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1. Introduction

The Large Bubble Chamber Geometry (LBCG) program being written
at CERN in collaboration with other laboratories is primarily for
Gargamelle, Mirabelle and the 3m70 Big European Bubble Chamber (BEBC),
sketches of which are shown in Figure 1. There are some important
aspects in which these chambers differ from classical ones as far as
the reconstruction is concerned, and these are discussed in Section 1.
Some typical artificial events for Gargamelle and BEBC are shown in

Figures 2 and 3.

The LBCG program has been written in a modular fashion, so
that alternative numerical methods can be employed. For example,
different methods are required for hydrogen and heavy liquid. To
achieve this modularity, the LBCG program has been designed around a
flexible linked block data structure. This structure, and the functions

of some of the more important modules, are outlined in Section 2.

This work, which is by no means complete, has also involved
the writing of programs for the generation of artificial events, for
the finding of camera positions, and for the fitting of magnetic field

data. These programs are briefly outlined in Section 3.

Further details about all topics can be found in the LBCG
Information Notes. Individual references to these Notes have not been

given.
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1.1 PFeatures of the new chambers affecting the reconstruction

In the three new bubble chambers considered, the cameras
view the chamber through fish-eye lenses in contact with the liquid.
These lens systems have angles of view going through 110° and their
calibration presents considerable problems. An optic axis in the
usual sense does not exist, but an approximate axis of symmetry is
chosen for each lens system and referred to by that name. 1In Garga-
melle and BEBC the optic axes of the separate lens systems are

considerably inclined with respect to each other.

In the case of Gargamelle and Mirabelle there are eight
cameras and a given track may be measured on any sub-set of the eight.
Traecks do not often project into circles in the film plane; in the
1limit a loop or cusp can appear. The vertex may not be visible in

some views.

In all cases, it is difficult to establish a stable refer-
ence system of fiducial marks in the chamber. The crosses are
attached to the walls of a chamber which is pulsating, and also they

are seen through about a metre of turbulent liquid.

2. LBCG

2.1 Program Structure

The LBCG program was designed with the following aims :

(i) To be usable on computers with basic word lengths varying
from 16 to 60 bits.

(ii) To make best use of the core storage available.

(iii) To be as efficient as possible in the off-line mode, but if
possible to design a data and program structure which could

also be adapted to on-line use.
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(iv) To allow the use of backing storage (e.g. drum or disk) if

available.
(v) To make the program as modular as possible.

The result of these design criteria is a program written in
strict ASA FORTRAN and using a linked block structure built up in
blank COMMON for the storage of the principal data in the program.
Further features are that the structure has been limited to a tree
form for simplicity and convenience. A block may be defined to be of
any length up to 32767 words (i.e. 216 - 1) and the blocks may be
placed in any order within core, provided only that all linkages are
forward in core. A simplified diagram of the tree structure used in

IBCG is shown in Figure 4.

The input format to LBCG consists of the branch of the tree
which commences at the FRAME block. As can be seen from Figure 5
both Title and Run Card information are also stored in the same form.
As the geometry program proceeds it creates new blocks which describe
the fits that have been performed. In addition, the linkages between
blocks give information about the topology of the event, both in space,

and in the projections.

The variable length blocks have the advantage that space is
not wasted by many arrays being maximally dimensioned. The lack of
restrictions in ordering of the blocks allows great flexibility in
on-line measurement techniques and in the writing of the program

modules.

It was envisaged that the program would run on some computers
where the word length of integers and floating point numbers may be
different. An example of a typical block is shown in Figure 5. It
will be seen that most integers are packed either as four 8-bit
quantities or as two 16-bit quantities. Alternatively integers may

be stored in floating point form.

The blocks are manipulated by a set of utility routines in

a manner analogous to that of many list processors. This inevitably
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creates an overhead in the computation time (perhaps 5% of the total
event processing time) but this is balanced by the greater efficiency

made in the use of the core.

The program is divided into modules (or "processors"). Each
processor uses only data in the linked block structure and provides
as output further blocks in the structure. It is a strict rule that
processors may communicate with each other only in this way. Thus
the linked block structure may be considered as a pseudo input-output
device. This has the consequence that it is extremely easy both to
run LBCG in overlay form, or to stop the program at any point, write
out the block structure and continue processing on another computer.
Working space requested by a processor is allocated in a dynamic manner;
the "design is such that the matrices can be handled, if necessary, in

double precision without disturbing the rest of the program.

