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Abstract

A search is described for the neutral Higgs bosons h0 and A0 predicted by models with two
scalar �eld doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM).

The search in the Z0h0 and h0A0 production channels is based on data corresponding to an
integrated luminosity of 25 pb�1 from e+e� collisions at centre-of-mass energies between 130 and
172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates
consistent with Standard Model background expectations is used in combination with earlier
results from data collected at the Z0 resonance to set limits on mh and mA in general models

with two scalar �eld doublets and in the MSSM. For example, in the MSSM, for tan � > 1,

minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the
95% con�dence level limits mh > 59:0 GeV and mA > 59:5 GeV are obtained. For the �rst
time, the MSSM parameter space is explored in a detailed scan.
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1 Introduction

The data accumulated with the OPAL detector at centre-of-mass energies of 130 � 172 GeV,

corresponding to approximately 25 pb�1 of integrated luminosity, have opened up new kinematic

domains for particle searches. We describe searches performed in these high energy data for

neutral Higgs bosons which decay to hadrons or tau-leptons.

In the Standard Model (SM) [1], spontaneous symmetry-breaking is e�ected by the self-

interaction of one scalar (Higgs) �eld doublet [2]. The model predicts one Higgs boson, H0
SM,

the mass of which is not speci�ed. The OPAL search for H0
SM at

p
s = 130 � 172 GeV has

resulted in a lower bound on its mass of mH0
SM

> 69:4 GeV at the 95% con�dence level (CL) [3].

Supersymmetry (SUSY) [4] is considered an attractive possible extension of the SM, since

it provides a solution to one of the outstanding problems of the SM, that of the \hierarchy" of

energy scales [5]. The implementation of SUSY requires at least two Higgs �eld doublets. There

are exactly two in the Minimal Supersymmetric extension of the Standard Model (MSSM) [6].

These �elds couple separately to up-type quarks for the �rst doublet, and to down-type quarks

and charged leptons for the second doublet, and have vacuum expectation values v1 and v2,

respectively. Scalar �eld doublets that couple in this manner may exist more generally and the

class of such models is known as Type II Two Higgs Doublet Model (2HDM) [7]. Here, 2HDM
models will be understood to have no extra particles besides those of the SM and the two

scalar doublets, and there is no mass relation between the di�erent neutral and charged scalar
�eld particles. In any two Higgs �eld doublet model, the Higgs sector comprises �ve physical
Higgs bosons: two neutral CP-even scalars h0 and H0 (with masses satisfying mh < mH by
de�nition), one CP-odd scalar A0 and two charged scalars H�. In this paper the searches are
restricted to the neutral Higgs bosons h0 and A0. The heaviest neutral Higgs boson H0 is likely

to have a mass beyond the reach of LEP, and OPAL searches for H� bosons have been published
separately [8].

At the current e+e� centre-of-mass energies (
p
s) accessed by LEP, the h0 and A0 bosons

are expected to be produced predominantly via two processes: the \Higgs-strahlung" process
e+e�!h0Z0 (where the Z0 boson is on-shell) and the \pair production" process e+e�!h0A0.
Contributions from the W+W� and Z0Z0 fusion processes account for a small part of the total

production, except close to the kinematic limit of the e+e�!h0Z0 process [9]. For these two
principal processes, the cross-sections �hZ and �hA are related at tree-level to the SM cross-

sections [10]:

e+e�!h0Z0 : �hZ = sin2(� � �) �SMHZ ; (1)

e+e�!h0A0 : �hA = cos2(� � �) �� �SM���; (2)

where �SMHZ and �SM��� are the cross-sections for the SM processes e+e�!H0
SMZ0 and e+e�!���,

and �� is a kinematic factor, depending on mh, mA and
p
s, typically having values between 0.5

and 0.7 for the centre-of-mass energies under consideration. The angle � is de�ned in terms

of the vacuum expectation values of the two scalar �elds, tan � = v2=v1, and � is the mixing
angle of the CP-even (h0,H0) �elds. The coe�cients sin2(� � �) and cos2(� � �) indicate
complementarity in the cross-sections of the two processes, a feature which is exploited in

deriving bounds for Higgs boson masses and other model parameters.
In the MSSM at tree level the following mass relations are predicted: mh � mZ, mA � mH,

mZ � mH and mH� � mW� [7]. Loop corrections, dominantly from the top and scalar top

quarks (~t), strongly modify these mass relations and also have some moderate impact on the
Higgs boson couplings [11]. The shift in mh, approximately proportional to m2

t � log(m~t
2=m2

t ),
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can be several tens of GeV. While the top quark mass has been measured to be mt =

(175�5) GeV [12], the mass of the scalar top quark m~t depends on the mixing in the ~t sec-

tor which, in turn, depends on several other parameters of the MSSM. However, even for a

choice of SUSY parameters which maximises the mass shift, mh should not exceed approxi-

mately 135 GeV [10]. Although this bound is beyond the ultimate reach of the LEP collider, a

substantial fraction of this mass range is accessible.

