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It is shown that the effective five-dimensional theory of the strongly coupled heterotic string is a gauged
version ofN=1 five-dimensional supergravity with four-dimensional boundaries. For the universal supermul-
tiplets, this theory is explicitly constructed by a generalized dimensional reduction procedure on a Calabi-Yau
manifold. A crucial ingredient in the reduction is the retention of a “non-zero mode” of the four-form field
strength, leading to the gauging of the universal hypermultiplet by the graviphoton. We show that this theory
has an exact three-brane domain wall solution which reduces to Witten's “deformed” Calabi-Yau background
upon linearization. This solution consists of two parallel three-branes with sources provided by the four-
dimensional boundary theories and constitutes the appropriate background for a reduction to four dimensions.
Four-dimensional space-time is then identified with the three-brane world vo[$8856-282198)02122-3

PACS numbsgs): 11.25.Mj, 04.65+e, 11.27+d

I. INTRODUCTION internal Calabi-Yau directions. This leads to a gauged five-
dimensional supergravity action with a potential term that
The strongly coupledEgX Eg heterotic string has been has not previously been constructed. More precisely, given
identified as the 11-dimensional limit of M-theory compac-the universal hypermultiplet coset manifolfB3] Mg
tified on anSY/Z, orbifold with a set ofEg gauge fields at =SU(2,1)/SU(2)xU(1), we find that a subgroup
each ten-dimensional orbifold fixed plaf&,2]. Witten has U(1)CSU(2)xU(1) is gauged, with the vector field in the
shown that there exists a consistent compactification of thigravity supermultiplet as the corresponding gauge boson.
M-theory limit on a deformed Calabi-Yau three-fold, leading Owing to the potential, flat space is not a solution of this
to a supersymmetrité\=1 theory in four dimension$3].  five-dimensional theory without the Calabi-Yau space de-
Matching at the tree level to the phenomenological gravitacompactifying. However, the equations of motion do admit a
tional and grand-unified couplind8,4], one finds that the three-brane solution that preserves half of the remaiiiing
orbifold must be larger than the Calabi-Yau radius, which is=5 supersymmetries where the Calabi-Yau space remains
of the order of the 11-dimensional Planck length. This sug-compact. This is supported by source terms on the fixed or-
gests that there is a regime where the universe appears fiveifold planes of the five-dimensional space. This
dimensional. It is then important to find the five-dimensionalBogoliubov-Prasad-SommerfielBPS three-brane consti-
effective action, describing the low-energy physics of thetutes the “vacuum” of the five-dimensional theory and it is
strongly coupled heterotic string and which underlies phethe appropriate background for a further reduction to four-
nomenologically relevant four-dimensiond= 1 supergrav- dimensionaN =1 supergravity theories. In such a reduction,
ity models. Furthermore, this theory constitutes a new settinfour-dimensional space-time becomes identified with the
for early universe strindM-theory) cosmology, which has three-brane world volume. We will show that the linearized
traditionally been studied in the framework of the four- version of this three-brane corresponds to Witten's “de-
dimensional effective action. Although some formal andformed” Calabi-Yau solution, which was constructed only to
phenomenological aspects of the strongly coupled heterotifirst non-trivial order in powers of the 11-dimensional New-
string have been studied in the literat{i®e-30], a derivation ton constant. Thus, our solution represents a generalization
of the five-dimensional effective action from Hom-Witten  of this original background, as it is an exact solution of the
theory and a detailed discussion of its properties have reeffective low energy theory. The inversion of the ‘idoa-
mained missing(Some aspects of five-dimensional physics,Witten construction by first performing a generalized
however, were considered j4,24,31,32) Kaluza-Klein reduction from 11 down to five dimensions,
In the present paper, we derive this effective five-and then finally from five to four dimensions, is more natural
dimensional theory for the universal bulk fields, that is, thefor two reasons. First, as noted above, the scale of the fifth
gravity supermultiplet and the universal hypermultiplet. Wedimension is larger than that of the Calabi-Yau manifold.
shall show that the relevant consistent reduction from 11 t@Becond, the generalized Kaluza-Klein reduction is a consis-
five dimensions on a Calabi-Yau manifold requires the inclutent truncation, meaning that, from the point of view of the
sion of non-zero values of the four-form field strength in thebulk theory, the heavy Calabi-Yau modes can simply be con-
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sistently set to zero without inducing higher-order correc-phism group such that symplectic-real spingtssatisfy the
tions. The reduction from five to four dimensions will, how- constrainty ;' (—x*%) = (73)}4/(x'!) wherer, are the Pauli
ever, require carefully integrating out the non-trivial five- spin matrices: saz=diag(1,-1).

