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Abstract

Gluon mediated exclusive hadronic decays of b quarks are studied within the

standard model (SM) and the constrained minimally supersymmetric stan-

dard model (MSSM). For all allowed regions of the MSSM parameter space

(A, tan β, m0, m1/2) the penguin magnetic dipole form factor FR
2 is domi-

nant over the electric dipole and can be larger than the magnetic dipole form

factor of the SM. However, overall the SM electric dipole decay amplitude

FL
1 dominates the decay rate. The MSSM penguin contributions to the free

quark decay rate approach the 10% level for those regions of parameter space

close to the highest allowed values of tan β (∼ 55) for which the gluino is light

(mg̃ ≈ 360 GeV) and lies within the range of the six d̃ squark masses. In

these regions the supersymmetric box amplitudes are negligible. The MSSM
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phases change very little over the allowed parameter space and can lead to

significant interference with the SM amplitudes.
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I. INTRODUCTION

Supersymmetry (SUSY) is a highly favoured candidate theory for new physics beyond

the standard model (SM). Of particular interest are the flavour changing neutral current

transitions involving the quark-squark-gluino vertex and the non-removable CP-violating

phases which arise as the renormalisation group equations (RGE) scale the physics down

from the unification scale MU ∼ 1016 GeV to the electroweak scale. These effects of SUSY

have implications for rare B decays and mixings [1–3] and for other observables such as

quark electric dipole moments [4,5].

Measurements of rare flavour-changing B decays provide opportunities for the discovery

of indirect effects of SUSY [6,7] as the measured observables involve SM and SUSY processes

occurring at the same order of perturbation theory. In contrast to the situation for B0 − B̄0

mixing where new physics is expected to change the magnitude of the CP-asymmetries but

not the patterns of asymmetries predicted by the SM [8], the effects of new physics in decay

amplitudes depends on the specific processes and decay channel under consideration and,

although small, may be detectable by comparing measurements that within the SM should

yield the same quantity.

The b → s transition provides an opportunity to study CP violation from non-standard

phases [9] and there is significant current interest in the b → sg penguin decay for which it

has been argued [10] that enhancement for on-shell gluons is needed from non-SM physics

to explain the CLEO measurement [11] of a large branching ratio for B → η′ + Xs and the

η′ − g − g gluon anomaly.

For the gluon-mediated exclusive hadronic decays studied here the effects of SUSY are

expected to be small and difficult to disentangle from the SM effects because of the large

uncertainties associated with the SM predictions. The SM calculations involve [6] the com-

putation of the quark level decays b → qq′q̄′, calculation of the Wilson coefficients [12] to

incorporate QCD corrections as the physics is renormalised down from the electroweak scale

to the scale mb and, finally, the calculation of hadronic matrix elements for the hadronisation
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of the final-state quarks into particular final states, typically evaluated using the factorisa-

tion assumption. As this last stage can introduce such large uncertainties that predicted

SM rates for exclusive hadronic penguin decays can be in error by a factor of 2 to 3, we

will restrict the present study to the weak scale quark level processes where any differences

between SM and SUSY physics are more apparent.

The most predictive of the SUSY models is the (constrained) minimally supersymmetric

standard model (MSSM) [13,5] based on spontaneously broken N = 1 supergravity with flat

Kähler metrics [14], universal explicit soft-SUSY breaking terms at the scale MMSSM ∼ MU

and spontaneous breaking of the SU(2) ⊗ U(1) symmetry driven by radiative corrections.

Such models contain two CP-violating phases δMSSM
A,B from the soft-SUSY breaking terms in

addition to the usual phase δCKM of the CKM mixing matrix. With the usual assumption

that these SUSY phases vanish identically at the unification scale because of CP conservation

in the SUSY breaking sector, it is claimed [15,6,2,3] that the MSSM predictions for B0 − B̄0

mixing and penguin decays such as b → qq′q̄′ are very similar to those of the SM and that

non-minimal SUSY models are needed to obtain any significant non-SM effects. An early

study [16] concluded that superpenguins are small compared to ordinary penguins unless

the gluino is very light (≈ 1 GeV) and satisfies mg̃ ≪ md̃. Recently Grossman and Worah

[8] have found that the gluonic penguin amplitudes for b → sqq̄ and b → dqq̄ in the effective

SUSY model of Cohen et al [17] can be up to twice as large as the SM gluonic penguins and

with an unknown phase.