In this work we undertake a more detailed examination of the MSSM parameter space

than has been done in the past. The coe�cients sin2(� � �) and cos2(� � �) which appear in

Eqs. (1) and (2) depend on a number of MSSM parameters which enter via mixing in the ~t

sector and which will be summarised in a later section. We perform detailed scans over broad

ranges of these parameters. Each of these scans is considered as an independent \model" within

the MSSM, and results are provided for each. In increasing order of generality, they include:

(A) Particular choices of parameters for \minimal" and \maximal" ~t-mixing and soft SUSY-

breaking masses �xed to be large as de�ned in [10] which are considered as the \benchmark

case" and adopted by most search groups, (B) varying the parameters over a wide range, but

keeping relations between some of them corresponding to minimal and maximal mixing, and

(C) a \general" scan where the MSSM parameters are allowed to vary independently within

wide, but reasonable, ranges.
The �nal-state topologies of the processes (1) and (2) are determined by the decays of the

Z0, h0 and A0 bosons. Since the Higgs bosons couple to fermions with a strength proportional

to the fermion mass, the Higgs dominantly decays into pairs of the most massive fermions
which are allowed by the kinematics, most notably b quarks and tau-leptons for the LEP mass
range. For particular choices of the model parameters (e.g. for tan � < 1) decays into c�c
may be enhanced. For 2mA � mh, the process h0!A0A0 is also allowed and may even be
the dominant decay, leading to more complex �nal states than those from direct decays into

fermion pairs. In the MSSM, Higgs bosons may also decay into SUSY particles if allowed by
kinematics. In particular, the decay into pairs of neutralinos (~�0) may lead to \invisible" Higgs
decay channels1 which must be considered in a full treatment of the model.

In searching for the process e+e�!h0Z0, the fact is exploited that in most of the MSSM
parameter space with tan � > 0:7 the decay properties of the h0 boson are essentially those of the

SM Higgs boson. Thus, earlier OPAL searches for the H0
SM boson [3], including those performed

at energies above the Z0 mass [13, 14], are interpreted here as searches for e+e�!h0Z0. The

reduction of the search sensitivity due to sin2(� � �) in Eq. (1) is taken into account. Dedicated

searches for \invisible" �nal states at
p
s � mZ [15] are also included. Since these searches are

published, we only summarise the results which are relevant for the present purpose. These
searches for H0

SM are also e�cient for e+e�!h0Z0!A0A0Z0, sometimes after small modi�cations

to the search.
In searching for the process e+e�!h0A0, the following �nal states are most important:

(h0!b�b)(A0!b�b), (h0!�+��)(A0!q�q) and (h0!q�q)(A0!�+��). The searches in these chan-

nels using the data accumulated by OPAL between
p
s = 130 and 172 GeV have not been pub-

lished. Therefore they are described in greater detail. The search for h0A0!A0A0A0!b�bb�bb�b

is important when the decay h0!A0A0 is kinematically allowed and is also presented here for
the �rst time for data taken above the Z0 energy.

This paper starts in Section 2 with a short description of the OPAL detector, the data

samples used and the various Monte Carlo simulations used to obtain the detection e�ciencies

1In the MSSM R-parity is conserved and throughout this paper we assume that the lightest supersymmetric

particle is the lightest neutralino, ~�0
1
.
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and to estimate the backgrounds from SM processes. This is followed by a description of the

event selections for the various h0Z0 and h0A0 channels in Sections 3 and 4.

A new statistical method [16], summarised in Section 5, has been used to combine the results

from di�erent search channels and data sets taken at di�erent centre-of-mass energies.

The model-independent and 2HDM results are summarised in Section 6, followed by those

interpreted within the MSSM in Section 7.

Previous OPAL searches for the h0 and A0 bosons, based on data collected at
p
s�mZ are

described in [13, 14]. The relevant publications from the other LEP collaborations describing

neutral SUSY Higgs boson searches are listed in [17].

2 Experimental considerations

The present search includes data collected with the OPAL detector [18] in 1995 at
p
s =

130 � 136 GeV (5.2 pb�1), in 1996 at
p
s = 161 GeV (10.0 pb�1), and at 170 � 172 GeV

(10.4 pb�1). The results are combined with those from earlier searches [14] which are based on

the analysis of up to 4.5 million hadronic Z0 decays.