One of the disadvantages of coding dynamic data structures
in FORTRAN is that the readability of the coding deteriorates very
gquickly. A typical statement, loading a variable into a newly created
block, might be Q(LMDF+18) = P, where Q represents the area for the
linked blocks. The only means of identifying such statements is
through the index LMDF. A complete set of mnemonics has been defined
for all such variables referring to blocks in the LBCG structure.
These mnemonics have been rigidly adhered to. In the example above

the mnemonic stands for Location of Mass-Dependent Fit block.

The program also contains debugging routines which provide
automatic print-outs of the block structures and all associated
COMMON blocks. This is an important feature for list-structured

progranms.

Error messages have been concentrated in one routine which

can, if necessary, be replaced by a dummy routine to save space.

The LBCG program and all ancillary programs have been con-
structed as a "PAM-file" under the update program PATCHY developed
at CERN. This allows users to introduce special features associated

with a given chamber, measuring machine etc. Certain options have
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already been coded. These include conversion patches for different
computers (e.g. IBM 360) and options for Gargamelle, Mirabelle and
BEBC.

2.2 Smoothness Checks on Views

The methods used in classical chambers have been based on
the fact that the projected track images are extremely well approxi-
mated by circles. However, it is clear that for large chambers this
assumption can no longer be made. Work is continuing on trying to
find techniques more applicable to large chambers. This may involve
requesting measurements of "special points'" such as cusp or loop

points, in addition to physical points such as kinks.

2.3 Light Ray Calculations

Up to now, only test data from the artificial events program
described in paragraph 3.1 have been used. This assumes a very simple
pin-hole optical model. The coordinates are given by a measuring
machine and have to be transformed into the film plane system; the
method for doing this is to use camera-based fiducials. In real life,
the lenses will be represented by a more complicated function, but
this is only a serious problem for the calibration program which

actually finds the function (see paragraph 3.2).

Finally, the light rays which have now been found in a
coordinate system tied to the given camera, have to be transformed
into the system of the chamber. Light rays are thus given in the
chamber by the coefficient of X = FxZ+Gx

Y = FyZ+Gy

This last transformation is a simple one, once the position
of each lens system is known with respect to the chamber. This pro-

blem is discussed in paragraph 3.3.

2.4 The computation of space points from the measurements

Two alternative processors have been written to compute the

space points used to find a first approximation to a final fit. The
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first, known as "Near Corresponding Points" (or NCP) is an extension
of the techniques used in THRESH, while a new method known as "Quasi-
Corresponding Points" (or QCP)l) has been developed in an attempt to

provide reliable errors and correlations on the space points.

The NCP processor, which finds space points by an interpol-
ation technique, is more complicated in large chambers because tracks
are longer and turn through large angles, and at the same time are
viewed over wide range of angles. Both these effects contribute to
the fact that track images on the film plane are far from circular
and may contain loops or cusps. These give rise to geometrical ambig-
uities when trying to interpolate a given light ray from one view into
another (see Figure 6). An algorithm has been developed, using circles
as a local approximation to the track image, which resolves these
ambiguities in most cases. Exceptional cases can arise if a section
of the track is visible in only two views. Any unresolved ambiguities
are finally removed by smoothness tests. Both Gargamelle and Mirabelle
contain regions of the chamber, particularly at the extremities which
are only visible in two views. A method has also been found to calcul-
ate errors associated with the near corresponding points but it is not

possible to find the correlations between them.

The QCP processor was developed primarily for use with a new
fitting technique (section 2.7) which uses the space points rather
than the original measurements. However, apart from the correlations,

the NCP and QCP processors are in principle interchangeable. (See Fig.7).

QCP approximates the track by local helices in space. For
this purpose the tracks are divided into space segments and a local
helix fit is performed on the film. It is assumed that each segment
is sufficiently short to ignore magnetic field variation, energy loss
and multiple scattering. A space point with errors is computed at
the end of each segment. A series of fits, using non-overlapping
segments is performed, each fit using the results of the previous seg-
ment as starting values. Work is continuing on trying to reduce the

computation time of QCP.
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2.5 Hydrogen Final Fit

In the same manner as for classical chambers, a helix is
fitted to the near corresponding points to serve as a first approxim-
ation. Then the parameters are improved by making an iterative least

squares fit of the track to the light rajé, for each mass separately.