In this paper we revisit the question of MSSM predictions for the penguin mediated

decays b → qq′q̄′. In doing so we review in some detail the SM predictions with particular

reference to the relative contributions of the internal u, c and t quarks to the gluon penguin

[18],the relative magnitudes of the various form factors and the role of the strong and weak

phases [19,20]. We find, for example, that the CP violating phases for the b → dg and b → sg

electric form factors, which dominate the decay amplitude, have no simple relationship with

any angle of the unitarity triangle. For the MSSM we explore the allowed regions of the

parameter space to locate those regions which give the largest modifications to the SM
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results. In contrast to the SM, we always find the magnetic amplitude to dominate the

electric amplitude. Also, there are large regions of the MSSM parameter space for which the

magnetic amplitude is greater than that of the SM. The search for SUSY would be greatly

aided if the magnetic amplitudes could be experimentally isolated.

Conservation of the gluonic current requires the b → qg vertex to have the structure

Γa
µ(q

2) =
igs

4π2
ūq(pq)T

aVµ(q2)ub(pb) (1)

where

Vµ(q
2) = (q2gµν − qµqν)γ

ν [F L
1 (q2)PL + F R

1 (q2)PR]

+iσµνq
ν [F L

2 (q2)PL + F R
2 (q2)PR]. (2)

Here F1 and F2 are the electric (monopole) and magnetic (dipole) form factors, q = pb − pq

is the gluon momentum, PL(R) ≡ (1 ∓ γ5)/2 are the chirality projection operators and

T a (a = 1, . . . , 8) are the SU(3)c generators normalised to Tr(T aT b) = 1
2
δab.

The b̄ → q̄g vertex is

Γ̄a
µ(q2) = −

igs

4π2
v̄b(pb)T

aV̄µ(q
2)vq(pq) (3)

where V̄µ has the form (2) with the form factors F L,R
1,2 (q2) replaced by F̄ L,R

1,2 (q2) where the

relationship between the F and F̄ form factors will be discussed later.

To lowest order in αs the penguin amplitude for the decay process b → q g → q q′q̄′ is

MPeng = −
ig2

s

4π2
[ūq(pq)T

aγ̂µub(pb)][ūq′(pq′)γ
µT avq̄′(pq̄′)] (4)

where

γ̂µ ≡ γµ[F
L
1 (q2)PL + F R

1 (q2)PR]

+
iσµνq

ν

q2
[F L

2 (q2)PL + F R
2 (q2)PR]. (5)

This gives the free quark decay rate

dΓPeng

dq2
=

1

288π3
(

g2
s

4π2
)2 1

Eb
I(q2)(1 +

2m2
q′

q2
) N(q2) (6)
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where

I(q2) = [1 +
(m2

q − q2)2

m4
b

− 2
m2

q + q2

m2
b

]1/2 [1 −
4m2

q′

q2
]1/2 (7)

is the phase space factor and

N(q2) = (q2 pb · pq + 2 pb · q pq · q)(|F
L
1 |

2 + |F R
1 |2) − 3mbmqq

2(F L
1 F R ∗

1 + c.c.)

−3mb pq · q(F
L
1 F R ∗

2 + F R
1 F L ∗

2 + c.c.) + 3mq pb · q(F
L
1 F L ∗

2 + F R
1 F R ∗

2 + c.c.)

+
1

q2
(4 pb · q pq · q − q2 pb · pq)(|F

L
2 |

2 + |F R
2 |2) − 3mbmq(F

L
2 F R ∗

2 + c.c.) (8)

with 4m2
q′ ≤ q2 ≤ (mb − mq)

2.

Similarly, for b̄ → q̄ q′ q̄′, the amplitude is

M̄Peng =
ig2

s

4π2
[v̄q(pq)T

a ¯̂γµvb(pb)]ūq′(pq′)γ
µT avq̄′(pq̄′)] (9)

where ¯̂γµ is obtained from (5) by the replacement of all F (q2) form factors by F̄ (q2) form

factors. The decay rate dΓ̄Peng/dq2 is given by (6)–(8) with the same replacements.

One CP violation observable of particular interest is the partial rate asymmetry

ACP(q2) ≡
dΓA/dq2

dΓS/dq2
(10)

where

dΓS/A

dq2
=

1

2
(
dΓ

dq2
±

dΓ̄

dq2
). (11)

II. THE GLUON PENGUIN IN THE STANDARD MODEL

Although the expressions for the SM form factors are known, we believe it is useful to

present a brief outline of their derivation, both in order to clarify their regimes of validity

and to aid our later generalisation to include the effects of SUSY.

For the SM the contributions to the b → qg vertex Γa
µ from W and scalar exchange (Fig.

1) give [21,22]
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V SM
µ (q2) =

∑

i=u,c,t

λbq
i [(AW

µ + AS
µ)PL + BS

µPR] (12)

where λbq
i ≡

g2

2

8M2

W

K∗
iqKib and K is the CKM matrix. For the b̄ → q̄g vertex V̄µ, the CKM

matrix elements are replaced by their complex conjugates.

