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ABSTRACT

We show that at t = O the asymptotic
contribution from the leading daughter trajecto-
ries to certain unequal mass helicity amplitudes
can be explicitly calculated using factorization
properties, if +the Toller quantum number M of
the Regge poles requires the residue function in
these helicity amplitudes to have more zeros at

t = O than required by analyticity alone.
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For equal mass scattering, the contribution of the daughter trajec-—
tories at t = 0 relative to their parents can be calculated by a group
theoretical methodl’z) or by a method based on factorization and analy-
ticitya’u). For the unequal mass cases the problem is much more compli-
cated. For example with spinless particles and M = Q0 trajectories, only
the singular parts of the daughter residues can be calculated. However,
these singular parts do not contribute to the asymptotic behaviour of the
scattering amplitude since they are cancelled in the full amplitudes).
The part of the daughter residues which is not cancelled and thus contri-
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butes to the asymptotic behaviour is completely arbitrary ’.

In the reactions of unequal masses and general spins, the residues
Bk,u(t) of a trajectory with |A| = M and/or |u| = M can have the most
singular t factors allowed by analyticity, factorization giving no addi-
tional dependence. For these amplitudes, the most singular part of all
the daughter trajectories can be calculated from the analyticity requirement
on the full amplitudes. However, as in the spinless case, the asymptotic con-
tribution of the daughters cannot be explicitly calculated. Moreover for those
residues requiring additional zeros due to factorization even the most singular
parts of the first few daughter trajectories are not calculable from analy-
ticity alone. The number of uncalculable residues is the same as the
number of additional zeros. However, by relating them to the residues with
helicity equal to M, all these undetermined daughter residues can be cal-
culated. Due to the additional zeros at t = 0, the reduced residues of
these daughter trajectories are regular at t = 0, and contribute directly
to the asymptotic behaviour of the helicity amplitudes. In effect, these
finite contributions from the daughters shift the original zero in the
leading term away from t = 0. The new zero position depends upon 0(0) in
addition to the helicities and masses. These explicit asymptotic contri-
butions from the daughter trajectories can in principle be studied experi-

mentally.

We shall demonstrate our point in two special examples and then the
results for general spins will be given at the end. We shall follow closely
the notation of Ref. 4. A Regge pole contribution to the reduced helicity

amplitude is given by
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The expression for Eu ! in terms of the hypergeometric function is
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for p > u! > 0. For other domains of u and p’, the expression can be used

after using the symmetry relation
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Therefore, we shall only give our calculation in one domain of U and TLN

Let us first consider unequal mass spinless scattering with an exchange

of an M = 1 Regge trajectory. We consider the mass configuration to be

8, = (ma2 - mcz)(mb2 - mdz) > 0. For an M = 1 trajectory, factorization
. . . 6 = .
and analyticity require that ) Boo (t) tgo t 0['(o)t. Notice that we have one

more zero here than required by analyticity alone. Without further use of
factorization we would not be able to determine anything about the first
daughter residue Bg:i(t) near t = 0. Now let us couple a spinless channel
to a channel with total helicity u = 1. The statement of factorization
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for parent residues B and lst daughter residues B
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Now Bo . and B have the most singular behaviour at t = 0 allowed by
]
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analyticity. Therefore a standard argument of analyticity >*)

ratios B(l)/B and B(l) /B . The result is
0,1 0,51 =151 ~1l,1

gives us the
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From Eqs. (4), (5) and (3) we obtain
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Substituting these relations and Eq. (2) into the equation

So0(8t) = By () £ (30) + 8 E7 (3)
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where we have used the fact that %(zt-l) " st/so for small t and large s.
Thus we have determined the coefficient of the s& ! term in the asymptotic
expansion of £ (s,t) uniquely. In effect, the zero of the leading term
at t = 0 is shifted to
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Note that this zero is not on the physical boundary.

This result can be applied immediately to the amplitude fso’%%(s,t)
in TN - pN*. It happens that with pion exéhange, aﬂ(O) < 0, the original
zero of the leading term at t = 0 is shifted with a negligible amount.

