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Abstract

Large charge density, unlike high temperature, may lead to nonrestoration

of global and gauge symmetries. Supersymmetric GUTs with the appealing

scenario of unification scale being generated dynamically naturally contain

global continuous R symmetries. We point out that the presence of a large R

charge in the early Universe can lead to GUT symmetry nonrestoration. This

provides a simple way out of the monopole problem.
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I. INTRODUCTION

The existence of magnetic monopoles is one of the most beautiful aspects of the idea
of Grand Unification. Unfortunately, due to their super large mass and overproduction in
the early Universe, this at the same time represents a cosmological catastrophe known as
the monopole problem [1]. The conventional solution to this problem could be divided into
three categories: inflation [2], Langacker-Pi mechanism [3] and symmetry nonrestoration [4].
Recently, another interesting scenario has been suggested in which the monopoles are swept
away by domain walls [5].

In this paper we focus on the symmetry nonrestoration scenario, which in itself is a
fascinating phenomenon that defies common intuition [6,7]. Unfortunately, it may not work
in gauge theories due to the large next to leading order correction [8]. On the other hand
it has been known that a large background charge density provides a natural setting for the
breakdown of gauge symmetries in the early Universe [9–11]. We showed recently that this
may provide a simple solution of the monopole problem based on the simple extension of
the standard model and a large lepton number [12].

In recent years supersymmetric Grand Unified Theories (GUTs) have become increas-
ingly more popular for two fundamental reasons. Low energy supersymmetry naturally
protects large mass hierarchies and, equally important, it leads to the unification of gauge
couplings [13]. It is thus a particular challenge to solve the monopole problem in supersym-
metric GUTs. In this context a large background charge may be important for it has been
shown recently that it provides high temperature symmetry nonrestoration in supersymme-
try too [14]. The point is that without any external charge, in supersymmetry the internal
symmetries are necessarily restored [15,16]. This is true even when one includes the higher
dimensional operators [17], in spite of some interesting attempts on the contrary [18].

In this letter we point out that the role of the background charge of the Universe may
be naturally played by global R charges. Our motivation and inspiration lies in the simple
well known fact that the Minimal Supersymmetric Standard Model (MSSM) possesses a
global U(1)R symmetry. Actually, this is true even in the general case when all the R-parity
breaking terms are allowed [19]. Of course, the soft supersymmetry breaking terms in the
potential also break this U(1)R symmetry, so that today the background R charge of the
Universe would have necessarily been washed out. However, at very high temperature their
effects get suppressed [14] so that it is perfectly sensible to speak of possibly large and
conserved R charge in the early Universe. This is not the whole story though, since this R
charge must also be compatible with Grand Unification. Our work is devoted precisely to
this issue. In the following sections we argue that U(1)R symmetries are naturally present in
supersymmetric GUTs, which generate large mass hierarchies dynamically. In such theories
there may be no monopole problem whatsoever.

In what follows we first give a simple example of a gauge model with an automatic global
U(1)R symmetry and discuss the connection between the large R charge and symmetry
nonrestoration in the early Universe. We then turn to the minimal supersymmetric SU(5)
theory and its simple extensions which incorporate our scenario.
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II. A PROTOTYPE TOY EXAMPLE

In order to illustrate our mechanism we discuss the simplest supersymmetric gauge model,
that is the supersymmetric QED with coupling constant g [14]. The minimal spectrum
consists of the chiral superfields Φ+ and Φ− with gauge charges +1 and −1 respectively and
with the most general renormalizable superpotential

W = mΦ+Φ− . (1)

This model possesses an automatic R symmetry,

Φ± → eiα Φ± , θ → eiα θ . (2)

Following the reference [14] we assume that there is a non vanishing background density
nR of the U(1)R charge. The effective potential at high temperature and high density can
be computed using the usual techniques [20,21]:

Veff(nR, T ) = g2T 2φ2 +
3 n2

R

5T 2 + 24φ2
, (3)

where φ = φ+ = φ− is easily seen to be the minimum (this explains the vanishing of the
D-term in the potential). It is easy to see that for

nR > ncrit
R =

5g

6
√

2
T 3 (4)

φ gets a nonzero vacuum expectation value (vev) and breaks the U(1) gauge symmetry.
This simple example illustrates perfectly the general situation: if the field in question

carries an R charge, for sufficiently large values of this charge, the gauge symmetry will be
spontaneously broken even at high temperature. This phenomenon takes place because the
charge cannot entirely reside in the thermal excited modes if the conserved charge stored in
the system is larger than some critical value: the charge must flow into the vacuum and this
is an indication that the vev of the charged field is non-zero. A natural candidate for our
considerations is represented by the superheavy Higgs field in the adjoint representation of
a GUT theory to which we now turn our attention.

