interesting structure in t and because of
dramatic Regge shrinkage at large 1, experiments in the range
[tl ~1-3 GeV2 are important. But statistics becomes a problem at
large t, therefore the experimentalist is forced to do Regge experi

ments at intermediate energies. Luckily, Regge features persist down

ct

to low energies (see 1.1). For elastic scattering and

]
N
.

w

]
ks
™
<
M
3

one can 40 Regge experiments at a momentum as low as Py,

2.0 GeV/c.

It is a widely held misconceptvion that Reggeclogy 1is
"purest" and "simplest" at very smzll t and at the highest avaiigdle
energies. The last few years have tcusht us the opvosite ; we must

not close our eyes at the dramatic schrinkage at large t and at the

g

begutifully cimple large t structure cf the poliarization.

One might wonder whether Regzse pnencmenology will look
[
-

ipl

n

T Mia = K
GeV. DThis is

uite pcs

w

.
.

K

very different at 70 - 500 GevV IZron
the relative importance of cuts may be very diftferent. If at some future
time there would be twc simplified formulations, one useful and simple
for 2 - 20 GeV, the cther one for 20 - 200 GeV, then it would be the

former which would bte relevant for duglity. The interl ng via FEZIR
y 1g

U

of the resonance region with the Rezge region refsrg more 10 the Int:

(]
H
i

1G]

mediate energy Regge description then to the very high energy model
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2. - THE CONFRONTATION OF THE REGGE DESCRIPTION WITH THE PHASE SHIFT

DESCRIPTION IN K'p SCATTERING

K+p scattering is a good place to compare directly
(1ocally) the Regge and the phase shift descriptions. At fixed t,
the data (d</dt, P) for K'p appear Regge behaved down to

X 1.4 GeV. On the other hand, phase shifts exist up to = 2.5 GeV.

P, P,

At each energy and momentum transfer, the present experi-
ments give us only two quantities d</dt and P. How is it possible

to determine all four quantities, Re and Im of ncn-flip and flip ?

The crucial hypothesis for a phase shift analysis is that

all partial waves above zmax are either zero or fixed as a theoretical

input (from partial wave dispersion relations or from Veneziano). If

QS’tot and all moments A (of d4G/af) and B, (of P aG7asL)
up to n = 22max are experimentally well determined, one has the same
number of unknowns and of equations, namely 2 (szax-+1)‘ In principle

this allows us to arrive at the knowledge of four quantities at each
gnergy and momentum transfer. Urnfortunately, almost all equations are
quadratic, and one is faced with au enormous ambiguity problem ; there

Lpax * 1 soluticns 11).

are of the order of 2
In a Regge mcdel the phase of an amplitude can be obtained
from the s dependence of the absolute magnitude of this amplitude.
This allows us %to arrive at the knowledge of three quantities at each
energy and momentum transfer. The fourth quantity can never be deter-
mined in a Regge framework, because (for t not near zero) one can
always rotate a Regge solution in the a-b plane (spin ncn-flip/spin
flip plane) without changing cross-sections or polarizations [for details,
see Ref. 12)].

In a confrontation between phase shifts and Regge, one must
compare this third quantity, which can be defined as the "effeciive

phase" =



< !
“z

low @ <« | [Tea)+ (T b)°
(’!?e a)’ + (Qe b)l

where a and b are t channel helicity amplitudes with kinematicsl
factors absorbed such that dG7/dt = |al? + |b|? and Pas/dt = -2 Im(ab ).
It is useful to define the third quantity also in another way, which is
equivalent, if do/dt and P are measured (and fitted) at one given

(s, t) with infinite acecuracy. - One considers the a-b plane (non—flip ~
flip plane) and draws the vectors e - (Re a, Re b) and o = (Im a, Im b).
The angle between the two veciors, {} ( :E, fﬁ), is this second possibi-
lity to define the third quantity.