The OPAL detector is an apparatus with nearly complete solid angle coverage and excellent
hermeticity. The central tracking detector consists of a high-resolution silicon microstrip vertex
detector (�VTX) [19] with polar angle2 coverage j cos �j < 0:9, which immediately surrounds the

beam-pipe, followed by a high-precision vertex drift chamber, a large-volume jet chamber, and z-
chambers, all in a uniform 0.435 T axial magnetic �eld. A lead-glass electromagnetic calorimeter
is located outside the magnet coil, which, in combination with the forward calorimeter, gamma
catcher, and silicon-tungsten luminometer [20], complete the geometrical acceptance down to
33 mrad from the beam direction. The silicon-tungsten luminometer serves to measure the

integrated luminosity using small-angle Bhabha scattering events [21]. The magnet return yoke
is instrumented with streamer tubes for hadron calorimetry and is surrounded by several layers
of muon chambers.

Events are reconstructed from charged-particle tracks and energy deposits (\clusters") in
the electromagnetic and hadronic calorimeters. The tracks and clusters must pass a set of

quality requirements similar to those used in previous OPAL Higgs boson searches [22]. In

calculating the total visible energies and momenta, Evis and ~Pvis, of events and of individual jets,

corrections are applied against double-counting of energy in the case of tracks and associated

clusters [23, 24]. For the analysis presented here, charged particles and neutral clusters are
grouped into jets using the Durham algorithm [25].

The tagging of jets originating from b quarks plays an important role in Higgs boson

searches, since both h0 and A0 decay preferentially to b�b over large domains of the two-�eld-
doublet and MSSM parameter spaces. Primary and secondary vertices are reconstructed in

three dimensions following two algorithms, using only tracks which pass an additional set of
quality requirements. The �rst method (BTAG1) [26] considers all such tracks in a jet and

attempts to �t them to a common vertex. Tracks are discarded from the vertex by an iterative
procedure which drops the track with the largest �2 contribution to the vertex �t, until the
largest �2 contribution is less than 4, with at least two tracks remaining. In the second method
(BTAG2) [27], the intersection of all pairs of such tracks in a jet having impact parameter

2OPAL uses a right-handed coordinate system where the +z direction is along the electron beam and where

+x points to the centre of the LEP ring. The polar angle, �, is de�ned with respect to the +z direction and

the azimuthal angle, �, with respect to the horizontal, +x direction.
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signi�cance b=�b (where b is the impact parameter3 and �b its error) greater than 2.5 are con-

sidered as seed vertices. The other tracks in the jet are added to the seed vertex in the order

which results in the greatest vertex probability after each addition. The process continues until

either all tracks in the jet are added or the resulting vertex probability falls below 1%, in which

case the last track to have been added is dropped. If more than one acceptable vertex per jet

is found via this algorithm, the best is chosen according to a set of criteria [26] involving track

multiplicity and the vertex decay length signi�cance S � L=�L, where L is the vertex decay

length4 and �L its error. In both algorithms, S is then used to distinguish between b-
avoured

hadron decays and background. The methods are found to not be fully correlated, and using

them both adds discriminating power. Charged track impact parameters are also used to com-

plement the secondary vertex algorithms via the forward multiplicity, de�ned as the number

of tracks in a jet with b=�b > 2:5. Finally, semi-leptonic b-hadron decays are exploited by �rst

identifying electrons via the method described in [28] and muons with the algorithm described

in [29], and then considering the transverse momentum with respect to the corresponding jet

axis.

The signal detection e�ciencies and accepted background cross-sections are estimated using

a variety of Monte Carlo samples. The HZHA generator [30] is used to simulate Higgs boson

production processes. The detection e�ciencies are determined at �xed values of the Higgs
boson masses using sample sizes varying between 500 and 10,000 events. E�ciencies at arbi-
trary masses are evaluated using spline �ts in the (mh,mA) plane between these points. The

background processes are simulated primarily by the following event generators: PYTHIA [31]
((Z0=
)�!q�q(
)), EXCALIBUR [32] and grc4f [33] (four-fermion processes (4f)), BHWIDE [34]
(e+e�(
)), KORALZ [35] (�+��(
) and �+��(
)), PHOJET [36] and Vermaseren [37] (hadronic
and leptonic two-photon processes (

)). The generated partons are hadronised using JET-
SET [31] and the resulting particles are processed through a full simulation [38] of the OPAL

detector.

3 Searches for the process e+e�!h0Z0

The OPAL searches for the SM process e+e�!H0
SMZ0 are interpreted as searches for the process

e+e�!h0Z0 via Eq. (1). The searches for H0
SM using all data recorded at center-of-mass energies

up to 172 GeV are described in [3]. They make use of the following �nal states:

� \Four-jet": (H0
SM!b�b)(Z0!q�q) (q=u,d,s,c,b),

� \Missing energy": (H0
SM!q�q)(Z0!���) (q includes quarks and gluons),

� \Charged lepton": (H0
SM!q�q)(Z0!e+e�, �+��), and

� \Tau-lepton": (H0
SM!q�q)(Z0!�+��) and (H0

SM!�+��)(Z0!q�q).