III. GRAND UNIFICATION AND GAUGE CHARGES

In what follows we shall discuss theories made on SU(N) groups. Of course, the minimal
supersymmetric SU(5) model is of our primary interest, but it will turn out that we must go
beyond it. To set the discussion and to facilitate the computations we now discuss SU(N)
models in general.

With the superheavy Higgs superfield Φ being in the adjoint representation, the super-
potential takes the form

W = mTr Φ2 + λTrΦ3. (5)

For m = 0 the theory has a U(1)R global symmetry
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Φ → eiαΦ , θ → ei3α/2θ. (6)

The trouble is that m 6= 0 is necessary in order to achieve the possibility of non vanishing
vev 〈Φ〉 6= 0 at zero temperature. However, for temperatures T larger than m one could still
hope that the rate ΓR at which R-violating processes take place is slower than the expansion
rate of the Universe, H .

Now, for m 6= 0, just as in the toy example, we could achieve a non vanishing vev 〈Φ〉 for

T ≫ m if the background R charge of the Universe is large enough. Then 〈Φ〉 ∼ n
1/3
R ∼ T .

By looking at the equation of motion of the R charge density is it easy to convince oneself
that the rate of the R-violating processes is as fast as ΓR ≃ Λ2/T where

Λ4 ≃ m〈Φ(T )〉3 ≃ mT 3, (7)

and thus

ΓR ≃
√

mT. (8)

For m ∼ 1016 GeV and obviously for T larger than 1016 GeV there is an epoch when
ΓR > H ∼ √

g∗T
2/MP , and thus any previous R charge could have been washed out.

However, we cannot guarantee this without the precise computation of the wash-out rate.
More important, at temperatures of the order of the GUT scale thermal equilibrium is not
easy to attain and all the phenomena, including the GUT phase transition leading to the
possible formation of monopoles, may have taken place out-of-equilibrium.

The above theory may not work. On the other hand, it suffers from a serious drawback:
the large GUT scale m is put by hand.

A more complete theory should try to compute the above ratio, in which case m should
be determined dynamically. This philosophy fortunately cries out for a global R-symmetry.

A. SUSY GUTs with a dynamical determination of the unification scale

Here the philosophy is very simple. One eliminates the mass term from the superpotential
and attempts to compute the ratio of the GUT and the electroweak mass scales dynamically.
Here the results depend dramatically on whether N of SU(N) (where N > 4 in realistic
theories) is even or odd, as we describe now. For m = 0 and for a diagonal Φij = φiδij which
makes the D-potential vanish, Fi = 0 imply φ2

i = φ2
0. Since the trace of Φ is zero, it is easy

to see that for odd N there is only a trivial solution φ0 = 0, and this case will be treated
separately in detail for the physically relevant case of SU(5).

On the other hand, for N even (N = 2n) the solution has the form

〈Φ〉 = φ0 diag(I,−I) , (9)

where φ0 denotes the flat direction and I is the n × n unity matrix. Thus for φ0 6= 0 the
original SU(2n) symmetry is broken down to SU(n)×SU(n)×U(1). Obviously, the minimal
such theory which contains the standard model is based on SU(6) gauge group. This flat
direction is a characteristic of the R-symmetry above and it is lifted with the soft super-
symmetry breaking terms, the same terms that break the R symmetry. As is well known,
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along the lines of ref. [22], these soft terms then induce a large vev φ0 = MX ≃ 1016GeV
through radiative corrections along the flat direction. Thus, this is a perfectly consistent
and realistic scenario with a dynamical generation of the GUT scale [23].

Now, as we said in the introduction, we must make sure that the original SU(2n) sym-
metry is not restored at the temperatures above the GUT scale. Namely, this is the scale
which corresponds to the usual monopole production, since it is at this scale that the U(1)
symmetry appears first. The effective potential at high temperature and high density in this
case is

V =
λ2

2

[

Tr
(

Φ2Φ†2
)

− 1

N
Tr
(

Φ2
)

Tr
(

Φ†2
)

]

+ g2Tr
(

[

Φ, Φ†
]2
)

+

[(

N2 − 4

16N

)

λ2 + Ng2

]

T 2Tr
(

ΦΦ†
)

+
n2

R/2

3(N2 − 1)T 2/4 + 4Tr(ΦΦ†)
(10)

It is easy to see that for R-charge density nR bigger than the critical

ncrit
R =

3

4
(N2 − 1)

[(

N2 − 4

32N

)

λ2 +
Ng2

2

]1/2

T 3 (11)

the symmetry breaking is in the same direction as at T = 0 (9) with φ0 now given by

φ2
0 =

3

16

(

N2 − 1

N

)(

nR − ncrit
R

ncrit
R

)

T 2 . (12)

Notice that the direction of the vev of Φ is fixed by the supersymmetric terms VF and
VD (the first line in (10)) and thus obviously has the same form 〈Φ〉 = φ0 diag(I,−I) as at
zero temperature. In this case VF and VD play no role in determining the critical density
and the magnitude φ0.