. . +
In Fi 9, such a compzrison is made for K p scattering at

\

g-
pL = 1.45 GeV/c. The =0lid lines sh~w the predictions of various phase
), 14

shift solutionms - for two vossible (equivalent) definitions of
the third cquantity. Wwe see trat the various phase skift sclutions
strongly di ree among each other, aithough they look guite similar
on the Argand plots. For example, at t = -1 Geye, te solutions

) . - L A 0 . :
imaginary). Some soluiions tend tu LQ ~ 90 (vurely imaginary)

0 .. _ .0
have ‘P values from 20 (predominantly real) to 6G (predominantly

towards the backwerd direction, in zontradiction with the exchange
. e : + o . , . .
degeneracy predicticn that K p Ctackward scettering snould be purely

real {and thersfore P = 0, see Fig. 2).

The dots shcw the predic*tions of the erfective pole model

12 . ) - . .
of Daum et al. ). An effective pole model was chosen vecause the pre-

n)

. - = o T N - . : H - -
sently available cut models fail badly if one goes cut ¢ lt. = 1.5 GeV,
a,

e.g., they cannot reproduce the dramatic shrinkage shown by the dat Fig.

while our effective three-pole model gives quantitetive Fits. We sce
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on FPig. 9 that the Regge predictions strongly discrininate ageinst
the solutions ANL II, III, IV. They disfavour the solutions ANL I,
CERN ot ,Ex’, while the agreement is moderate with CERN (? .

We conclude that in principle the Regge approach allows
us to discriminate among phase shift solutions. What is now needed

are Regge models which are quantitatively reliable out to 1.5 GeVz.

THE GEOMETRICAL PICTURE

A useful "language" for the Reggeologist is tc plot his
amplitudes not versus t (at fixed plab) but versus 4 or equi-
valently versus this impact parameter b = 4/k. In general a partial
wave analysis at high energy requires relisble Regge smplitudes ocut
to feirly large + as- an input. In special cases, hcwever, there
are shortcuts, if one is willing to malie certain zpproximztions.

15) 4

<+
Davier and Harari se, for K p elastic scattering at 5 eV,

the following approximations :

~

(i) neglect RZ t=2rms compared to PL, but keep the interference

terms P-.R, where P = Pomeron, R = ordincry Regge pole ;
(ii) assume the Pomeron to be purcly imaginary for t # O ;

L. . . + .
(111) assume that R 1is purely real in K p ecince there are nc

resonancecs.

With these assumpticns, one obtains :
SV ~|*
de/at {(up) = l)

as lolr (V‘p)z \P|*+ Zl?} T K
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In the differential cross-section, interference with P 1is
only possible for that part of the R amplitude which has the same
phase and spin structure as P (s channel helicity non-flip, a7\ = 0).

Solving for Im RA;\ o' Ve obtain

os7,,- s/ ,+
T Rano - 25 (p)- 43 ('p)
Q.VS§T(K*P>

Im R A\ =0 is shown in Fig. 10. We see the well-known cross-over zeros

at |t| = 0.2 and 1.3 GeV°. They are shifted (by cuts) compared to the

positions in an exchange degenerate pole model, < (t) = 0, -1.

The position of the first zero is simply connected (via
FESR) to¢ the first zero of the intermediate energy resonances. Helicity
non-flip corresponds to an angular dependence Pz(cosis) while heliqity
flip corresponds to Pé(cosf)). Therefore the first zero in the non-flip
amplitude must be closer to t = 0 than the first zero ir the flip ampli-
tude. This means that the exchange degeneracy of the t channel Regge
amplitudes mus:t be broken (by cuts), because of the spin structure of the

direct cnannel resonzances.

The curve drawn through the points in Fig. 10 is motivated
by the picture of one dominant {band o) partial wave(s) containing the
zeros of Pz(cos{)) or of its asymptotic form Jo(c J:EU. Since a fun-
damental feature of the difference pliotted in Fig. 10 is the streng Regge

hrinking shown in TPigs. 6, 7, Jo must be multiplied by a shrinkage
factor exp[é(s)ﬂl. In partial wave language this means that one needs
an expanding band (£kb) of impact parameters participating, i.e., we
must have a collective effect of many partial waves.