After putting the external b and q (= d, s) quarks on mass shell, V SM
µ has the form

V SM
µ (q2) = (a pbµ + b qµ + c γµ)PL

+(d pbµ + e qµ + f γµ)PR (13)

and the form factors for arbitrary q2 are given by

2(m2
q − m2

b)F
L
1 (q2) = (a + 2b)mq + (d + 2e)mb (14)

2(m2
q − m2

b)F
R
1 (q2) = (a + 2b)mb + (d + 2e)mq (15)

and

F L
2 (q2) = a/2, F R

2 (q2) = d/2. (16)

Neglecting terms of order m2
q/M

2
W and m2

b/M
2
W then

a + 2b = −mq αSM, d + 2e = mb βSM (17)

where

αSM(q2) =
∑

i

λbq
i

∫ 1

0
dx

∫ 1−x

0
dy[4(x + 2y)(y − 1)

−2xi(1 − x − xy − 2y2)]/Yi(x, y) (18)

βSM(q2) =
∑

i

λbq
i

∫ 1

0
dx

∫ 1−x

0
dy[4x2 − 8x

+8y2 − 8y + 12xy + xi(4x
2 − 6x + 4y2

−8y + 10xy + 2)]/Yi(x, y) (19)

together with

F L
2 (q2) = mq

∑

i

λbq
i

∫ 1

0
dx

∫ 1−x

0
dy[2x(1 − y)

+xi(1 − x − xy)]/Yi(x, y) (20)
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and

F R
2 (q2) = mb

∑

i

λbq
i

∫ 1

0
dx

∫ 1−x

0
dy[2x(x + y)

+xi(2x
2 − 3x + 3xy + 1)]/Yi(x, y). (21)

In the above

Yi(x, y) = x + xi(1 − x) + q2[xy + y(y − 1)]/M2
W (22)

where xi ≡ m2
i /M

2
W .

If these expressions are evaluated at q2 = 0 we have βSM = αSM and

F L
1 (0) =

g2
2

8M2
W

∑

i

K∗
iqKib f1(xi), F R

1 (0) = 0 (23)

1

mq
F L

2 (0) =
1

mb
F R

2 (0) =
g2
2

8M2
W

∑

i

K∗
iqKib f2(xi) (24)

where [23,24]

f1(x) =
1

12(1 − x)4
[18x − 29x2 + 10x3 + x4

−(8 − 32x + 18x2) ln x], (25)

f2(x) =
−x

4(1 − x)4
[2 + 3x − 6x2 + x3 + 6x ln x]. (26)

For small xi, f2(xi) ≈
1
2
xi whereas f1(xi) ≈ −2

3
ln xi.

For b → qg, (q2)max = (mb −mq)
2 ≈ 20 GeV2 and the assumption q2 ≪ m2

i which would

justify the replacement of the form factors with their values at q2 = 0 is invalid for F1(q
2)

for the u and c quarks. This observation has also been made in [9,18]. For these light quarks

we can evaluate F L
1 (q2) by neglecting m2

q compared to m2
b in (14) and xi in the numerator

of (19) so that

f1(xi, q
2) = −

∫ 1

0
dx

∫ 1−x

0
dy[2x2 − 4x + 6xy

+4y(y − 1)]/Yi(x, y). (27)

This integral is dominated by the logarithmic singularity near x = 0 so we can set x = 0

everywhere except in the leading term of the denominator to give
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f1(xi, q
2) ≈ 4

∫ 1

0
dx

∫ 1

0
dy

y(1 − y)

x + xi − q2y(1 − y)/M2
W

(28)

=
10

9
−

2

3
ln xi +

2

3zi

−
2

3

2zi + 1

zi

g(zi) (29)

where zi ≡ q2/4m2
i and

g(z) =















√

1−z
z

arctan(
√

z
1−z

), z < 1

1
2

√

z−1
z

[ln(
√

z+
√

z−1√
z−

√
z−1

) − iπ], z > 1
(30)

For q2 > 4m2
i , g(z) becomes imaginary due to the generation of a strong phase at the uū

and cc̄ thresholds [19,20]. Our result for f1(xi, q
2) is equivalent to that obtained by Gerard

and Hou [20]. For the u quark, zi is large and we use the asymptotic form of (29):

f1(xu, q
2) =

10

9
−

2

3
[ln(

q2

M2
W

) − iπ]. (31)

We will be concerned with the b → dq′q̄′ and b → sq′q̄′ transitions. Although the form

factors F1 and 1
mb

F2 contribute to the decay amplitudes (4) and (9) with different kinematic

factors, we find that globally over all phase space (but with q2 ≥ 1 GeV2) the kinematic

factors are approximately of equal weight which makes it useful to compare the overall

magnitudes of the form factors. We find F L
1 ≫ F R

1 and F R
2 ≫ F L

2 . For the b → dq′q̄′

amplitude we find that F L
1 is dominant ( 1

mb
|F R

2 | <
∼

1
30
|F L

1 |).