As well as the parameters of the helix, the first approximate
£it must also give the arc lengths of a point on the helix adjacent to
each light ray. For a light ray which gives a near corresponding
point, this is easy. For a light ray which does not, its point of
intersection with a ruled surface containing the helix is found; the
technique here has had to be changed because of the wide angle of the

light rays.

For the final fit itself, the assumption is still made that
the measurement errors (or root mean square deviations of measured
points from the track) are the same for all measurements on all views
and are uncorrelated. The only problem with the new chambers is in
the calculation of the weighting factor w by which a given space
displacement D is multiplied in order to project it into a film

deviation d.

Referring to Figure 8 it can be seen that'ﬁ which is in a
plane P perpendicular to the light ray can be projected to the dist-
ance dl in the film plane. This is done simply and generally on the
assumption that the demagnification to the film plane from the plane
P can be represented in the vicinity of XeYe by two demagnification
components (1) ‘m, along a line joining Xfyf to the foot of the
optic axis (0,0) and (2) ;mt perpendicular to this. A further factor
is required to take account of the fact that in the film plane the
projection of'ﬁ is not perpendicular to ;, the projection of the

track tangent T, i.e. the distance d is required, not dj.

It has been found from a sample of artificial events, that
in the case of BEBC with pin-hole optics, use of this more complicated
weighting function gives correct results, with fewer iterations. (With

Mirabelle and pin-hole optics, it gives exactly the same results as
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the THRESH formula). It now remains to find ways of reducing the com-

putation time.

Two other sources of error which could be taken into account
when fitting tracks in hydrogen. are (l) multiple scattering (2) errcrs
in camera positions. Ways are being investigated for dealing with the
first, but so far they require large amounts of computer time. The

problem of incorporating the second has not yet been looked at seriously.

2.6 Heavy Liquid Final Fit

An alternative method for estimating the initial track para-
meters has been coded for LBCG which is particularly suited to heavy
liquid tracks, and is therefore commonly referred to as "The Heavy
Liquid Fit" 1),

The essential philosophy is that uncertainties due to
multiple scattering and bremsstrahlung be included with measurement
error in the 'a priori' covariance matrix of a least squareé fit to
the space points.In more traditional methods, these physical effects
are neglected during the fit, and are taken into account only in an
external assessment of the errors on the track parameters. In heavy
liquids this approach may lead to convergence difficulties, and
necessitates special techniques such as "Optimum length" to avoid

serious over-estimation of errors.

The space points are fitted to a mean trajectory, which takes
into account energy loss and magnetic field variation, and is gener-
ated in a step-by-step manner, using local approximate spirals. 8ix
parameters, L

Do
redundant parameter is-eliminated by an internal constraint on the

A ¢ XY Z , are fitted for a given mass, and the
0 o o000

space arc lengths.

The fit is made to the deviations of all points in two
directions perpendicular to the track (normal and binormal) and to
the tangential displacement of the initial vertex. N space points
therefore imply (2N+1) measurements, and a covariance matrix of size

(2§+1) x (2N+1). A special technique, critically dependent on the
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representation of the error propagation, is used to avoid direct
inversion of this matrix. This technique takes advantage of the tri-
diagonal form of various intermediate matrices, and gives a calcul-

ation time proportional to n(=2N+1) rather than the more typical nS.

The information that a track sfops may be introduced as a
direct constraint in the fit. The mean trajectory is adjusted to
give zero momentum at the end point by changing the energy loss along
the track relative to the errors of straggling and range measurement.
This gives an extra term in x? which represents the discrepancy bet-
ween the fitted momentum and the range of the track. Straggling
errors are included as an extra table in LBCG, and the range errors

are given by QCP.

Although the fit is mass-—dependent, choosing between differ-
ent mass assignments is complicated because the error matrix varies
with mass. It is necessary to normalise the X2s in a complex manner,

and so far this problem has not been fully resolved.

A pre-fit over the first part of the track, neglecting off-
diagonal error terms, speeds up the full fit and provides sufficiently
good starting values so that the full error matrix need be computed

only once.

Preliminary results from a first version are encouraging and

large scale tests with real and artificial data will follow.