FPigure 11 shows ihe parftial wave analysis of Im R *).

aA =0
We see indeed a peaking for an impact parameter of about one fermi ; this
means th~t the imaginary part of the ordinary Regge amplitude is

—— ————— —— — — ——— —— T ————— T — T " _——— — _—— — —— ——— —— — — — — — — ———— ——— ——— ——— —— ——_——— o — ——— T —

It makes no sense to partial wave analyze differential z2ross-sections.
What one analyzes here is the imaginary part of an amplitude (appro-
ximately). The result can be trusted for low and intermediate £,

1.

but not for high
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peripheral effect. We also see that a broad band of partial waves'is

* -
needed, 6'5 XN 6. At Piap = 5 GeV the parent trajectory (YO H %*, 3 ’
g+...) is at £ = 10, while the dominant partial wave, £ = kb ~./s,

is at 4 = 7.

The unabsorbed Veneziano amplitude and the empirical ampli-
tude in Fig. 11 have the common feature of a collective effect of many

partial Wavés, from 4 = 4 s down to £ = C. In both cases the

. parent ~
partial waves which are dominant for =1 < cos£}<< +1, are near
1 = zdominant ~./s. The difference lies in a strong suppression of

the very low partial waves in the empirical amplitude (£ < 3 at 5 GeV)

compared to the unabsorbed Venezianoc amplitude.

Veneziano models for KN, KN with weak or no absorption
have the following feature : if fitted to C;;Ot(Kip, Kin), and with
the flip - non-flip ratio from dG/dt (CEX) and from the assumption
that u)?f decouple from s channel flip, one predicts the strength
of the Y* parent resonances too small by about a factor 2. This sta-
tement can be turned around : if the parent resorance strength is the
input, then the forward amplitudes which are the sur of parents and all
daughters, :E:(zz-f1) a,, come out too large by about a factor 2.

In other wordg the daughters must be absorved more strongly. What is
needed is a new absorption model which uses non-sense wrong signature
zeros in the input (e.g., a Veneziano input) like the Argcrnne model,
but which has stronger absorption in the very low partia. waves than

the Argonne model.

If one has a broad band of partial waves centered =2t

zdbm’ the first (and in our case also the second) zero of the angular
distribution will be given by the zero(s) of P, with 2= £, .
om

Further out in t +there will be strong cancellations within the band

of important waves in order to give the Regge shrinkage ; therefore

the zeros are not expected to be given by the wave with £ = £

.

dom
Experimentally the second and third - ross-over zeros (at [t[ = 1.3

and about 2.2 GeVz) are approximately given by the exchange degene-

racy positions, & = -1, -2.
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For pp and p§ elastic scattering the second and third
cross-overs disappear, dG/dt(pp) stays smaller than dG /dt(pp)
after the first cross-over. In this case both the exchange degeneracy
picture and the zdom picture (Jo picture) need important corrections.

‘Why is the scattering (at 5 GeV) strongest near an impact
parameter of 1 fermi (see Fig. 11) ? The effective impact parameter
is directly connected to the first zero of the angular distribution.
This first zero occurs at a t value, which is independent of s, and
which is the same for the Regge amplitude at 5 GeV and for the inter-
mediate energy resonances. Therefore the dominant impact parameter is
independent of s, and the value of 1 <fermi is the value given by

L¥,5+ 7+ 9%
SN o

the intermediate energy resonances, 5

In Fig. 12, we see that the Pomeron is mostly in low

rartial waves.

Only the imaginary part of the (non-Pomeron) Regge ampli-
tude is peripheral. The real part is central in K+n CEX, Dbut peri-
pheral in K-p CEX. This comes from the Regge signature factors which
give ¢

- T

K'F Cex . - »

l<+lA CeXx s - 4

The slope of the forward npeak is directly related to the

average radius of interacticn :

2(8)
% (22”/) . é? <bl>
¥ 40 ‘QZ [22+)) Gy T\
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16) has plotted this experimental slope B of the forward

Predazzi
+

peak for ﬁr+p -W p, as a function of energy, sece Fig. 13. As we

come to the 45~(g+’ 1920), the average radius of interaction shows

a sharp increase. This is still another indication that intermediate

energy resonances are peripheral effects.