The individual contributions |K∗
idKibf1(xi, q

2)|, (i = u, c, t), to F L
1 are shown in Fig. 2.

These magnitudes are the same for the b̄ → d̄ + g transition. The c quark is the largest

contributor. The weak phase from the CKM matrix is very small but this contribution

carries a strong phase for q2 > 4m2
c . This strong phase is the same for the b̄ → d̄ + g

transition. The u quark contribution has a weak CP-violating phase e−iδ13 ≈ e−iγ (Particle

Data Group notation) and also a strong phase that is common to the b̄ → d̄ + g transition.

The t quark contribution is negligible.

These individual amplitudes add to make F L
1 and, because u and c make significant

contributions, the phase of F L
1 differs for the b → d + g and b̄ → d̄ + g transitions. The

phase difference, which can be called the net CP-violating phase, is not negligible but has
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no simple relationship with any particular angle of the unitary triangle. With δ13 = π/2

and s13 = 0.0035, we show this phase in Fig. 3.

Because of the presence of both strong and weak phases the magnitudes of F L
1 are also

different for the b and b̄ decays. Processes like b → dss̄ and b̄ → d̄ss̄ are expected to be

penguin dominated and F L
1 dominates all the other form factors. The decay rates dΓ/dq2

calculated from (6) are shown in Fig. 4. The cc̄ threshold cusp is clearly exhibited and

CP violation is manifest. The difference of the decay rates can easily be shown to be

proportional to the Jarlskog factor [25] ℑ[KubK
∗
udKcdK

∗
cb] = c12c

2
13c23s12s13s23 sin δ13. Since

this factor basically controls the magnitude of the asymmetry, the modification with different

choices of s13 and δ13 (the least known elements of the CKM matrix) can be assessed. The

asymmetry is large because the sum of the decay rates is also small.

Turning to the b → sq′q̄′ transition, we again find that F L
1 ≫ F R

1 , F R
2 ≫ F L

2 and the F L
1

amplitude to be dominant. The individual contributions from u, c and t are shown in Fig.

5. The c quark contribution in this case greatly outweighs that of the u and t quarks and

since its contribution is so large and has almost zero weak phase, the weak phase on F L
1 is

very small. Processes like b → sdd̄ and b̄ → s̄dd̄ are expected to be penguin dominated and

these lowest order calculations give the decay rates shown in Fig. 6.

III. THE GLUINO PENGUIN IN THE MSSM

In the MSSM there are contributions to Γa
µ from the two gluino exchange diagrams I and

II (Fig. 7) corresponding to the gluon line attached respectively to the gluino and d̃ squark

lines. The MSSM penguin amplitudes have the form

V MSSM
AB (q2) =

∑

j

Λbq
ABj {C2(G)AI

ABµ

+[−C2(G) + 2C2(R)]AII
ABµ}PA (32)

where (A, B) are chirality indices, C2(G) = 3 and C2(R) =
∑

a T aT a = 4/3 are SU(3)

Casimir invariants and j = 1, . . . , 6 labels the d squark mass eigenstates. The coefficient

10



Λbq
ABj ≡ −

g2
s

4m2
g̃

V jq ∗
d̃A

V jb

d̃B
(33)

describes the rotation from the down-diagonal interaction states to the d̃ mass eigenstates

at the d − d̃ − g̃ vertices. The matrices Vd̃L and Vd̃R are obtained from the (6 × 6) matrix

Vd̃ = (Vd̃L, Vd̃R)T which diagonalises the d̃ mass2 matrix

M2
d̃

=

















(M2
d̃
)LL (M2

d̃
)LR

(M2
d̃
)RL (M2

d̃
)RR

















. (34)

Placing the external quarks on mass shell converts V MSSM
AB (q2) into the same general form

(13) as for V SM(q2) so that the MSSM form factors can also be obtained from (14)-(16).

For the LL MSSM penguin we find, after neglecting terms of order m2
q/m

2
g̃ and m2

b/m
2
g̃,

αMSSM(q2) =
∑

j

Λbq
LLj

∫ 1

0
dx

∫ 1−x

0
dy{C2(G)

2xy + 4y(y − 1)

Zj(x, y)

+[−C2(G) + 2C2(R)]
2xy − 2y(1− 2y)

Z ′
j(x, y)

}, (35)

βMSSM(q2) =
∑

j

Λbq
LLj

∫ 1

0
dx

∫ 1−x

0
dy{C2(G)

2x2 − 2x + 6xy + 4y(y − 1)

Zj(x, y)

+[−C2(G) + 2C2(R)]
2x2 − 4x + 6xy + 2(y − 1)(2y − 1)

Z ′
j(x, y)