2.7 Track Matching and Bridging

The matching problem is more severe in large chambers for

the following reasons.

i) The wide angle lenses give rise to projected curvatures in

each view which are not at all comparable.

ii) A given track may appear in any arbitrary number of views

from two to eight.
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iii) For Gargamelle and Mirabelle each view sees only a portion
of the chamber. This implies that in some views tracks
will be seen without their associated vertices. The problem
of correctly associating these "hanging" tracks has become

known as "bridging". A good example is seen in Figure 2.

iv) The computation of near corresponding points needed for one
of the techniques currently used in classical chambers for
the production of estimators 2) is much more complicated in
large chambers (see section 2.4). 1In addition, geometrical
ambiguities exist for a single track which make the use of
such points as estimators for the "goodness of match" rather

dubious.

The present version of the program provides matching of the
vertex points (a new feature not normally necessary for classical
chambers), followed by matching of the tracks visibly attached to a
vertex. The final step of "bridging" the "hanging" tracks has been
designed but not yet coded. This step would, of course, be unnecessary

for chambers such as BEBC.

It was felt worthwhile to concentrate first on a matching
technique using relatively simple tests, which tries to reduce to a
minimum the number of unresolved ambiguities for which a final fit
must be called. In particular all acceptable doublet matches are
combined immediately into possible multiplet matches, rather than
producing intermediate lists of triplet, quadruplet matches etc. It
is clear that such a processor will be extremely useful for partially
automatic devices such as ADAM + EVA or DOLLj), for which versions of

LBCG may be operating in an on-line mode.

Doublet matching is done first on the basis of the space
tangents at the vertex, followed by the estimation of the curvatures
in an orthogonal projection. The curvatures computed in the reference
plane were found to be completely unreliable due to the rapidly
varying magnification. A new feature is that the track parameters

are retained with the doublet, and subsequently with all multiplets.
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These could in principle be used as a first approximation of the
final fit.

The 1list of multiplet matches (i.e. in which all possible
pairs are compatible) are built up direcﬁly from the doublets using
the track parameters for compatibility tests. At the moment fixed
tolerances are used for this purpose, but it is hoped to introduce
some error computation to make this more flexible. The sole
"estimator" used for a multiplet is its multiplicity, higher order
multiplets always being taken in preference to lower order multiplets
whenever there is a clash. This rather crude test has proved to be
very effective in removing spurious multiples from the simulated

6 GeV/c 6-prongs in Gargamelle studied so far.

It is envisaged that the bridging problem may be solved by
estimating the track parameters through a crude, local helix fit on
the views in which the vertex is visible, and then projecting the

results into the views containing the "hanging" tracks.

It remains to be seen how successful these techniques will
be in eliminating the need to call for a final fit in order to be
sure that a given multiplet is really a correct match. It is hoped
that on devices such as ADAM + EVA, there will be fewer problems with
beam tracks, but it is expected that there will always be a residue

of ambiguities for which a fit is necessary.

%. Ancillary Programs

3.1 Artificial Event Generation

Since existing programs, such as WORM, were found to be
inadequate for large chambers, a new program called GAT has been
written. This program is designed to provide artificial data to
study scanning and measuring problems, and to provide test input for
geometry programs in the absence of real data. GAT has been devel-

oped from a combination of two earlier programs known as:FOWL and



- 478 -

WORM. Several approximations made in WORM have now been removed,
and the program will now provide tracks which include the effects of

energy loss, multiple scattering and bremsstrahlung.

The present version of the program can be used for either
classical or new bubble chambers. A reduced version of GAT (VAT69)
is also available on the CERN CDC 3100 computer as an interactive
program using the CDC 250 display. Thus different measuring tech-
niques may be studied by selecting special tracks and indicating
measurements using a light pen. The data is then analysed using

LBCG off-line on the central computers.

GAT has four distinct processors, not all of which need to

be selected. These are

(REACT To trace a beam particle through the chamber until it under-
goes a reaction specified by the user, and then to compute the kine-

matics of the event according to Fermi's statistical phase space.

|SPACE ! To compute a series of space points along *the secondary
particle tracks by Runge-Kutta integration, including, if requested,

energy loss, multiple scattering and bremsstrahlung.

PROJCT To project the track points to simulated cameras. The
optical model may be either a simple pin-hole model or a complicated

calibration function.