dimensional modes, giving rise to higher-order corrections of

potential phenomenological interest. The relation between || STRONGLY COUPLED HETEROTIC STRING
Witten’s deformed Calabi-Yau solution and the five- AND CALABI-YAU SOLUTIONS

dimensional domain wall solution can also be described us-

ing brane language. As we will see, there is a natural interb chl) set .the shcen?f for_ oua Iater @scusfsmn, Wle will r:o;v
pretation of Witten’s solution as a collection of five-branes riefly review the efiective description of strongly couple

wrapped on two-cycles of the Calabi-Yau space and lying irEeterotlc string theory as 11-dimensional supergravity with

: ) : X . oundaries given by Hawa and Witter{1,2]. In addition,
the orbifold fixed planes. Reduced to five dimensions, thessve present, in a simple form, the solutions of this thei@

then become three-branes spapning the orbifold f_ixed pIé.me??ippropriate for a reduction td=1 theories in four dimen-
. In summary, we argue that.|t is a gauged version of f'V?'sions using the explicit form of these solutions given in Ref.
dimensional supergravity that is the correct arena for conS|df20]

ering the effective action of the strongly couplé&gxEg The bosonic part of the action is of the form
heterotic string in the intermediate energy range. This effec-
tive theory has three-brane domain-wall BPS solutions, with S=Sge+ Sywm (1)

the three-brane world volume corresponding to the orbifold
planes. These solutions represent the correct background farhere S is the familiar 11-dimensional supergravity,
making contact with four-dimensional low-energy physics.

Let us now summarize our conventions. We will consider 1
11-dimensional spacetime compactified on a Calabi-Yau Sse=— 2,2 JMM\/__Q
spaceX, with the subsequent reduction down to four dimen-

1
R+ ﬂGIJKLGIJKL

sions effectively provided by a double-domain-wall back- N V2 e, G G 5
ground, corresponding to &t/Z, orbifold. We use coordi- 1728° 1151581, 1,815y @
natesx' with indicesl,J,K,...=0,...,9,11 to parametrize the

full 11-dimensional spack!,. Throughout this paper, when andSy,, are the twoEg Yang-Mills theories on the orbifold
we refer to orbifolds, we will work in the “upstairs” picture planes explicitly given bl
with the orbifold St/Z, in the x**-direction. We choose the

rangexe[ — mp,mp] with the end points being identified. 1 k|3 1

The Z, orbifold symmetry acts ag'*— —x!%. Then there MT T g2 (E) me‘/__g[ tr(F)?— 2 trRz]
exist two ten-dimensional hyperplanes fixed under Ihe 10

symmetry which we denote bM{}), i=1,2. Locally, they 1 Kk \2B e Lo o
are specified by the conditiom$!=0,7p. Indices with over- - 8mwK2 \ 4 M(lﬁ)\/__g r(F)"= 5 R
bars, 1,J3,K,...=0,...,9, are used for the ten-dimensional

space orthogonal to the orbifold. Upon reduction on the 3
Calabi-Yau space we have a five-dimensional spacefitne [0)

labeled by indicesr, 3,y,...=0,...,3,11. The orbifold fixed HEreFiy are the twokg gauge field strengths aridy is the
planes become four-dimensional with indicgsv,p,...  S-form with field strengthGyx =249, Cykyy - In order for
=0.....3. We use indiced,B,C,...=4,....9 for theCalabi- the above theory to be supersymmetric as well as anomaly
Yau space. The 1l-dimensional Dirac-matricBs with free, the Bianchi identity foG should receive a correction
(' T9=2g" are decomposed ad'={y“®\,1e)\A}  Such that

where y* and A\ are the five- and six-dimensional Dirac o3
matrices, respectively. Herg,is the chiral projection matrix (dG) = — 1 K

in six dimensions with\2= 1. Spinors in 11 dimensions will HOKL™ S A

be Majorana spinors with 32 real components throughout the

paper. In five dimensions we use symplectic-real spif@6s X{IMo(xM) +3P s(x M~ mp) sk (4)
¢ wherei=1,2 is anSU(2) index, corresponding to the
automorphism group of the=1 supersymmetry algebra in
]EI(\SIGE] ?:Iirgﬁdgs\ll\(l)ilrllsb'evrvezcl/;lrlg dfct)(!%\,;vt:i gglfi];/i?gttl)c()arf];\%grel?nélr Iwe note that there is a debate in the literature about the precise

. oo - ~'value of the Yang-Mills coupling constant in terms aafWhile we
t_he Z, orbifold symmetry |nD—_11. Vl\{e demand ElilbOSOHIC quote the original valud2,37] the value found in Ref[10] is
field @ to be even or odd, that ish(x~) == ®(—x"). FOr  gmajier. In the second case, the coefficients in the Yang-Mills ac-

a spinor¥ the condition isl";; W (—x*) =W (x'!) so that the  tion (3) and the Bianchi identity4) should both be multiplied by
projection to one of the orbifold planes leads to a ten-2-13 Thjs potential factor will not be essential in the following
dimensional Majorana-Weyl spinor with positive chirality. discussion as it will simply lead to a redefinition of the five-
Similarly, in five dimensions, bosonic fields will be either dimensional coupling constants. We will comment on this point
even or odd. We can choose a basis for#té(2) automor-  later on.