} (36)

and

F L
2 (q2) = −mq

∑

j

Λbq
LLj

∫ 1

0
dx

∫ 1−x

0
dy{C2(G)

xy

Zj(x, y)

+[−C2(G) + 2C2(R)]
xy

Z ′
j(x, y)

}, (37)

F R
2 (q2) = mb

∑

j

Λbq
LLj

∫ 1

0
dx

∫ 1−x

0
dy{C2(G)

x2 + x(y − 1)

Zj(x, y)

+[−C2(G) + 2C2(R)]
x2 + x(y − 1)

Z ′
j(x, y)

} (38)

where

Zj(x, y) = 1 − x + x̃j + q2[xy + y(y − 1)]/m2
g̃, (39)

Z ′
j(x, y) = x + x̃j(1 − x) + q2[xy + y(y − 1)]/m2

g̃ (40)
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with x̃j ≡ m2
d̃Lj

/m2
g̃.

As q2 ≪ m2
d̃Lj

we can set q2 = 0 in (39) and (40) to get the LL penguin contributions

F L
1 (0) =

∑

j

Λbq
LLj[C2(G)A(x̃j) + C2(R)B(x̃j)], (41)

F R
1 (0) = 0, (42)

1

mq

F L
2 (0) =

1

mb

F R
2

=
∑

j

Λbq
LLj[C2(G)C(x̃j) − C2(R)D(x̃j)] (43)

where

A(x) =
1

6(1 − x)4
[3 − 9x + 9x2 − 3x3

+(1 − 3x2 + 2x3) ln x], (44)

B(x) =
−1

18(1 − x)4
[11 − 18x + 9x2 − 2x3 + 6 lnx], (45)

C(x) =
−1

4(1 − x)3
[1 − x2 + 2x ln x], (46)

D(x) =
−1

6(1 − x)4
[2 + 3x − 6x2 + x3 + 6x ln x]. (47)

For the LR MSSM penguin

αMSSM(q2) = −
mg̃

mq

∑

j

Λbq
LRj

∫ 1

0
dx

∫ 1−x

0
dy

×{C2(G)
x + 2y − 1

Zj(x, y)

+[−C2(G) + 2C2(R)]
x + 2y − 1

Z ′
j(x, y)

} (48)

βMSSM(q2) = 0 (49)

and

F L
2 (q2) = mg̃

∑

j

Λbq
LRj

∫ 1

0
dx

∫ 1−x

0
dy{C2(G)

x − 1

Zj(x, y)

+[−C2(G) + 2C2(R)]
x

Z ′
j(x, y)

}, (50)

F R
2 (q2) = 0. (51)

Again we can set q2 = 0 to obtain for the LR penguin contributions

12



F L
1 (0) = F R

1 (0) = F R
2 (0) = 0 (52)

and

F L
2 (0) = mg̃

∑

j

Λbq
LRj [C2(G)E(x̃j) − 4C2(R)C(x̃j)] (53)

with

E(x) =
−1

(1 − x)2
[1 − x + x ln x]. (54)

The RR and RL penguins are obtained from the above by the replacements ΛLLj → ΛRRj

and ΛLRj → ΛRLj respectively together with (−mqα
MSSM) ↔ (mbβ

MSSM) and F L
(1,2) ↔ F R

(1,2).

The total q2 = 0 MSSM form factors are therefore

F L
1 (0) =

∑

j

Λbq
LLj [C2(G)A(x̃j) + C2(R)B(x̃j)], (55)

F R
1 (0) =

∑

j

Λbq
RRj [C2(G)A(x̃j) + C2(R)B(x̃j)], (56)

F L
2 (0) =

∑

j

{[mq Λbq
LLj + mb Λbq

RRj ]

×[C2(G)C(x̃j) − C2(R)D(x̃j)]

+mg̃ Λbq
RLj [C2(G)E(x̃j) − 4C2(R)C(x̃j)]}, (57)

F R
2 (0) =

∑

j

{[mb Λbq
LLj + mq Λbq

RRj ]

×[C2(G)C(x̃j) − C2(R)D(x̃j)]

+mg̃ Λbq
LRj [C2(G)E(x̃j) − 4C2(R)C(x̃j)]}. (58)

The results for the F
(L,R)
2 (0) MSSM form factors agree with those of [26]. However for

the F
(L,R)
1 (0) form factors, whereas our C2(R) term is the same as that of [26] and [1],

the A(x) function occurring in the C2(G) term differs from that of [26] by −(1 − x)−2 ln x

and bears little resemblance to the F (x) function of [1]. Note though that our result for

C2(G)A(x) + C2(R)B(x) is the same as the function PF − 1
9
PB given in [27].