PLOT Provides plots of the generated events in the film plane.

These processors are rather independent and it is possible
to use only certain combinations of them. In particular, it is
possible to display the output from the SPACE processor on the CDC
3100, thus avoiding the time-consuming track generation part of the

program.

3.2 Calibration of Lenses

The calibration of the lens systems is an important problem
which has received much attention. The Gargamelle and Mirabelle

lenses are currently being calibrated at CERN and Saclay respectively.
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Theoretically the lenses in all three chambers are axially symmetrical
and have the radial distortion patterns shown in Figure 9. In addition
to this the entrance pupil moves 0.9mm in Gargamelle and 2mm in

Mirabelle, as the viewing angle goes from 0° to 550.

The Gargamelle lens systems are being calibrated on an
optical bench. A pair of parallel glass plate grids are photographed
through each lens and camera unit. A least squares fit of the image
space coordinates to the object space coordinates is made, with res-
pect to as many parameters as are found necessary to reduce the
residuals to acceptable values. Preliminary results show close
agreement with the theoretical radial distortion, but also that it
is necessary to introduce tangential distortion terms. It is hoped
that only a simple correction term is required in order to transform

" from air to liquid in the object space.

The Mirabelle lenses on the other hand, are being calibrated
while mounted on the filled chamber. The object space reference
frame consists of (a) the steel rulers marked with crosses and (v)
a plane of parallel wires strung with small beads (see Figure 10).
In the fit, the relative positions of the beads are known precisely,
as are the relative positions of the crosses. In neither case are the
positions with respect to the lens camera system assumed known. The
lenses of BEBC will also be calibrated on the chamber, probably using

laser lines in addition to the crosses.

3.% Reconstruction of Camera Positions

The assumption is made that each camera and lens system is
a completely rigid unit, and a coordinate system (xyz) is associated
with each such unit. The position of each such set of axes relative
to the chamber system can be defined by the coordinates (XYZ) of the
origin and three rotations (¢,¢,8). The only method of finding these
six parameters to sufficient precision is to measure the film images
of a large set of fiducial marks in the chamber, and to make a least

squares fit taking all views together.
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Following the work of P. Negri 5)

s & photogrammetry tech-
nique is used. The basic method is to minimise the sum of squares

of distances between all pairs of light rays corresponding to the
same fiducial mark, taken over all fiducials and views. This method
does not require the positions of the fiducials to be known, but does
give the result in the coordinate system of one of the cameras. A
second much simpler fit is then made to transform the result into a

coordinate system defined by some of the fiducials.

In the current version of the EEL program, the two fits are

combined into one.

Unfortunately it is not possible to calculate the full error
matrix in the case where more than three views of the same fiducial
are taken together. However, better results have been found using all
measurements and ignoring correlations than restricting to triplets
with full error matrix (see Figure 11). The reliability of the errors
furnished by the program has been tested by running with sets of
artificial data in which the measurements have been randomly varied

within their error.

The program can also make use of measurements on laser lines
in the chamber. It has been shown that use of measurements of point
objects or laser lines in the chamber, in addition to those of fiducials
on the walls, improves the precision of the fit (see Figure 12). Up to
now a pin-hole optics model has been assumed for the artificial data,

but the more general case can be treated in the EEL program.

It remains to be seen whether the camera positions really
remain as stable from expansion to expansion as has been predicted.
There may be the additional problem with Gargamelle and BEBC that

the camera and lens systems do not behave as a rigid unit.

3.4 Estimation‘of the Magnetic Field

Preliminary information indicates that the homogeneity of
the magnetic fields will probably be rather poor compared with the
CERN 2-metre Chamber and for Gargamelle and perhaps Mirabelle one

will not be able to neglect the x and y components of the field.
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4)

Some 2000 preliminary measurements have been taken for
Gargamelle. These indicate the z component has a mean value of about
16.5KG with a veriance of 4KG. The x and y components are expected

to have mean values of 1KG and 0.5KG respectively.

A least squares fit was made to the z component of the field,
taking advantage of the intrinsic symmetries of the magnet and
Maxwell's equations. Using 30 parameters an overall fit for the
whole chamber gave a mean residual error of l% compared with an

estimated precision of 0.1% on the measurements.

Tt is clear that the boundary regions give rise to a large
number of additional coefficients in the fit, and work is continuing
on examining the possibilities of using overlapping fits or using a

£it combined with a table in order to reduce the computation time.