The fact that the vacuum has the same form at all temperatures is a remarkable fact
and it provides a solution to another serious problem of supersymmetric GUTs. Namely,
in the usual minimal GUTs with degenerate minima at zero temperature and symmetry
restoration at high temperature the preferred high T vacuum is for 〈Φ〉 = 0. Obviously, the
system prefers to remain in this vacuum even at T = 0. In our case no such problem exists.

In other words, for nR > ncrit
R there is no phase transition whatsoever: as the Universe

cools down below T ≃ MX the Higgs field remains in the same broken phase. Notice that
for the monopole problem it is not really essential that the direction of symmetry breaking
is the same at high and low temperature. Even if these directions were different the rank of
the broken group would be the same since the adjoint representation cannot change the rank
of the original group. Thus, there would be in any case explicit U(1) factor below and above
the GUT scale. This is sufficient for the solution of the monopole problem, as we discuss at
the end of this section. The crucial point here is that unlike in the minimal SU(5) theory
at T = 0 there is a flat direction but the direction is unique. It is enough to eliminate the
Φ = 0 minimum at high T (as in the case of large charge density) and the T = 0 minimum
is necessarily in the right direction.
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B. Realistic models

SU(5) model. We look first for a situation in the SU(5) theory in which m, instead of
being put in by hand, is the vev of a singlet field S. An obvious attempt, W = STrΦ2+Tr Φ3,
does not work, for it implies 〈Φ〉 = 0. We must go beyond the minimal model and the
simplest extension is to postulate another adjoint superfield Φ̃ with a superpotential

W = λ1STr Φ̃Φ + λ2Tr Φ̃Φ2 . (13)

Obviously, at T = 0 one of the degenerate minima is

〈Φ〉 =
λ1

λ2

〈S〉 diag(2, 2, 2,−3,−3). (14)

with 〈Φ̃〉 = 0 and 〈S〉 undetermined. Of course, among other minima there is also 〈Φ〉 in
the diagonal direction (1, 1, 1, 1,−4). From the toy model example of the previous section
the reader can easily deduce what happens at high temperature. Needless to say, we assume
again a large R charge background density of the Universe. As our fields Φ and S carry
non vanishing R charges just as in the previous case for nR sufficiently large, they will have
nonvanishing vevs even for temperatures much above 1016 GeV. The critical value nc

R can
be easily computed following the previous calculation.

The above superpotential has two continuous U(1) R-symmetries:

i) Φ → eiαΦ , S → eiαS , Φ̃ → Φ̃ , θ → eiαθ ; (15)

ii) Φ → Φ , S → S , Φ̃ → eiαΦ̃ , θ → eiα/2θ . (16)

with corresponding charge densities n
(1)
R and n

(2)
R . In what follows we shall take n

(1)
R ≡ nR 6= 0

and n
(2)
R = 0. Now for us it is crucial to establish the nonrestoration at high temperature,

but the precise value of the vevs is not so important. It has a generic form as in the example
SU(2n); however since in this case it gets to be very complicated, we will not present it.
Instead, we shall establish the fact of symmetry breaking and give the critical charge density.

The effective potential is

V = VF + VD + ∆VT + Vn , (17)

with

VF =
λ2

1

2
|S|2Tr (ΦΦ†) +

λ1λ2

2

[

STr (ΦΦ†2) + S∗Tr (Φ†Φ2)
]

+
λ2

2

2

[

Tr (Φ2Φ†2) − 1

5

∣

∣

∣Tr Φ2
∣

∣

∣

2
]

, (18)

VD = g2Tr
(

[

Φ, Φ†
]2
)

, (19)

∆VT =
T 2

8

[

(λ2
1 +

21

5
λ2

2 + 40g2)Tr (ΦΦ†) + 12λ2
1|S|2

]

, (20)

Vn =
n2/2

49T 2/3 + 2|S|2 + 4Tr (ΦΦ†)
, (21)
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where we already used 〈Φ̃〉 = 0. We assume that Φ can be diagonalized, which minimizes
VD. The critical charge density above which the adjoint Φ gets a nonzero vev and so the
symmetry gets broken can be calculated straightforwardly. If 115λ2

1 − 21λ2
2 − 200g2 > 0 we

get

ncrit
R =

√

3

2

λ1T
3

30



835 − 63

(

λ2

λ1

)2

− 600
(

g

λ1

)2


 , (22)

while for 115λ2
1 − 21λ2

2 − 200g2 < 0 the solution is

ncrit
R =

49

12
T 3
(

λ2
1 +

21

5
λ2

2 + 40g2
)1/2

. (23)

We have establish thus that the symmetry remains broken at temperature above the GUT
scale. The question is in which of the two possible directions (2, 2, 2,−3,−3) or (1, 1, 1, 1,−4)
the symmetry breaking takes place. As far as the monopole problem is concerned this is of no
importance, for in any case we will have a U(1) factor even above the critical temperature.
However, since the tunneling from the one minimum to the other is too slow, one must
simply assume that we start with the correct vacuum (this does not have to be a global
minimum).