There is a funny change of roles. A few years back, in
the interference model, people thought that resonances correspond to
central collisions and Regge exchanges correspond to peripheral col-
lisions. Now we have seen that resonances are quite peripheral effects
(b ~ 1 fermi) and that the unabsorbed Regge amplitude is not periphe-

ral enough.

THE NEW INTERFERENCE MODEL

Above the present phase shift region, bpy > 2.5 GeV/c in
MN, one still sees reconance structure, particuvlarly ir the backward
direction. What model cculd be used to fit this region ? The Venezianoc
model is nnt flexible enocugh (in practice) to give gquantitative fits,
quite apart from‘the difficulties with treating fermions cocrrectly.

Therefore one considers a model with resonances plus "something else'.

'Duality assumes rescnance saturation for the imaginary part,
therefore the imaginary rart is represented either by rescnances or by
Regge exchanges. In addition we have the Pomeron. While the usual dual-
ity framework is explicit about the imaginary part, it says little about
the real part, which must be computed from dispersion relations. In
this sense the K+n charge exchange (CEX) amplitude, which is purely
real, is built by the long range tails of the Y* rescnances in thse

crossed channel.
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Before discussing the real part in more detail, let us
look at the Indiana model 17). They fit the 7 +p backward peak as
a sum of resonances only. The inconsistency cf this ansatz is evident
when applied to K+p backward scattering. Since there are no (strong)
K'p resonances the Indiana approach would imply that there is no (strong)
backward peak in K+p, while duality merely says that the imaginary part
of the K+p backward peak should be zero. Experimentally K+p has a

strong backward peak (A, Z exchange), but the polarization is O % 20%

for pp = 1.6 —=2.% GeV/c (see Fig. 2), in agreement with the duality
prediction.

A step forward in the treatment of the real part is the
new interference model by Coulter, Ma and Shaw 18). It is useful to

consider separate.y the u channel and s channel resonances in the
FESR
+N
]' Tun T res. 0(2' < Z W resow. + Z S refow.
-N ¢/~ ¢ {4.1)

Similarly it is useful to split up the full Regge term not into even

signature and odd signature parts, but rather into parts which have

> +1) or a u channel (cosja < -1)

only either a s channel (cos +

t
cut ¢

s 4 L) oL [+)
'!TO(G)] go(() [ ) (4.2)

[:,:l-,!, =+ S - (-5

(For definiteness we assume that we are in the s channel, s positive.,
Duality (i.e., resonesnce saturation and Regge pole dominance) implies

that we can either use both types of resonances or both types of Regge
terms (in the absence of the Pomeron). 3ut we ncte that theres is a one-
to-one correspondence ketween the splitting up into two terms in (4.1)

and (4.2), e.g., the first terms in Joth expressions have no s channel

discontinuities. The new interference model uses, when working in the
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s channel, the second term of (4.1) and the first term of (4.2), i.e.,
they take the s channel resonances and add that part of the ¢t

*
channel Regge pole which has the discontinuity in the u channel ).

In the Veneziano model, the decompositicn looks as follows :

in the s channel : Vv + V + Vv

st su ut
j |
S resonances purely real

Regge term

where Vut has singularities in u and t only.
For.the real par# and the problem of tails this is quite

a step forward, the tails of the 1w channel resonances are now neztly

parametrized by the V Regge term. We are still faced with the problenm

ut
of the tails of low energy s channel resonances.

Yokosawa tries to circumvent this by using rescnances
only in the imaginary part and teking for the real part the full Regge
real part. This is not good, because any s depeudent structure in
the imaginary part is reflected (via analyticity) in an equally imbor-

tant structure in the real part.

The problem of high enecrgy tails of lcw energy resonances
is inﬁimately tied to the problem of daughter partial waves at inter-
mzdiate energies. The necessity for daughters is obvious, because
[£(0?)| >> |£(180°)|. The backward amplitude is small because many
(large) partial waves cancel agzainst each other. There have been many
fits which used (at any given energy) only a few varent partial waves
(in the imaginary part). They could obtain fits to some small u

*)

Practically this means dropping the term e in the Regge

signature factor.
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interval, say O S_Iul <1 GeV2. These models would not be able to
build up the large (non—Pomeron contribution to the imaginary part of

the) forward peak.