The MSSM calculations are described in [5]. Two-loop MSSM RGEs were used for the

gauge and Yukawa couplings and one-loop MSSM RGEs for the other SUSY parameters.

Full flavour dependence was included in the running, with one-loop QCD and stop/gluino

13



corrections to the physical top mass from [28]. The unification scale boundary conditions

were a universal scalar mass m0, universal gaugino mass m1/2 and a universal soft SUSY-

breaking trilinear scalar coupling A. After minimisation at the scale mt of the full one-

loop Higgs effective potential, which included all contributions from the matter and gauge

sectors, we are left with a four-dimensional parameter space {m0, m1/2, A, tanβ}, where

tan β ≡ v2/v1 is the ratio of the vacuum expectation values of the two Higgs fields, together

with the sign of the coupling µ between the two Higgs fields. The physical Higgs masses

were determined using the approximation to the RG-improved Higgs masses described in [29].

Mass eigenvalues and diagonalisation matrices for the d squarks were generated for a selection

of data sets in the parameter space 150 ≤ m0 ≤ 1150; 150 ≤ m1/2 ≤ 1150; 150 ≤ |A| ≤ 1150

(units of GeV) and 2 ≤ tan β ≤ 48 which satisfied current experimental constraints (see

[30]), and yielded a neutralino as the lightest supersymmetric particle. We also imposed

the condition that the Standard Model like minimum be the global one as has become

customary [31]. However it should be noted that, as pointed out in [32], this traditional

condition is not sufficient to avoid cosmological problems. For this one should employ the

slightly more restrictive condition in [32].

The allowed values of A become more restricted by unphysical (charge and colour break-

ing) minima as tan β increases from its fixed point value of tanβ ≈ 1.5 [32]. The avoidance

of unphysical minima gives a bound of m0/m1/2
>
∼ 1 at the low fixed point which drops away

to about 0.4 at intermediate values of tanβ. However the minimum bound on m0/m1/2 is

for A ∼ m0 and it increases quadratically in A away from this value [32], so that effectively

0.5 < A < 1.5m0 at intermediate tan β values. Data sets for negative A were therefore more

restricted in this region regardless of the sign of µ, with all but those near m0 producing

colour breaking minima. Near the high tanβ fixed point, where the bottom Yukawa coupling

is large, the analysis of [32] is no longer valid and the parameter space becomes once again

less restricted here. Negative and quite large values of A are allowed (and even favoured)

over positive ones in this region.

Finally we should add that additional and probably very restrictive constraints on m0

14



especially at low tan β come from the need to avoid neutralino dark matter overclosing the

universe. This was examined recently in [33] but has not been included in our analysis here.

The magnitudes of the MSSM form factors satisfy |F R
2 | > |F L

1 |
>
∼ |F L

2 | ≫ |F R
1 | for all

regions of the allowed parameter space apart from the narrow region tan β = 2, m1/2 = 150

and m0
>
∼ 1000 where |F L

1 | is slightly smaller than |F R
2 |. Outside this region the ratio

|F R
2 |/|F L

1 | exceeds unity and increases strongly with tanβ. For tanβ = 2, the ratio ranges

from ≈ 2 for m1/2 = 250 and m0
>
∼ 1000 to ≈ 9 for low (m0, m1/2) = (150, 250). For

higher tan β, |F R
2 | becomes more dominant, the ratio increasing to 24–28 for tanβ = 10 and

200–225 for tanβ = 48. The relative sizes of the form factors are due to both the mixing

coefficients Λbq
ABj (33) and the functions A, B, C, D and E of the variable x̃j ≡ m2

d̃j
/m2

g̃. If

the j dependence of x̃j is neglected, the quantities Λbq
AB ≡ |

∑

j Λbq
ABj| satisfy Λbq

LL > Λbq
RR >

Λbq
LR > Λbq

RL and this accounts in the main for the relative sizes of the form factors. The

large values of the form factors at high tanβ are due to an interplay of two factors; (i) the

light gluino mass (mg̃ ≈ 360 GeV) associated with m1/2 = 150 and (ii) a gluino mass lying

within the range of d̃ masses such that the variable x̃j is close to unity for several values of

j.

The result that F R
2 is the largest MSSM form factor indicates that, in contrast to the

SM, the magnetic dipole transition dominates the b decay process in the MSSM. To com-

pare with the SM, we note that the ratio of the largest MSSM and SM form factors is

|F R
2 (MSSM)|/|FL

1 (SM)(q2 = 0)| ≤ 0.4 GeV.