4

086001-2



UNIVERSE AS A DOMAIN WALL PHYSICAL REVIEW D 59 086001

where the sources are given by has anx'-independen{and hence chiralKilling spinor #
1 which corresponds to four preserved supercharges. Then, one
IO =t EOAED — = tRAR. (5) can determine the first order corrections to this background
2 and the spinorp so that the gravitino variation vanishes to
order k%3,

Under the Z, orbifold symmetry, the field components  The existence of such a distorted background solution to

913,911,11,Ciy1s are even, whilgyy;, Cigic are odd. We note  order k2 has been demonstrated in RES]. To see its ex-
that the above boundary actions contain, in addition to thjicit form, let us start with the zeroth order metric

Yang-Mills terms, tR? terms which were not part of the
original theory derived ih2]. It was argued in Ref.20] that ds2,= 7, dx#dx” + R3(dx)2+ VIR0 gd X dXB,  (8)
these terms are required by supersymmetry, since they pair a

with the R? terms in the Bianchi identit@) in analogy to the  \yhere Qg is a Calabi-Yau metric with Kaer form w,p
weakly coupled case. The existence of these terms will be of=iQ = (Here a and b are holomorphic and anti-
ab-

son(;(ral lmv\p/)ort?nc\ﬁ I\?v ttf;]? f(t)kl‘lovvrlng?. to draw an anal b _holomorphic indices.To keep track of the scaling properties
€ way lo vie s INeary Is 1o draw an analogy be- . ynq go|ytion, we have introduced modulj andR, for the

Egﬁg(r:]ti?r? (;rfb|folfjb|;);z;r£s izn(éeDsfrrizggs E)n tﬁ)(eNl)l thz(;”ees‘ ACalabi-Yau volume and the orbifold radius, respectively. It
Cp y gauge \as shown i3] that, to ordenc?3, the metric can be written

theory. The p-brane charge is measured bg=#N, while in the form
exciting a D@p—2)-brane charge corresponds to having
a non-trivial tF, a D(p—4)-brane charge corresponds _ - S ~ 112
to non-trivial tF/\F and so or{38]. Similarly, if the origi- dsiy=(1+b) 7, dx“dx’+Rj(1+y)(dx'?)

nal D-branes are on a curved manifold, then there is also +VI3(Q 5+ hag) dXPdXB 9)
an induced charge for lower-dimensional branes given by 0

trR/AR and higher even powef89]. Applying this picture
to our situation, the rqle of the)(N) gauge field on the Calabi-Yau coordinates. Furthermore, as we have discussed,
D-brane world volume is here played by tkg gauge fields

H i : 2/3
on the orbifold planes. The correction to the Bianchi identitythBg% 2225&*:&1& re;;i'?’featecr?:;”?r%t'ogt?;grdgergoen; licit
then has the interpretation of exciting an M5-brane charge ir} y - 109 9 b

; S orm of the corrections, one has to solve the relations given
the orbifold plane. In Ref[13] this picture has been made . X ' e : .
explicit by constructing a gauge five-brane in this theory. in Ref.[3]. This can be done by dualizing the antisymmetric

We would now like to discuss solutions of the abovetensor field and using a harmonic expansion on the Calabi-

: .~ Yau spacd 20].
theory which preserve four of the 32 supercharges leading, Herpe v%e (]quote those results simplified in two essential

upon compactification, to four dimensiordk= 1 supergravi- ways. First, we drop all terms corresponding to non-zero

ties. This task is significantly complicated by the fact that theei envalue harmonics on the Calabi-Yau space. These terms
sources in the Bianchi identity) are located on the orbifold g pace.

) s L will be of no relevance to the low energy theory, since they
planes with the gravitational part distributed equally betwee.ncorrespon d to heavy Calabi-Yau modes which decouple at

the two planes. While the standard embedding of the SPithis order. Second. we write onlv th | i that
connection into the gauge connection . ' ! . y the one massiess term tha
is related to the Calabi-Yau breathing mode. This will be
tEOAFD =trRAR (6)  sufficient for all applications dealing only with the universal
moduli. Given these simplifications, the corrections are ex-
leads to vanishing source terms in the weakly coupled hetplicitly
erotic string Bianchi identitywhich, in turn, allows one to