The test question to ask for any calculation with the new
interference model is the following ¢ does it have enough daughter re-
sonances to btuild up Cstot - nggt (Pom) ? Figure 14 [ﬁef. 19II
shows that after subtracting all the established and half-established

* -
Y resonances from CS;ot(K p), one is still 7 mb above

(K~ =.1.5 - 3.0 G . i
C;;ot‘K p, Pom) for P, =:1.5 = 3.0 GeV/c. Since (;;

&~ 5 mb at 2 GeV, the resonance amplitude must be more than doubled.

Ot(resonances) R~

I1f one sticks to the model, one needs a iot of new resonances for which
there is not yet direct evidence. If one parametrizes the 7 mb dif-
ference as background, this background would correspond to thz daugnhter
partial waves of the ordinary Regge exchange, while the highe:r partial
waves of Regge would correspond to the explicit resonances. Such an
approach would be similar to the phase band method (discussed in Secfion
5), with the difference that here the backgrouﬁd is parametrized in
(s,t) with a simple s dependence, while there tlie parametrizatica

is in £ (in the impact parsmeters) with little emphasis on the s

dependence.

The best place to %try out the new interference model is in
those cases where at least one of tThe three ingredients (s resonancés,
u-t Regge term, Pomeron) is absent : (i) KN elastic scattering :
Pomeron + resonances 20) ; (i1) K'p -K°n : only resonances 19) ;

iii) [T p - Wn : resonances + u-t Regge term.

A consistent fii in the new interference model needs a lot
of parameters, and in order %to tie them down one must fit the full an-
gular range of d©/d{l and P over a largs encrgy interval. So we
are almost pack to an energy dependent phase shift analysis, with the
exception that the background parametrization is more eccnomical and

physically mcre meaningful.
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5. - THE PHASE BAND METHOD

Moravesik has proposed another tool for analyzing data
above the phase shift region 21). He parametrizes the low partial
waves, O < £ < ', in a collective way (phase band), practically
by cubic functions for é.(Z) and vz(ﬂ). The high partial waves,
' < L < zmax’ are parametrized individually as in the usual phase
shift analysis, therefore they are allowed to contain resonances.
The method has been applied by Bridges, Moravcsik and Yokosawa 22)
to T ¥p scattering at P, = 2.5 and 2.75 GeV with 4' = 4 and

Emax = 6. It is now important to notice that there is not one phase

band, but rather there are eight phase bands we need a separate

parametrization for J = 1 + %+ and j=4 - %3 for even £ and odd
2y for Re and Im ~or equivalently for (5 and 7 - If we have
a cubic fit in each phase band we need 8 X % = 24 parameters, while
the conventional analysis uses only 2 (22' + 1) = 18 parameters.
This means that one must go to much higher energies in order to make
this method economical. Bridges ¢t al. 22) halve their number of

free parameters by not disitinguishing =ven j from cdd 2.

One mignt ask whether it might be all right not to dis-

-

tinguish between even and odd ¢ nor between J > L + % and ij=4-%
or to put the real parts to zero, for low partial weaves. All this cor-
responds to the assumptions : (i) that the low partial waves are domi-
nated by Pomeron exchange, which 1s verified by Fig. 12, and (ii) that
the non-Pomeron part in the lcw partial waves « < £' 1is negligible
compared to the non-Pomerca part in the high partial waves 4 > &',

which is certainly not true according to Fig. 11.
(=] o

Also we know independently of the figure that it i

0]

imp

2 -
[~

o

sible to build an ordinary Regge exchange (with shrinka e) out cr only

b 08

two partial waves at 2.5 GeV, one nceds a collective effect of many.
’ Y

We conclude that we really need eight phase bands.
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In K p -K p there is no backward peak at intermediate
energies, therefore it is reasonable to drop the distinction between
even 4 and odd £ in the phase band. (Even in the peripheral waves
there is, in an average sense, no distinction between even and odd
partial waves, since the peripheral resonances are exchange degenerate. )
This reduces the phase band parameters by a factor of two and makes

this reaction a preferred place to apply the method.