4. Conclusions and Future Plans

Work on a reconstruction program for the new large bubble
chambers is in an advanced state. The structure of the program is
such that it can easily be adapted to most scientific computers, and
also its modular structure allows easy insertion of alternative

numerical methods.

An interface with the existing kinematics program is being
written. However, the LBCG program will ultimately be converted to
the more general HYDRA linked block structure 6), which is being
designed as the standard for the complete chain of processors to be
used in bubble chamber film analysis. Conversion to the HYDRA struc-
ture should not present any serious problem, and will have the
advantage of providing a unified complete analysis chain and not

just a geometry program.
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CONTENTS OF TRACK-SEGMENT BLOCK

Word

0. 1. Number of words in block
Location of next track-segment block

Block type number
Fault code
Type of co-ordinate storage (= 2 for floating-point)

I .
L] L] . .

Start of co-ordinate storage = 6

(NS
=
.

Not in use

(3]
.

Location of comment block (if any)

Type of segment
Number of co-ordinates

)

Number of co-ordinates used in fit”

~ Wy
e e e 0

Number of special points

Measuring-machine number
Scan number (reserved for HPD)
Re-measurement number

S~ NN
e e e e

Direction of segment

5. 1. Location of space-distance block*)
Location of light-ray block*)

6F. onwards. X . .
pairs for each point

*) Filled in by LBCG

Typical Block in LBCG

Fig. 5
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Fig. 6
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The Calibration Beads in Mirabelle
(View 7)
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Reconstruction precision of camera positions

Procedure with triplets

Number of Nunt.er of Outermost cameras Inrnermost cameras
floating cquations
fiducials Ax | Ly | bz Ay | AP | A9 || bx | by | bz oMY | oP | LD
16 48 0.84]1.78|1.32|1.25{C.37/0.52|[0.7C|0.70]0.45|0.4L10.15]0.24
20 54 0.97{1.77|1.34{1.2610.4210.60}[0.75]0.7110.47|0.48|0.15]0.24
24 69 0.64]1.11/0.77(0.78[0.27{0.37({0.61 0.61]0.37|G.42|0.14]0.22
28 84 0.58|0.82(0.58/0.58|0.23|0.33(|0.55]{0.57 0.36|0.40(0.12{0.20
32 No convelrgence for|this|particular setjot {iducials
Procedure with completc diagoralized matrices
Nurber of Numter of Outermost camera 1 ot }
floating cquations rmost cameras nnermo.;t cameras
fiducials Ax | Ay | dz | Ay | A | NS | bx | Ay | Az Ay | ae | 0D
16 310 0.%60.65]0.51]0.4310.12]0.21}0.35[0.44{0.26{0.30]0.09|0.14
20 350 0.3710.62]0.4310.42|0.1110.19]0.33[0.42]0.25|0.28}0.09(0.13
24 404 0.3310.5000.37]0.33]0.10[0.16]0.30{0.36]{0.23/0.2610.€9]0.12
28 416 0.3210.471(0.54]0.31]0.10[0.16]0.50{0.383/0.23]0.20/0.03]0.12
32 476 0.31]0.4610.33]{0.31|0.10[0.15]0.29]0.3710.2210.25]0.0%/0.12

Ax,

Ay, Az in mm,

AY, A® and AY in mrad.

Fig, 11




Points in the chamber
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Number of Number of out + 1 + X
floating equations utermost cameras nnermnost cameras
fiducials Ax Ay Az Ay | ae | a9 ] bx Ay Az Ay | ae | AD
32 476 0.31/0.46/0.33]0.31[0.10{0.15}0.29(0.37{0.22|0.25|0.08 0.12
32 394 0.2710.36|/0.29]0.24{0.09{0.13}0.26/0.32{0.20{0.22(0.0€|0.11
Application of lasers
Number of Number of OQutermost cameras Innernost cameras
floating equations
fiducials Ax | by | bz Ay | A | a0 Ax | Ay | Ao Ay | Al | A9
16 310 0.383|0.6510.51]0.43/0.12{0.21]0.35|0.44 0.26]0.30}0.C91C.14
16 402 G.%410.4110.36[0.27/0.1110.18}10.31 0.30/0.21|0.22|0.03|C.12
|

Fig. 12