where the functiond, y and h,g depend onx'* and the

set the antisymmetric tensor gauge field to zeiio the A V2R,
: i b=— s ma(|x"|—mp/2) (10
present case, one is left with non-zero sour¢deR/\R on 3V P
the two hyperplanes. As a result, the antisymmetric tensor
field G and, hence, the second term in the gravitino super- . 2V3R,
symmetry variation, y= W@aﬂxlﬂ —mpl2) (11
0
‘/j JKLM
oW, =D 7+ 55 (I'ijkim =891 'kim) G nte, VIR
288
7) hag= _,_2%(1(|X11| —mpl2)Qpp (12
do not vanish. Thus, straightforwardly compactifying on a
Calabi-Yau manifold no longer provides a solution to the G _= EF 11 13
Killing spinor equations¥,=0. The problem can, however, ABCD™ g *€ABCD were(x™) 13

be treated perturbatively in powers of the 11-dimensional

Newton constank. To lowest order, one can start with a Gagc11=0 (14
manifold X x St/Z,x M, whereX is a Calabi-Yau three-fold

andM, is four-dimensional Minkowski space. This manifold with
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1 « |23 (N=1) is invariant under twice this amount of supersymme-
a=— (—) f w/\trREVARY, try.
8V2mv \4T X A useful observation here is that, since we retain the de-
pendence on the orbifold coordinate, we can actually absorb
v=J \/5 (15 the metric deformations in Eq$9) and (10)—(14) into the
<V five-dimensional metric moduli. That is, the"-dependent

scale factord and y of the four-dimensional space and of

Here e(x'Y) is the step function which is-1 (—1) for x!*  the orbifold can be absorbed into the five-dimensidih-
positive (negative. Note that, by dropping the massive stein framg metric g,z while, analogously, the variation of
modes, these expressions take a very simple form represerttte Calabi-Yau volume along the orbifold encodedhigs
ing a linear increase of the corrections along the orbifoldcan be absorbed into a modulds> More precisely, we can
Even more significantly, and unlike the exact solution in-perform the Kaluza-Klein reduction on the metric
cluding the heavy modes, the above approximation leads to a
corrected metri€) o5+ hag that is still of Calabi-Yau type at dst; =V~ 2Rg, zdxdxP+ V0 ,gd X dxE. (16)
each point on thes'/Z, orbifold. The Calabi-Yau volume
(and, if all moduli are included, also its shapbowever, is  This rewriting suggests a change of perspective: rather than
continuously changing across the orbifold. More generallyfeducing on the Witten vacuum, we can try to find an effec-
one can think of the internal part of the corrected metric as &ve five-dimensional theory where we recover the Witten
curve in the Calabi-Yau moduli space. vacuum as a particular solution.

Returning to the D-brane perspective, one can view the We see that, since we have absorbed the deformation into
above configuration as the linearized solution for a collectiorfhe moduli, the background corresponding to the mefr&
of five-branes embedded in the orbifold planes. The relatioPreserves eight supercharges, the appropriate number for a
(6) fixes equal amounts of five-brane chargétR/\R, on  reduction down to five dimensions. It might appear that we
each orbifold fixed plane, where the five-branes are confined’® simply performing a standard reduction of 11-
to reside. Since R/\Re H%%X), we can associate a differ- dimensional supergravity on a Calabi-Yau space to five di-
ent five-brane charge for each independent element dhensions, for example, in the way described in RRét]. If
H2%X). The five-branes themselves are associated witlthis were the case, then it would be hard to understand how
Poincaredual cycles. Thus they span the non-compact fourthe resulting five-dimensional theory could encode any infor-
dimensional space together with a two-cycle in the CalabiMmation about the deformed Calabi-Yau background. There
Yau space. In particular, from the five-dimensional point ofare, however, two important ingredients that we have not yet
view, they are three-branes localized on the orbifold planedncluded. One is obviously the existence of the boundary
Witten’s Construction ensures that th|s Conﬁguration oftheOI’ieS. We will return to this pOint Shortly. FirSt, hOWeVer,
branes preserves one-eighth of the supersymmetry. Finalljet Us explain a somewhat unconventional addition to the
restricting to just the Calabi-Yau breathing modes correbulk theory that must be included. o
sponds to keeping only the five-brane which spans the holo- Although we could absorb all metric corrections into the

morphic two_cyc|e in the Calabi-Yau Space defined by théive-dimensional metl’iC moduli, the same iS not true fOI’ the
Kahler form. 4-form field. Specifically, for the nonvanishing component