M = 1 pion requires a zero near the forward direction, therefore, the
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inconsistency of an M = 1 pion with experimental results remains after

our more accurate calculation.
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Let us now look at ﬂ_p backward scattering. Here the only known con-

tributing Regge pole is A. Conventionally, the Toller quantum number M =

9)
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suggestions that M = ¥, for A, it seems worthwhile to exploit its conse-

is assigned ’ to A for phenomenological fitting. However, because of some

quences. The amplitudes for the reactions are
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We take the baryon Regge pole channel to be the t—channel. Since the as-

signment of M = 3 for A gives B, , and B_, , one more zero than allowed

by kinematical singularity, the Ei;st daugﬁéér residues can be determined

by factorlzatlon. Consider the amplitudes f+7 y, in ﬂN -> ﬂN and f_z’%&

in TN - WN . For these reactions %(1 + zt) v st/so for small t and large s,
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where S —](ma m, )(mb my The contribution of a Regge pole to

these amplitudes is
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where u = 3 or %, and aﬁ 3, is given in Eq. (2). These residue functions
b

take the most 31ngu1ar form allowed by analyticity: B?' 3 Vv t—a,
/2 -0+1

L
3 B, 3 "Vt "% % and B_ Nt . Therefore, the most
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31ngu1ar part of the first daughter residues B ’“(t) in these amplitudes
can be determined at t = 0 by analyticity alone. We obtain
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where u = % or 4.

Now we use factorization to determine the first daughter residues in

‘f, , and fl _Le The factorizable residues are the residues with definite
297% %97 % :

parity, namely B ' B ', t B_ Ly From the factorization relation
b

+
BL B3é 7 (87 l) » we obtain for the most singular part near t = O:
39%
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These relations hold for both the parents and the daughters. From Eqs. (8)
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and (9) we obtain
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The dominating amplitude near the backward direction is f? L and for aA(O) X

L
0.2 its zero is shifted outward almost to the physical bo;;éary. The zero
of the less dominating amplitude is shifted further inside the physical
region from t = 0. For phenomenological determination of the quantum
number M of the A trajectory, our calculation offers a more accurate para-

metrization.

Finally we give a summary of results for general spins and masses.

I. Unequal mass to unequal mass reactions: Here we classify three cases:

I.1 M>yp>u’ > 0. From analyticity alone we obtain B+u, U(t) "
- b

- 7
t U(VE3H¢HU , where n = F1 if (m %2 - m 2)(mb2 - m,?) 2 0. If factorization
a c d M-

- _ [
is used together with analyticity we obtain B+u,,u(t) Nt OL(;/Ft:-)l'l'“'m t

A calculation similar to that used in the previous examples gives:
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where sg = I(ma2 - mcz)(mb2 - mdz)l > 0. The result corresponds to
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For (M-y) > 1 one can calculate all the leading (M-u) terms. Here we
write only the first two terms.
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Factorization imposes no additional zeros on B__ , . However, after
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U OL(»ft':_)u (/E)u M. Therefore, we can calculate

I.2 0 <M< u' <u. Analyticity requires B
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only the lower order terms in f__, :
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The corresponding lst daughter residue is given by

10 i

B __asi) (2w=2) [ Lemesh ]2 22T s
G . 2 X (X p ) (s p) o= M
Y B »

I.3 0 < p' <M< Y. No additional zeros in the residues result from

factorization. Therefore, the lower asymptotic terms cannot be calculated.

II. Unequal-mass to equal-mass reactions: Here the convenient amplitudes

to discuss are the redefined helicity amplitudesz)
* e Sb"b . ot
:g‘,u,-s,\(‘g-t) :% (—’) CCSd,S.,,S )‘CI)"L) 5:5“: Ab
d-bzA (16)
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where W is the helicity for the unequal-mass vertex, A the helicity for the
equal-mass vertex, and s the total spin in the '"north pole frame'" of the

2 -
equal mass vertex ). For 4 # M, and s > M, there are additional (/E)IM UI

type zeros introduced at the unequal-mass vertex. Through factorization



3 = o,M /2 h is the more singular residue of
Bu,Sk(t) Bnu,u(t) dd,S,l( /2) where Bﬂu’u g :

B, .+ The da’M (1/2) are defined in Ref. 2 and can be calculated ex—
T, asS,A
plicitly. The ratio of the first daughter residue to that of the parent
is
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where is given in Eqs. (13) and (15).
Bnu,u/Bnu,u given gs. (13) (15)

Notice that the t = 0 zero constraint equations are automatically
satisfied by these couplings. Their application to YN - 7N may be interest-—

ing.
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