The phases of the MSSM form factors change very little over the allowed parameter

space. The phases of F L
1 and F

(L,R)
2 are independent of the sign of A and, for µ < 0, are

approximately equal at ≈ −2.8 for b → d and ≈ −0.016 for b → s. For µ > 0 the phases of

F
(L,R)
2 are shifted by π. The phase of F R

1 varies a little with m0 and m1/2 and depends on

the sign of A, being approximately that of F L
1 for A > 0 and shifted by π from that of F L

1

for A < 0. These MSSM phases for µ < 0 are comparable to the corresponding SM phases

so that the magnitude of the phase difference between the dominant MSSM form factor F R
2

and that of the SM form factor F L
1 (q2 = 0) is ≈ 0.4 for b → d and ≈ 0.01 for b → s for
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µ < 0 and ≈ 2.7 and ≈ 3.1 for µ > 0. Hence, after allowance for the negative sign in (33),

we conclude that the superpenguins and ordinary penguins have the same sign for µ > 0

and opposite sign for µ < 0.

IV. SUSY EFFECTS IN b → qq′q̄′

One albeit crude measure of the effects of SUSY in the decays b → qq′q̄′ is the relative

size of the integrated decay rates for the MSSM, taken in isolation, and for the SM. In

computing these decay rates from (6) we impose the low q2 cutoff q2 ≥ 1 GeV to avoid

non-perturbative long distance effects.

The largest effects of SUSY on the decay rates occur for high tan β and low (m0, m1/2).

For tan β = 48 and A = −300 the ratio ΓPeng(MSSM)/ΓPeng(SM) has a maximum value at

(m0, m1/2) = (275, 150) of ≈ 0.10 (b → d) and ≈ 0.085 (b → s) for µ > 0 and ≈ 0.09 (b → d)

and ≈ 0.08 (b → s) for µ < 0. The ratio exceeds 10−2 at tan β = 48 for (m0, m1/2)

ranging from (225, 150) to (275, 225). However, for lower tanβ this ratio has a much smaller

maximum value; for tan β = 10 it is 1 × 10−4 at (m0, m1/2) = (275, 225) and 3 × 10−4 at

(550, 150) for tan β = 2. The ratio decreases rapidly for large values of m1/2 due mainly to the

increase of the gluino mass in (33) from ≈ 360 at m1/2 = 150 to ≈ 1875 at m1/2 = 850. These

findings for low and medium tanβ differ from the earlier estimates [1] that the SUSY and

SM contributions to Γ(b → sq′q̄′) were of comparable size. However, these early estimates

were based on the assumption that b → sq′q̄′ could be described solely by the LL penguin

form factors F
(L,R)
1 (0) and our study shows F R

2 to be the dominant form factor.

In SUSY there is also a contribution to b → qq′q̄′ from the box diagrams of Fig. 8 for

which the amplitude is [1,23]

MBox =
ig2

s

4π2
[ūq(pq)T

aγµPLub(pb)] {J
1
LL [ūq′(pq′)γ

µT aPLvq̄′(pq̄′)]

+J2
LR[(ūq′(pq′)γ

µT aPRvq̄′(pq̄′)]} + [ūq(pq)γµPLub(pb)]

×{J3
LL [ūq′(pq′)γ

µPLvq̄′(pq̄′)] + J3
LR[ūq′(pq′)γ

µPRvq̄′(pq̄′)]} + (L ↔ R) (59)
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where

Jα
AB ≡

∑

d̃j

∑

q̃i

Jα(x̃j , ỹi) Λbq
AAj V iq′ ∗

q̃B V q′i
q̃B (60)

with

J1 =
7

6
g(x̃j, ỹi) −

2

3
f(x̃j, ỹi), (61)

J2 = −
1

3
g(x̃j , ỹi) +

7

3
f(x̃j, ỹi), (62)

J3 =
2

9
g(x̃j, ỹi) +

4

9
f(x̃j , ỹi). (63)

Here ỹi ≡ m2
q̃i
/m2

g̃, the squark q̃ is ũ for q′ = u and d̃ for q′ = d and the box functions are

[23]

g(x, y) =
1

x − y
[

1

y − 1
+ (

x

x − 1
)2 ln x − (x → y)] (64)

f(x, y) =
1

y − x
[

1

y − 1
+

x

(x − 1)2
ln x − (x → y)]. (65)

For the allowed regions of parameter space the box amplitudes satisfy |J2
LR| > 3(|J1

LL|,

|J3
LL|, |J

3
LR|) ≫ (|J2

RL|, |J
1
RR|, |J

3
RL|, |J

3
RR|) apart from in the region tan β = 2, m1/2 = 150

and m0 > 650 where |J1
LL| becomes slightly larger than |J2

LR|. The four largest box ampli-

tudes are generally of the same order as the MSSM penguin amplitudes (F L
1 , F

(L,R)
2 ); the

remaining four are negligible, being smaller by a factor of at least 105 and comparable to

the MSSM penguin F R
1 . For the regions where ΓMSSM/ΓSM >

∼ 10−3, the ratio of the largest

MSSM box and penguin amplitudes |J2
LR|/|F

R
2 | is small, varying from only 8× 10−3 for the

parameters tan β = 48, (m0, m1/2) = (275, 150) which produce the maximum SUSY effects

to a maximum of 0.01. The ratio does increase to ≈ 0.4 for low tan β (= 2), low m1/2 (= 150)

and high m0 > 1000 but in these regions the SUSY effects are negligible. Hence, for the

MSSM data sets for which the SUSY penguin effects are largest, the SUSY box amplitudes

can be neglected in calculating the decay rates.