Gagcp iIn Eg. (13) there is no corresponding zero mode
field® Therefore, in the reduction, we should take this part of
G explicitly into account. In the terminology of Ref42],
Phenomenologically, there is a regime where the universeuch an antisymmetric tensor field configuration is called a
appears five-dimensional. We would, therefore, like to derivé'non-zero mode.” More generally, a non-zero mode is a
an effective theory in the space consisting of the usual foubackground antisymmetric tensor field that solves the equa-
space-time dimensions and the orbifold, based on the bacitons of motion but, unlike antisymmetric tensor field
ground solution discussed in the previous section. As wenoduli, has nonvanishing field strength. Such configura-
have already mentioned, we will consider universal zerdions, for ap-form field strength, can be identified with the
modes only, that is, the five-dimensional graviton supermulcohomology grougHP(M) of the manifoldM and, in par-
tiplet and the breathing mode of the Calabi-Yau space, along
with its superpartners. These form a hypermultiplet in five
dimensions. Furthermore, to keep the discussion as simple as
possible, we will not consider boundary gauge matter fieldsdo
This simple framework suffices to illustrate our main ideas

Ill. FIVE-DIMENSIONAL EFFECTIVE ACTION

Note that we could not apply a similar method for a reduction
wn to four dimensions, as all moduli fields would thenxJé
‘independent. In this case, one should work with the background in

The general case will be presented elsewtid. the form (9), (10—(14) as done in Ref[20].
~ Naively, one might attempt to perform the actual reduc- 3this can be seen from the mixed part of the Bianchi identity
tion directly on the background given in Eq8) and (10— 5 G,5cp=0 which shows that the constantin Egs. (10)—(14)

(14). This would, however, lead to a complicated five- cannot be promoted as stands to a five-dimensional field. It is pos-
dimensional theory with explicitx!*-dependence in the sible to dualize in five dimensions, so that the constars pro-
action. Moreover, this background preserves only four supermoted to a five-form field, but we will not pursue this formulation
charges whereas the minimal supergravity in five dimensionkere.
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ticular, exist if this cohomology group is nontrivial. In the
case under consideration, the relevant cohomology group
H#(X) which is nontrivial for a Calabi-Yau manifold since
h22=hl1=1. Again, the form ofGgcp in Eq. (13) is some-

PHYSICAL REVIEW D 59 086001

set to zero, unlike the case in pure 11-dimensional super-
igravity where it would be arbitrary, since it is fixed by Eq.
(15 in terms of Calabi-Yau data. This fact is, of course,
intimately related to the existence of the boundary source

what special, reflecting the fact that we are concentratingerms, particularly in the Bianchi identit#). As we will see,

here on the universal moduli. In the general caSggcp
would be a linear combination of all harmon(2,2)-forms.

keeping the non-zero mode in the derivation of the five-
dimensional action is crucial to finding a solution of this

The complete configuration for the antisymmetric tensortheory that corresponds to the deformed Calabi-Yau space

field that we use in the reduction is given by

Capyr  Gapys=2491.Cpya

1
CaAB:g Aowpg,  Gapre=Fap@as=20[Ag@ap,

B@ABC: Goasc™ doéwapcT duwarc

7

CABCZE Ewppct

and the non-zero mode is

6 (18)

Gasco=7 €ascp  were(x'),
wherea was defined in Eq15). Here,wagc is the harmonic
(3,0 form on the Calabi-Yau space agds the correspond-
ing (complex scalar zero mode. In addition, we have a five-
dimensional vector fieldd,, and 3-formC 4, , which can be
dualized to a scalav. The total bulk field content of the
five-dimensional theory is then given by the gravity multiplet

(gaﬁ,Aa_,wia) together with the universal hypermultiplet

(V,0,£,,L) wherey!, and ' are the gravitini and the hy-
permultiplet fermions, respectively, ane-1,2. From their

discussed in the previous section.

Let us now turn to a discussion of the boundary theories.
In the five-dimensional spadd s of the reduced theory, the
orbifold fixed planes constitute four-dimensional hypersur-
faces which we denote bME{), i=1,2. Clearly, since we
have used the standard embedding, there will bE agauge
field AE}) accompanied by gauginos and gauge matter fields
on the orbifold planev §V. For simplicity, we will set these
gauge matter fields to zero in the following. The field content
of the orbifold planeM { consists of arEg gauge fieldA(?
and the corresponding gauginos. In addition, there is another
important boundary effect which results from the non-zero
internal gauge field and gravity curvatures. More precisely,
note that

f VOtrF UF WA= f VOtrR,gRAB
X X

A 2/3
) a’

K

—16\0770(

Fi@a=0. (19

In view of the boundary action&), it follows that we will

relations to the 11-dimensional fields, it is easy to see thdi€tain cosmological type terms with opposite signs on the

9uv,911,11,411,0 must be even under th®, action whereas
9,114, ,& must be odd.

two boundaries. Note that the size of those terms is set by the
same constan&, given by Eq.(15), which determines the