The search in the missing energy channel is also sensitive to small contributions to H0
SM

production coming from the W+W� fusion process e+e�!���H0
SM while the search in the

3The impact parameter is taken to be positive if in the two-dimensional projection the track path crosses

the jet axis in the direction of the 
ight direction; otherwise it is negative.
4The vertex decay length is the projection onto the jet direction of the distance between the primary vertex,

as reconstructed for the event (see [26] for the algorithm), and the secondary vertex, as reconstructed for the

jet. The decay length is taken to be positive if the vector that connects the primary to the secondary vertex is

at an angle of less than 90� from the direction of the associated jet, and negative otherwise.
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p
s = 161 GeV

Channel �(mH=60 GeV)(%) �(mH=70 GeV)(%) Background Data

Four-jet 30 31 0.75�0.08 0

Missing energy 56 41 0.90�0.10 1

Charged leptons Z0!e+e� 70 59 0.06�0.02 0

Charged leptons Z0!�+�� 75 73 0.04�0.03 0

Tau-lepton Z0!�+�� 24 17 0.10�0.03 0

Tau-lepton Z0!q�q 19 17 0.06�0.03 0

p
s = 170� 172 GeV

Channel �(mH=60 GeV)(%) �(mH=70 GeV)(%) Background Data

Four-jet 27 28 0.88�0.07 1

Missing energy 47 41 0.55�0.05 0

Charged leptons Z0!e+e� 64 65 0.08�0.02 0

Charged leptons Z0!�+�� 69 71 0.06�0.03 0

Tau-lepton Z0!�+�� 27 22 0.41�0.03 0

Tau-lepton Z0!q�q 15 19 0.18�0.03 0

Table 1: Summary of the searches for the SM Higgs boson at centre-of-mass energies of 161 and

170 � 172 GeV. For each channel the signal detection e�ciencies for mH0
SM

= 60 and 70 GeV,

the number of expected background events, and the number of events selected are given. The

statistical error on the e�ciencies is typically 1-4%.

charged lepton channel is sensitive to those from the Z0Z0 fusion process e+e�!e+e�H0
SM.

These contributions are taken into account in the corresponding channels.
The results from these published searches at

p
s = 161 � 172 GeV are summarised in

Table 1, which lists the signal detection e�ciencies for two Higgs boson masses in the range
of interest, the residual expected number of background events and the number of selected

candidate events in each search channel. As can be seen from the table, the selection criteria

applied at
p
s = 161 GeV select one candidate in the missing energy channel, with a mass

of (39:3�4:9) GeV, while those applied at 170 � 172 GeV select one candidate in the four-
jet channel with a mass of (75:6�3:0) GeV. The earlier OPAL searches applied to Z0 boson
decays [14] selected one candidate in the charged lepton channel �+��H0

SM with a mass of

(61:2�1:0) GeV (with 0.38�0.04 events expected from background) and two candidates in the

missing energy channel with masses of (6:3�0:8) GeV and (24:8�3:0) GeV (with 2.3�0.4 events
expected from background). All these candidates are considered as possible Higgs boson events

when limits in the MSSM parameter space are computed.
The above searches are also sensitive to the process e+e�!h0Z0 followed by h0!A0A0. The

selection is slightly changed with respect to that described in [3] in the case of the four-jet
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p
s = 161 GeV

SM search applied to the process �(%)

Four-jet (A0A0!b�bb�b)(Z0!q�q) 29

Missing energy (A0A0!q�qq�q)(Z0!���) 68

Charged leptons (A0A0!q�qq�q)(Z0!e+e�) 60

Charged leptons (A0A0!q�qq�q)(Z0!�+��) 74

Tau-lepton (A0A0!q�qq�q)(Z0!�+��) 16
p
s = 170� 172 GeV

SM search applied to the process �(%)

Four-jet (A0A0!b�bb�b)(Z0!q�q) 34

Missing energy (A0A0!b�bb�b)(Z0!���) 59

Charged leptons (A0A0!q�qq�q)(Z0!e+e�) 57

Charged leptons (A0A0!q�qq�q)(Z0!�+��) 73

Tau-lepton (A0A0!q�qq�q)(Z0!�+��) 17

Table 2: Signal detection e�ciencies for the searches for the SM Higgs boson, at centre-of-mass

energies of 161 and 170�172 GeV, applied to the processes with h0!A0A0 followed by A0!b�b.
The e�ciencies are quoted for mh = 60 GeV and mA = 30 GeV, with typical statistical errors

of 1-4%.

and missing energy channels. In the four-jet channel the likelihood discriminant, as described
later in Section 4.1, is reoptimised for the Z0A0A0 �nal state. This increases the e�ciency from