Our model serves to illustrate the essential role that R symmetries play, but need not be
taken as a final theory. The crucial outcome lies in the fact that the GUT symmetry would
not be restored. Notice that, in all the above we have assumed unbroken supersymmetry.
When supersymmetry is softly broken, U(1)R gets also explicitly broken because of the
presence of soft trilinear scalar couplings in the Lagrangian. Therefore, the associated net
charge vanishes [14]. However, this takes place at temperatures much below the GUT scale
so that no phase transition and subsequent monopole production may occur.

Notice further that the demand of R symmetry on a full theory implies that the light
Higgs and matter superfields transform non trivially under it. Thus at high temperature
their vevs should also be non vanishing leading to an upside-down scenario of more symmetry
breaking in the early Universe.

SU(6) model. As we said above, we can as well enlarge the gauge group. This is
not just model building; in the minimal SU(6) GUT with the single adjoint representation
the idea of the dynamical generation of the mass scale works automatically. The point is
that its superpotential without the mass term

W = λTrΦ3 (24)

in this case has a nontrivial solution. Namely, this is the situation described above for
SU(2n) with n = 3. Thus we can immediately write down the critical value for the R-charge
density,

ncrit
R =

35

8

(

18g2 + λ2
)1/2

T 3 , (25)

and the vev at high density and temperature (T ≫ MX)

φ2
0 =

35

32

nR − ncrit
R

ncrit
R

T 2 . (26)
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Once we have established the phenomenon of nonrestoration the solution to the monopole
problem is almost automatic. The discussion proceeds along the lines of [4]. First, the
nonrestoration of symmetry eliminates the essential cause of the problem, which is the
overproduction of monopoles [1] during the phase transition via the Kibble mechanism [24].
This of course is not sufficient to claim the solution for one must worry about the thermal
production at the temperature above the GUT scale [25]. Fortunately this can be easily
shown to be under control as in the case of [4].

One more important comment. The reader may worry about the creation of monopoles
even without the phase transition, since in any case the Higgs field is expected to take
random values for correlations bigger that the horizon. Here one must resort to the idea
of primordial inflation which presumably took place before, say at the Planckian scales. In
such a case the whole Universe should have started from a causally connected region with
the uniformly oriented Higgs field Φ.

IV. DISCUSSION AND OUTLOOK

It has been known for a long time that a large background charge density in the Universe
can induce symmetry breaking at temperatures much above the physical mass scale of the
system. This, among other implications may have important impact on the monopole prob-
lem. Now, many supersymmetric models are characterized by global R symmetries, and in
fact the supersymmetric standard model posseses an automatic such U(1) symmetry. In this
letter, we have shown that a corresponding sufficiently large charge asymmetry will cause
GUT symmetry breaking even above the unification scale. This then leads to the solution
of the monopole problem.

As in the minimal supersymmetric SU(5) model there is not any global R symmetry, at
first glance this mechanism cannot work in this theory. However, a simple extension which
provides a dynamical mechanism for the generation of the GUT scale naturally incorporates
an R symmetry and therefore a dynamical generation of the GUT scale may imply no
monopole problem whatsoever. The price one has to pay is the doubling of the adjoint
representation and an additional singlet field.

The situation is far more appealing and natural in the SU(6) extension of the minimal
grand unified theory. Remarkably enough, as long as the GUT scale is generated dynamically
through radiative corrections there is automatically an R symmetry. Its large nonvanishing
background charge in the Universe guarantees the GUT symmetry to be broken at high
temperature and furthermore in the same direction as at zero temperature. The absence of
a phase transition not only provides the solution to the monopole problem but also solves the
problem of the high-T wrong vacuum in the usual GUTs. The point there is that symmetry
restoration chooses the vanishing vev which at T = 0 is one of the degenerate minima and
the system simply prefers to remain in that state. No such problem is encountered in the
SU(6) theory with a large enough R charge. In a sense this theory is tailor fit for the ideas
described here.

The remarkable feature of this scenario is that the Universe today is left with no trace
of the background charge, since at temperatures below the GUT scale the presence of the
soft supersymmetry breaking terms will necessarily imply its washout.
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