Examples of compactifications with non-zero modes inmagnitude of the non-zero mode. The boundary cosmologi-

pure 11-dimensional supergravity on various manifolds in-ca@l terms are another important ingredient in reproducing the
cluding Calabi-Yau three-folds have been studied in Refll-dimensional background as a solution of the five-
[43]. There is, however, one important way in which our dimensional theory. o . .
non-zero mode differs from other non-zero modes in pure  We can now compute the five-dimensional effective ac-
11-dimensional supergravity. Whereas the latter may bd&on of Horava-Witten theory. Using the field configuration
viewed as an optional feature of generalized Kaluza-Kleir(16)—(19) we find from the actior{1)—(3) that

reduction, the non-zero mode in Ho@a-Witten theory that

=S, T + 20
we have identified cannot be turned off. This can be seen S5= Sgravt Snypert Sbound 20
from the fact that the constantin expressior(18) cannot be  where
|
1 3 af 1 aByde
Sgrav: - 2_K§ fMS\/—g R+ E .Faﬁf + Es k4 Aaf,B’y‘/T5€ (21
- V-9 L NIV 2o £ VzG G*hr
Shyper= 22 9| 52 %aVd y Jatd ¢ 52 Canys
V2 aByde ; s 11 1 2
+§16 TG apyol 1(£0E— 08 +2ae(X) A+ 32 Y (22)
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2

v2 v2 1 _
— _ -1 _ _— _ -1, _ - _ ()2
Shound™ P M?N gV la p fo)v gV la Tomaws 2,1 Mg)\/ gVtrF )2,
(23)
|
In this expression, we have now dropped higher-derivative v 1.,
terms. The four-form field strengt6 4,5 is subject to the Shyper= ~ 5,2 J V=9/hy,V.a"Veg’+ 3V e
Bianchi identity Ms 27
2 —
(dG) _ Ks where q"'=(V,0,£,£). The covariant derivative/ , is de-
W i masyr fined asV ,q"=4,9"+ ae(x*) A k" with k= (0,—2,0,0).
D1t 11 The sigma model metrit,,=d,d,Kq can be computed
X{IVS(xM) +ID (XM= 7p)} 4 from the Kaler potential

24 Ko=—In(S+S-2CC), S=V+¢é+io, C=¢.

which follows directly from the 11-dimensional Bianchi (28
identity (4). The currents)®) have been defined in E¢p).
The five-dimensional Newton constart and the Yang-
Mills coupling agyt are expressed in terms of 11-
dimensional quantities &s

Consequently, the hypermultiplet scalar$ parametrize a

Kahler manifold with metrich,,. It can be demonstrated
thatk" is a Killing vector on this manifold. Using the expres-
sions given in Ref[46], one can show that this manifold is

2 K2 A\ 2B quaternionic with coset structu®ty. Hence, the terms in
Ki= o — | — . (25) Eq. (27) that are independent af describe the known form
5 ) GUT™ 5 . - - .
VK of the universal hypermultiplet action. How do we interpret

: . ._the extra terms in the hypermultiplet action dependingx@n
We have checked the consistency of the truncation whchA hint is provided by th)e/)pfact thart) one of the&e%lepenant

Iead; to the above "’.‘Ct'on by an expl_|C|t r_eductl_on of theterms modifies the flat derivative in the kinetic energy to a
11-dimensional equations of motion to five dimensions. Not eneralized derivativd , . This is exactly the combination

e the poertl Leme I e Bl and on e OBt we wold need f Gne warted 0 Gauge BEL) Sy
IS€ precisely INClusi z etry on.Mg corresponding to the Killing vectdt”, using

the gauge and gravity field strengths, respectively. Since WE o gauge fieldA, in the gravity supermultiplet. In fact,

have compactified on a Calabi-Yau space, we expect th|(?1vestigation of the other terms in the action, including the

bulk part of the above action to have eight pre;served SUP€tarmions, shows that the resulting five-dimensional theory is
charges and, therefore, to correspond to minidall su-

pergravity in five dimensions. Accordingly, let us compareipsrc?r%':frly gf?\iwegufog; Ezii?iageri\g%él\:%gﬁ{)'i%&

the result(21)—(23) to the knownN=1 supergravity-matter ¥ h 88 g ged, hi is al d

theories in five dimensions4,36,44,4% gro\x/pr)] 0 tbe (h) automorp (ljsm grgup IS also _giauge i
In these theories, the scalar fields in the universal hyper; at about the remaining-dependent potential term in

. . _ _ :
multiplet parametrize a quaternionic manifold with cosetthe hypermultiplet action? Frord =4, N=2 theories, we

are used to the idea that gauging a symmetry of the quater-
structureMo=SU(2,1)/SU(2)XU(1). Hence, to compare .~ . . o ] ! o
our action to these we should dualize the three-farg, to nionic manifold describing hypermultiplets generically intro