23% to 29%, while the background expectation remains approximately equal. In the case of
the missing energy channel at

p
s = 161 GeV a requirement on the jet resolution parameter,

y23 < 0:05, limits the acceptance to two-jet events only. Removing this requirement, the
detection e�ciency for h0!A0A0 (mh = 60 GeV, mA = 30 GeV) increases from 38% to 68%

while the background increases from 0.9 to 1.1 events. For the decay of the A0 boson, only

the predominant b�b �nal state is considered. For the charged lepton and tau-lepton channels,
Monte Carlo simulations have demonstrated that the detection e�ciencies for this two-stage

process are close to those of the h0 decay to fermion pairs. The detection e�ciencies for the
particular case of mh = 60 GeV and mA = 30 GeV, a point close to the boundary of the

kinematically-allowed region for h0!A0A0, are shown in Table 2.

4 Searches for the process e+e�!h0A0

In this section the searches for the MSSM process e+e�!h0A0 for �nal states (h0!b�b)(A0!b�b),

(h0!�+��)(A0!q�q), (h0!q�q)(A0!�+��) and (h0!A0A0!b�bb�b)(A0!b�b) are summarised.
If the same branching ratios to b�b and �+�� are assumed for h0 and A0 as for H0

SM, then the �rst
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three of the above �nal states account for approximately 90% of all h0A0 decays, in the portion

of the (mA;mh) phase space where mA > mh. For points in this phase space where mh � mA

and the decay h0!A0A0 is kinematically allowed, the last �nal state represents approximately

66% of decays of this type.

4.1 The channel h0A0
!b�bb�b

The signature for events from the process h0A0!b�bb�b is four energetic jets containing b-

hadrons and a visible energy close to the centre-of-mass energy. As
p
s changes from 130 GeV

to 172 GeV, the background changes considerably in size and composition. At 130 GeV and

161 GeV the main background comes from (Z0=
)�!q�q with or without initial state radiation

accompanied by hard gluon emission. Four-fermion processes, in particular e+e�!W+W�,

play a minor role since the threshold for these processes is at most only marginally crossed.

At 170 � 172 GeV this background becomes more important, while the (Z0=
)� background is

reduced. Two-photon processes have a large cross-section at all energies; however, the selection

requiring multihadronic �nal states with a visible energy close to
p
s reduces them to a negligible

level.

The selection proceeds in two phases. First, a preselection is applied to retain only those
events which have some similarity to the signal. The events remaining after preselection are
then analysed using a likelihood technique.

The preselection consists of the following requirements:

(1) The events must qualify as being hadronic �nal states as described in [39].

(2) The radiative process e+e�!(Z0=
)�!q�q
 is largely eliminated by requiring that the
e�ective centre-of-mass energy,

p
s0, obtained by discarding the radiative photon from

the event following [40], is greater than 110, 140 and 150 GeV for
p
s = 130 � 136, 161,

and 170 � 172 GeV, respectively.

(3) The events are reconstructed into four jets using the Durham algorithm [25]. The jet

resolution parameter y34, at which the number of jets changes from 3 to 4, is required to
be larger than 0.005. The distribution of log y34 is shown in Fig. 1(a).

(4) The value of the event shape C-parameter must be greater than 0.45. The C-parameter

is de�ned as C = 3(e1e2 + e2e3 + e3e1), with e1, e2 and e3, being the eigenvalues of

the normalised momentum tensor of the event [41]. It ranges from C = 0 for perfectly

back-to-back two-jet events to C = 1 for perfectly spherical events.

(5) Each of the four reconstructed jets must contain at least two charged tracks and at least

two electromagnetic calorimeter clusters.

(6) A �t of the jet four-momenta, in which the energy and momentum of the �nal state is
constrained to that of the initial e+e� state, must yield a �2-probability larger than 0.01.

The results of the preselection are listed in Table 3. Except for the number of events retained

after (1), the agreement between observed events and expected background predicted by the

Monte Carlo simulation is good. The discrepancy after the �rst requirement can be explained

by inaccurate modelling of events that radiatively return to the Z0 and by not including the
two-photon events in the Monte Carlo prediction. After a cut on

p
s0, these events are rejected

and the background prediction from Monte Carlo describes the data well.
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Next, a likelihood technique is used to classify the remaining events as either (Z0=
)�!q�q(
)

(1), a four-fermion process (2), or A0h0!b�bb�b (3). Three kinematic and six b-tagging variables

are input to the likelihood. The kinematic quantities are: the smallest angle between any jet

pair, the logarithm of the probability for a �t of the jet momenta with energy, momentum and

equal di-jet mass constraint, and the smallest di-jet mass di�erence after the energy momentum

conserving �t. For the b-tagging quantities used here, all vertices on which their calculation is

based must contain at least two tracks, each having two hits in the r�� and r�z ladders of the