K p BACKWARD SCATTERING

At high energy, KN - KN backward scattering is an exotic
*
reaction : the exchanged Regge pole would have to be a 2 resonance

wnich cannot be built from three quarks.

The new data of the CERN-Orsay-Paris-Siockholm ccllabora-

tion 23) show that at P
+

very much suppressed compared to K p ¢ CSfK-p(1800) : G;K+p(1800) ~ 13 100,

= 5 GeV the 160° cross-section for K p is

see Fig. 15. From p =1 to p =5 GeV, one has a steep falling off
in CY'K_p(uzzo). The point at 5 GeV may or may not indicate the beginning
of a different power law (Regge cut ?). This suspicion is strengthened

by the observation that the K—p angular distribusion has a backward

neak 6f the same relative height and width as the K+p backward peak,

see Fig. 16. In our context here it is important *that this effect is

very small in absolute terms.

If the high energy reaction is exotic, the low-energy re-
sonances Y* should average to zero at fixed u according to FESR
duality. Let us consider K p - K°n  backward scattering. For
pL < 1.7 GeV one observes a strong backward peak. We shall now show
that this strong backward peak is consistent with duality. We must

consider the amplitudes rather than the differential cross-section.
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In Fig. 17 [irom Ref. 2421, we show the imaginary and real parts of
the backward amplitude ; they perform a damped oscillation around zero.
We have a semi-local cancellation involving resonances spaced by

é{(mz) = 1 GeVz, as opposed to a local parent-daughter cancellation.
pp = 1 GeV the X (g-) and /\(g+) contri-

bute with the same sign and that daughter contributions are rather

Note that, e.g., near

unimportant in this case (the dashed curve for resonances qualitatively

agrees with the full phase shift amplitudes).

The exotic behaviour in the Veneziano model, e.g., for
1r+1T- - 1T+'U- backward scattering, is produced by an increasing
overlap of subsequent resonance towers (semi-local cancellation) and not
by a local parent-daughter cancellation. In fact the magnitude of the

combined parent-daughter ccntribution is symmetric with respect to the

point t + % = u, which is approximately the point = 90°. TFor
instance, at u = -0.5 GeV2 the comopined parent-daughter contribution
is as large as the secondary forward peak at t = -1.0 GeV2. The cru-

cial difference between t = -1.0 Gev? (non-eiotic) and u = -0.5 Gev?
(exotic) as & Dbecomes large, is the alternating sign of subsequenrt
resonance towers in the exotic case. It is only through an increasing
overlap (increasing nf) that the exotic behaviour for u fixed (u#0)
and s — ® 1s produced. Therefore the rate of decrease of the back-
ward K p cross-section (4G /du ~ p£9) is intimately tied to the

increase of resonance widths.

Let us now consider large angle scattering (between the
forward and the backward peaks), Fig. 16, and see how duality gives us
some understanding of the qualitative features. The angular distribu-
tions look very different rfor K+p and K—p at large angles,

+ 0.3 > cosA) > -0.7, at 5 GeV : K'p is quite flat in this angular
range, while K-p falls far below in a skew V shaped manner. At
90° we have AaG/at(K p) : dG/dt(K'p) ~ 1:40, see Fig. 16. Let us
study the one-te:m Veneziano model in the analogous case of 'W:t1r+

elastic scattering :
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Vo - Tl-s) T-de)
Frt-ods —oLy)

The s channel is T '§ -T W (non-exotic, like K p), the u
channel is T "T 7 (exoticl, like K'p). For s—® and t +5=u
(3’5 ~ 90°). we obtain
-31032 -l;"Iw\o([S)
V]| — =2 i 2

and for u— ® and t + 5 =S (9uz900):

V] 2“9 e W

The crucial difference between the exotic channel, eand the

non-exotic channel, I +1T_, is the factor exp -‘—; Imo((sﬂ which

— ++
(R T

comes from the alternating sign of successive resonance towers in
G W~ for fixed angle. As Imo{(s) » ® these towers overlap
increasingly and cancel each other more and more. In U +'iT+ no
cancellations can occur. This explains qualitatively why K p falls

far below K+p at large angles.
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