. o duces potential terms into the action when supersymmetry is
a scalar fields by setting(in the bulk preservedsee for instancf47]). Such potential terms can be
thought of as the generalization of pure Fayet-lliopoyki3
€ i(g9€f Faegy 11y g e terms. This is precisely what happens in our theory as well,
€apyod 0 1(E0E— £0%) ~ 2ae(x ) A"). with the gauging of theU(1) subgroup inducing they-
(26) dependent potential term in E¢R7). The general gauged
action will be discussed in more detail jA0]. Certain pure
Then the hypermultiplet part of the acti¢22) can be written  F| terms were previously considered j44], but, to our
as knowledge, such a theory with general gauging has not been
constructed previously in five dimensions.
The phenomenon that the inclusion of non-zero modes

“The following relations are given for the normalization of the /€@ds to gauged supergravity theories has already been ob-

11-dimensional action as in E€). If instead the normalization of ~Served in type Il Calabi-Yau compactificatioj#8,49, while
[10] is used, the expression foigyr gets rescaled tong,; the observation that the vacua of gauged theories correspond

=2Y(k?/2v) (471 k)?3. Otherwise the action and Bianchi identi- t0 dimensional reduction with non-trivial form-fields has a
ties are unchanged, except that in the expreséi@h for o the  long history. Recent results relating to intersecting branes are
right-hand side is multiplied by 2. described in50]. From the form of the Killing vector, we

G prs=——
BYo pv2
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see that it is only the scalar field, dual to the four-form we could then carry out the reduction on a Calabi-Yau space
Gupys, Which is charged under theJ(1) symmetry. Its but had to explicitly keep the antisymmetric tensor part of
charge is fixed byr. We note that this charge is quantized the background as a non-zero mode in the reduction. As a
since, suitably normalized, R'AR is an element of consequence, although Witten's original background pre-
H24X,Z). In the brane description of the theory, this is aserved only four supercharges, the effective bulk theory has
reflection of the fact that the five-brane charge is quantizedtwice that number of preserved supercharges, corresponding
To analyze the supersymmetry properties of the solutionto minimal N=1 supergravity in five dimensions. For con-
shortly to be discussed, we need the supersymmetry varigistency, we should now be able to find the deformations of
tions of the fermions associated with the the@2@). They the Calabi-Yau background as solutions of the effective five-
can be obtained either by a reduction of the 11-dimensionalimensional theory. These solutions should break half the
gravitino variation(7) or by generalizing the known five- supersymmetry of the five-dimensional bulk theory and pre-
dimensional transformationg36,45 by matching onto serve Poincarévariance in four dimensions. Hence, we ex-
gauged four-dimensiondll=2 theories. It is sufficient for pect there to be a three-brane domain wall in five dimensions
our purposes to keep the bosonic terms only. Both apwith a world volume lying in the four uncompactified direc-
proaches lead to tions. This domain wall can be viewed as the “vacuum” of
the five-dimensional theory, in the sense that it provides the
appropriate background for a reduction to fhe=4, N=1
effective theory.
1 This expectation is made stronger if we recall the brane
_ T\l i 9 N picture of Witten’s background. We argued that this could be
2V Tty 172)'j = dab(1¥iTe) )€ described by five-branes with equal amounts of five-brane
charge residing on the orbifold planes. From the five-
Ve, fr5G , 5 (73) € dimensionql _perspective, tr_le fiv_e-branes appear as th_ree-
“ Ayoet 1371 branes residing on the orbifold fixed planes. Thus, in five
dimensions, Witten’s background must correspond to a pair

i i v2i By B i
5‘//(1:Da6 +?(7a _46a7y)'¢ﬁy€

V2i
96

— Qavflf(xll) Ya(73)lj€ of parallel three-branes. .
12 We notice that the theor§20) has all of the prerequisites
necessary for such a three-brane solution to exist. Generally,
5= Qveaﬁyﬁee y.€ in order to have ald —2)-brane in @D-dimensional theory,
48 apysie one needs to have & 1)-form field or, equivalently, a

i cosmological constant. This is familiar from the eight-brane
_ I\ D e, N [51] in massive type IIA supergravity in ten dimensidbg],
2V V(7] +dob(matiTe) Je and has been systematically studied for theories in arbitrary
. ) dimension obtained by generaliz&icherk-Schwapzdimen-
b1 LNV RPT! i sional reductior{53]. In our case, this cosmological term is
* EV 7ﬁaﬁVE ) AV e(x) ()€ (29 provided by the bulk potential term in the acti(%ﬂ). From
the viewpoint of the bulk theory, we could have multiple
where 7; are the Pauli spin matrices. three-brane solutions with an arbitrary number of parallel
In summary, we see that the relevant five-dimensionabranes located at various places in thfé direction. As is
effective theory for the reduction of Hava-Witten theory is  well known, however, elementary brane solutions have sin-
a gaugedN=1 supergravity theory with bulk and boundary gularities at the location of the branes, needing to be sup-
potentials. While we have calculated the theory only to ordeported by source terms. Natural candidates for those source
«?"® one would expect that M-theory corrections can be determs, in our case, are the boundary actions. Given the
scribed in the same type of theory. For this reason, it wouldanomaly-cancellation requirements, this restricts the possible
be very desirable to construct the most general gauged fivesolutions to those representing a pair of parallel three-branes
dimensionalN=1 supergravity theory coupled to general corresponding to the orbifold planes.
N=1 four-dimensional boundary theories with vector and From the above discussion, it is clear that in order to find
chiral multiplets[40]. In the context of global supersymme- a three-brane solution, we should start with the ansatz
try, such boundary theories in five dimensions have been
studied in Ref[31]. In this paper, we content ourselves with
having identified some of the crucial generalizations that dsi=a(y)2dx“dx"7,,+b(y)?dy?
would be required.