�VTX detector. The calculation of forward multiplicities takes into account only tracks which

have two hits in the r � � and r � z ladders of the �VTX detector. These quantities are (see

Section 2 for a description): the sum of the two largest and the sum of the two smallest decay

length signi�cances in the four jets for vertices reconstructed with algorithm BTAG1, the sum

of all decay length signi�cances for vertices reconstructed with algorithm BTAG2, the sum of

the two largest and the sum of the two smallest forward multiplicities, and the sum of the two

largest transverse momenta with respect to the corresponding jet axis for identi�ed leptons. For

all of these quantities there is good agreement in their distributions between data and Monte

Carlo background predictions, and as examples the distributions for the sum of the two largest

lepton transverse momenta and the sum of the two largest decay length signi�cances for the

vertex algorithm BTAG1 are shown in Fig. 1(b) and (c), respectively.
For each of these input variables (labelled by i) a normalised histogram f ji (xi) is constructed

from the Monte Carlo for each of the two background classes and the signal (labelled by

j = 1; 2; 3). For a single variable, the probability for an event to belong to class j is:

pji (xi) =
f
j
i (xi)P3

k=1 f
k
i (xi)

;

and the joint discriminating variable for class j is de�ned as:

Pj(~x) =

Q9
i=1 p

j
i (xi)P3

k=1

Q9
i=1 p

k
i (xi)

;

where the product runs over the nine input variables. The signal likelihood is de�ned as:

LAh(~x) =
P3(~x)P3
j=1 Pj(~x)

;

and is required to be greater than 0.8 for the �nal selection. The likelihood distribution is

shown in Fig. 1(d) and over the entire range good agreement between the data and Monte

Carlo background prediction can be observed. Some irreducible background from four-fermion
processes also shows up as a small peak near a likelihood of 1. In total one event is selected,

with a centre-of-mass energy of 172 GeV, while 1.65, 1.61 and 1.95 events are expected from
the background simulations at

p
s = 130 � 136, 161, and 170 � 172 GeV, respectively. The

Poisson probability to select one or fewer events when 5.2 are expected is 2.3%.
The signal detection e�ciencies are a�ected by the following main uncertainties, all ex-

pressed as relative percentages. The error from Monte Carlo statistics is typically 4 � 10%.

However, near the region where the limit is set larger Monte Carlo samples were generated,

and a �t is made through the grid of e�ciencies in the (mh, mA) plane, so the e�ciency at a

certain mass point is e�ectively based on higher statistics. This results in a statistical error
of approximately 1% in the region near the limit. The preselection requirements on

p
s0, y34,

and C were varied by amounts equivalent to the di�erence between the mean value of data
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Figure 1: Selection variables relevant for the h0A0!b�bb�b analysis. (a) The logarithm of the

jet resolution parameter y34 after preselection requirements (1) and (2). (b) The sum of the

two largest lepton transverse momenta after the preselection. (c) The sum of the two largest

secondary vertex decay length signi�cances of the BTAG1 algorithm (de�ned in Section 2)

after the preselection. (d) The A0h0 likelihood distribution after the preselection. The three

centre-of-mass energies are added for all histograms. The points represent the data. The

shaded histograms show the q�q background and the open histograms show the four-fermion

background, normalised to the integrated luminosity of the data. Two-photon processes are

not included. The dashed line histogram shows the expectation for A0h0 signal events with

mA = mh = 55 GeV, where the displayed production cross-sections have been chosen for

visibility.
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Figure 2: (a){(c) The e�ciencies (in %) for the detection of h0A0!b�bb�b at the three centre-

of-mass energies in the (mh, mA) plane. The numbers are shown only for mA � mh due to

the symmetry in mh and mA. (d) The position in the (mh, mA) plane of the six possible mass

combinations of the candidate event superimposed on the expected Standard Model background

(scaled up by a factor of 100) for all center-of-mass energies.
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Figure 3: Mass resolution curves for h0A0!b�bb�b. (a) The mass sum of mh and mA for

mh + mA = 80 GeV. (b) The mass sum for mh + mA = 130 GeV. (c) The mass di�erence

of mh and mA for mh �mA = 0. (d) The mass di�erence for jmh �mAj = 50 GeV. Only the

combination with the smallest di�erence between measured and true mass sum or di�erence is

plotted. The histograms show the simulated distributions and the solid lines represent smooth

�tted functions.
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p
s = 130� 136 GeV

Cut Data Total Bkg. q�q(
) 4f �(%)