The differential decay rates dΓPeng/dq2 (6) for the SM and for the combined effects of

the SM and the MSSM for the MSSM data set A = −300, µ > 0, tanβ = 48, (m0, m1/2) =
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(275, 150) which maximises the SUSY effects show (see Fig. 4 and 6) the SUSY enhancement

of the decay rates to be significant for most of the range of q2 values. The partial rate CP

asymmetries ACP(q2), defined in (10), reveal the presence of SUSY for q2 <
∼ 4m2

c . For these

values of q2 the SM CP asymmetries of ≈ 25% for b → d and ≈ 1.5% for b → s are reduced

to ≈ 20% and ≈ 1.2% respectively when the MSSM contributions are included.

V. DISCUSSION AND CONCLUSIONS

We have calculated, from first principles, both the SM and MSSM penguins that con-

tribute to the decays of the b and b̄ quarks. For the MSSM in particular there are discrepan-

cies to be found in the literature [26,1] as to the correct formulae for the F
(L,R)
1 form factors.

Our results for these form factors differ slightly from those of [26] but our other results agree

with [26].

Because of the presence of strong phases in the contributions to the SM penguin ampli-

tudes from u and c quarks we find that the decay rates for b → dq′q̄′ is significantly different

to the rate b̄ → d̄q′q̄′ even for quarks in isolation (see Fig. 6).

The SUSY enhancement of the gluon-mediated exclusive hadronic b decays within the

constrained MSSM model can be at the several percent level in certain regions of the

(A, tanβ, m0, m1/2) parameter space. In these regions the SUSY penguin processes

dominate the SUSY box processes with the consequence that the b decays in the MSSM

are driven by the magnetic dipole transition rather than the electric dipole transition of the

SM.

QCD corrections arising from renormalisation of the present short distance results down

from the electroweak scale to the scale mb are not likely to alter the finding that the magnetic

amplitude is dominant in the MSSM as the QCD induced mixing effects [12,34] produce an

enhancement of the magnetic dipole operators in the ∆B = 1 effective Hamiltonian relative

to the current-current penguin operators associated with the electric dipole amplitude. Fur-

thermore, Gérard and Hou [20] have noted that the result (29) for the SM form factor F L
1 (q2)
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already contains the dominant part of the QCD corrections for the current-current penguin

operators and, therefore, that the main effects of QCD corrections will be the renormalisa-

tion of the strong coupling constant from αs(MW ) to αs(mb). This would have the effect of

increasing the penguin decay rates of the SM by the factor η ≡ αs(mb)/αs(MW ) ≈ 1.84 and

also increasing the MSSM penguin amplitudes relative to those of the SM.

Detection of new physics in the hadronic decay amplitudes of the b quark through a study

of deviations from the predictions of the SM in the patterns of CP violation in Bd decays

is complicated, on the one hand by the interplay between the cumulative effects in the SM

of the q2-dependent strong phases in F L
1 and the weak CKM phases from the contributing

u, c and t quarks and, on the other hand, by MSSM phases comparable in magnitude to

the SM weak phases and which can give constructive or destructive interference depending

upon the details of the soft SUSY-breaking mechanism.
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FIG. 1. SM gluon penguins with W and scalar exchange.
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FIG. 2. Contributions to SM FL
1 (q2) for b → d + g from u (solid line), c (dashed line) and t

(dotted line) quarks.
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FIG. 3. Phase of SM FL
1 (q2) for b → d + g (solid line) and b̄ → d̄ + g (dashed line) for a CKM

phase of π/2. The dotted line shows the CP-violating phase difference.
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FIG. 4. Differential SM decay rates for b → dss̄ (solid line) and b̄ → d̄ss̄ (dashed line). The

corresponding results for the combined effects of the SM and MSSM are given by the dotted and

dot-dashed lines respectively.
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FIG. 5. Contributions to SM FL
1 (q2) for b → s + g from u (solid line), c (dashed line) and t

(dotted line) quarks. The contribution from the c quark has been scaled down by a factor of 10.
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FIG. 6. Differential SM decay rates for b → sdd̄ (solid line) and b̄ → s̄dd̄ (dashed line). The

corresponding results for the combined effects of the SM and MSSM are given by the dotted and

dot-dashed lines respectively.
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