IV. DOMAIN-WALL SOLUTION V=V(y) (30)
Let us recapitulate what we have done so far. To arrive at
a simple form for the five-dimensional effective action, wewherea andb are functions ofy=x* and all other fields
have absorbed the deformation of the Calabi-Yau backvanish. The general solution for this ansatz, satisfying the
ground metric into the five-dimensional moduli. Effectively, equations of motion derived from acti@@0), is given by
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a=ayH? where €, is a constant symplectic Majorana spinor. This
shows that we have indeed found a BPS solution preserving
four of the eight bulk supercharges.

Let us discuss the meaning of this solution in some detail.
First, we notice that it fits the general scheme of domain wall

V=DboH? (3D solutions in various dimensiondt is, however, a new solu-
tion to the gauged supergravity acti¢®0) in five dimen-

whereag, by andc, are constants. We note that the bound-gjons which has not been constructed previously. In addition,
ary source terms have fixed the form of the harmonic funcits source terms are naturally provided by the boundary ac-
tion H in the above solution. Without specific information tjgns resulting from Hava-Witten theory. Most impor-
about the sources, the functiehwould generically be glued tantly, it constitutes the fundamental vacuum solution of a
together from an arbitrary number of linear pieces withphenomenologically relevant theory. The two parallel three-
slopes (-v2/3)a. The edges of each piece would then indi- pranes of the solution, separated by the bulk, are oriented in
cate the location of the source terms. The necessity of matchhe four uncompactified space-time dimensions, and carry
ing the boundary sources gt=0 and mp, however, has the physical low-energy gauge and matter fields. Therefore,
forced us to consider only two such linear pieces, nargely from the low-energy point of view where the orbifold is not
e[0,mp] andy e[ — 7p,0]. These pieces are glued together resolved the three-brane world volume is identified with
aty=0 andmp (recall here that we have identifiedo and  four-dimensional space-time. In this sense the Universe re-

V2
b:bon, H:?a|y|+C0

—ap). Therefore, we have sides on the world volume of a three-brane.
3 Although we have found an exact solution to fthewest
‘9§H: —Za[8(y)— 8(y—mp)] (32) ordep _Iqw energy theory, thereby improving previous re-
3 sults, it is not clear whether the solution will be exact in the

hich sh hat th uti lel th full theory. Stromingef46] has argued that the all-loop cor-
which shows that the solution represents two parallel thre€zg ions(corresponding to corrections to the effective action
branes located at the orbifold planes.

: . . . roportional to powers ok*¥V, in our notation to the
We stress that this solution solves the f|ve-d|menS|onaE

L .“guaternionic metric of the universal hypermultiplet can be
theory (20.) exactly, whereas the _0”9'_”"’" deformegfj C‘T"l""b"actually absorbed into a shift of, so that the metric is
Yau solution was only an approximation to ordef®. It is unchanged. This implies that our solution would be unaf-
straightforward to show that the linearized version of Ed.focteq by such corrections. On the other hand, we have no
(31), that is, the expansion to first order in= O(«x??), co- ' ;

S . o . ~general argument why the solution should be protected
incides with Witten's solutior{9), (10)~(14) upon appropri- against corrections from higher derivative terms.

ate matching of the in';egr_ation constants. Hencg, we have™ |, any case, we believe that pursuing the construction of

}‘pund_ an exact.gener.ahz?tlorI\, good to all ordersjf the g6 dimensional gauged supergravities with boundaries, and

inearized 11-dimensional solution. _ the analysis of their soliton structure, in the way indicated in
Of course, we still have to check that our solution pre-yis haner might provide important insights into low energy

serves half of the supersymmetries. Witgp andV are the o icje phenomenology as well as early universe cosmol-
only non-zero fields, the supersymmetry transformat{@ss

ogy.
simplify to 9
. . V2 o
0, =D € = S ae(Y)V 1y (73)'j€ ACKNOWLEDGMENTS
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for the solution(31) if we require that the spina¢' be given

by
e P P SIn the notation of Ref[53], it corresponds to choosing =5,
€ =H"ey, yneo=(73)j€0 (33 A=4/3 anda(5)=2.
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