(1) 1536 1489 1478 11 100

(2) 445 496 489 7 97

(3) 83 65.5 62.9 2.6 84

(4) 64 48.1 45.8 2.3 83

(5) 41 34.4 33.0 1.4 79

(6) 28 28.2 26.9 1.3 75

L cut 0 1.65�0.33 1.57 0.08 60
p
s = 161 GeV

Cut Data Total Bkg. q�q(
) 4f �(%)

(1) 1499 1399 1346 53 100

(2) 394 378 352 26 90

(3) 62 54.1 37.2 16.1 72

(4) 49 40.6 26.1 14.4 71

(5) 40 33.2 21.3 11.7 69

(6) 33 30.5 19.6 10.9 63

L cut 0 1.61�0.11 1.20 0.41 50
p
s = 170� 172 GeV

Cut Data Total Bkg. q�q(
) 4f �(%)

(1) 1403 1254 1137 117 100

(2) 369 367 299 68 88

(3) 92 81.4 31.7 49.7 70

(4) 77 69.7 21.8 47.9 69

(5) 69 60.1 18.1 42.0 67

(6) 64 56.3 16.3 40.0 60

L cut 1 1.95�0.10 0.95 1.00 48

Table 3: E�ect of the selection criteria on data, background (normalised to the integrated

luminosity of the data) and signal simulation (mh = mA = 55 GeV) at the three centre-of-

mass energies for the signal channel h0A0!b�bb�b. The quoted errors on the background are

statistical.
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and Monte Carlo. This results in an uncertainty estimate for the modelling of the preselection

variables ranging from 3.5% to 7.6%, depending on the centre-of-mass energy. The uncertainty

associated with the requirement on �2-probability was determined to be 2%. To assess the sys-

tematic uncertainty from the b-tagging, the impact parameter resolution was varied by 10%,

and the b-hadron charged decay multiplicity was varied by 0.35 units [42]. The resulting errors

range from 3.6% to 4.5% depending on the detector con�guration (data taken in 1995 versus

data taken in 1996.) The e�ect of binning in the likelihood was investigated by using a linear

bin-to-bin interpolation. This gives rise to an uncertainty ranging from 0.0% to 0.4%. The

theoretical uncertainty on the cross-section is estimated to be 1%. The systematic error on the

integrated luminosity is 0.6% [21]. The total systematic uncertainty is calculated by adding the

above uncertainties in quadrature. This gives uncertainties ranging from 5% to 9% depending

on the centre-of-mass energy.

The residual background estimate has a statistical error of 20%, 7%, 5% at the 130 � 136,

161, 170 � 172 GeV centre-of-mass energies, respectively. The uncertainty from modelling the

preselection was estimated in the same manner as for the e�ciency, giving uncertainties ranging

from 3.3% to 16%. The e�ects of impact parameter resolution and binning in the likelihood

were also investigated in the same manner as for the e�ciency. Uncertainties in the impact

parameter resolution give errors between 15% and 23%. The e�ect of modelling the variables
used in the likelihood selection is cross-checked by reweighting the Monte Carlo events in such
a manner as to better approximate the data distributions within the ability of the Monte Carlo

samples to represent the data. It should be noted that the agreement in these distributions
before the reweighting procedure already gives a good �2 probability. This procedure yields
errors ranging from 0.4% to 22%, and the corresponding error estimates on the signal detection
e�ciencies are negligible. In all cases errors due to the tracking resolution uncertainty were
larger than those due to the reweighting procedure, and therefore the former are taken as

the systematic errors for these two checks. The e�ect of binning on the likelihood for the
background was estimated to range from 0.1% to 4.0%. The e�ect of modelling the Standard
Model physics was investigated by comparing di�erent Monte Carlo event generators. For the
Z0/
�!q�q background the results using the PYTHIA generator were compared to those using
the HERWIG generator [43]. For the four-fermion background the EXCALIBUR and grc4f

generators were compared. The uncertainties for the physics modelling range from 3.6% to
14%. The Monte Carlo generators have an uncertainty on the calculated cross-sections of 0.5%.

Including the error on the integrated luminosity of 0.6% [21], total relative uncertainties of

27%, 28%, 24% are assigned to the residual background estimates at center-of-mass energies of
130 � 136, 161, 170 � 172 GeV, respectively.

To make use of the mass information in the calculation of exclusion limits, the hypothetical

Higgs masses have to be determined. The four jets can be combined in three ways into two

jet-pairs. The invariant masses of all jet-pair combinations of an event are considered. They
are calculated using a kinematic �t assuming energy and momentum conservation (4C-�t). The

mass distributions have a non-Gaussian shape. Since h0 and A0 cannot be distinguished, the
mass di�erence �M = jmA �mhj and the sum M = mA + mh are considered instead of the

masses themselves. Figure 3 shows examples of these mass distributions at
p
s = 172 GeV. The

resolution in M is roughly 3 GeV and does not vary with mass. The tails of the distribution of

M , caused by the reconstructed jets not corresponding to the parton �nal states, exist largely

above the mass peak for M = 80 GeV, whereas for M = 130 GeV they are present both above
and below the nominal mass value. The shape of �M is independent of the mass sum. Its

resolution is also approximately 3 GeV and the distribution shows substantial tails. Smooth
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functions �tted to these mass distribution histograms are used for exclusion limit calculations

instead of the histograms themselves.

4.2 The channel h0A0
!�

+
�
�q�q

The �+��q�q �nal state can be produced via the processes e+e�!h0A0!�+��q�q and q�q�+��.

These processes are characterised by a pair of tau-leptons and a pair of energetic hadronic

jets. The backgrounds are predominantly from (Z0=
)�!q�q(
) and four-fermion processes.

The search in these channels was restricted to the data recorded at the centre-of-mass energiesp
s = 161 and 170 � 172 GeV.

The selection begins with the identi�cation of tau-leptons, identical to that in [3], using three

algorithms which classify each tau-lepton candidates as decaying into an electron, a muon, or

hadrons.

In the selection that follows, the tau-lepton direction is approximated by that of the visible

decay products. If two tau-lepton candidates have momentum vectors separated by less than

23�, one being identi�ed as a leptonic (electron or muon) decay and one as hadronic, the leptonic

decay is chosen. The following selection, which is identical to that in [3] up to and including

(4), was made:

(1) Events are required to have at least two tau-lepton candidates, each with electric charge
jqj = 1, and at least nine charged tracks.

(2) Most of the two-photon and e+e�!(Z0=
)� background events are eliminated by requiring
that the energy in the forward detector, gamma catcher, and silicon-tungsten luminometer
be less than 4, 10, and 10 GeV, respectively, that j cos �missj < 0:97 and that P T

vis > 3 GeV,
where �miss is the polar angle of the missing momentum vector and P T

vis is the total
transverse momentum of the event. In addition, the scalar sum of all track and cluster

transverse momenta is required to be larger than 40 GeV. Accelerator-related backgrounds
in the forward detectors which have not been fully simulated are taken into account via
small corrections to the signal detection e�ciencies.

(3) The remaining (Z0=
)�!q�q(
) background is partially suppressed by requiring that events
contain at least four jets, reconstructed using the cone algorithm as in [3], where sin-
gle electrons and muons from tau-lepton decays are allowed to be recognised as low-

multiplicity \jets". Events with an energetic isolated photon are removed, where an

energetic isolated photon is de�ned as an electromagnetic cluster with energy larger than

15 GeV and no track within a cone of 30� half-angle.

(4) To suppress the process W+W�!`�q�q0, events are rejected if they contain any track or

cluster with energy exceeding 0:3
p
s. Fig. 4(a) shows the distribution of the energy of

the most energetic electromagnetic cluster scaled by
p
s, prior to this cut, for the data

recorded at
p
s = 161�172 GeV, the expected backgrounds, and a simulated Higgs boson

signal with mh = mA = 55 GeV.

(5) The three tau-lepton identi�cation algorithms identify 2.3 � candidates per signal event on

average. Fake candidate pairs are removed by requiring that the sum of the track charges
be zero and that the candidates satisfy a pairwise isolation requirement, j cos�i �cos�jj <
0:5, where �i is the angle between the direction of the i-th � candidate and that of the

nearest track not associated with it. The indices i; j run over all � candidates with i 6= j.
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Fig. 4(b) shows the distribution of this variable for pairs of tau-lepton candidates, for the

data recorded at
p
s = 161� 172 GeV, the expected backgrounds, and a simulated Higgs

boson signal with mh = mA = 55 GeV. In those instances where more than one candidate

pair passes the selection, the pair whose members have the lowest track multiplicity is

chosen. If no distinction can be made, the candidate pair is chosen whose members have

the highest value of the isolation parameter R
11=30
em+cd. Here R

11=30
em+cd is the ratio of the sum

of the electromagnetic cluster energies and charged track momenta within a cone of 11�

half-angle centered on the � candidate axis to that within a 30� half-angle cone.

The hadronic part of the event, obtained by excluding the tracks and clusters from the

selected � candidate pair, is then split into two jets using the Durham algorithm [25]. The

invariant masses of the tau-lepton pair, m�� , and of the hadron jet-pair, mhad, are calculated

using only the tau-lepton and jet directions and requiring energy and momentum conservation.

The resolutions of the mass distributions, later used in the calculation of exclusion limits (see

Section 5), are determined from signal events by �tting a Gaussian distribution in an interval

which excludes non-Gaussian tails, resulting in a typical error of 6 GeV on the reconstructed

masses.

The numbers of observed and expected events after each stage of the selection are given

in Table 4 for
p
s = 161 GeV and 170 � 172 GeV. The agreement between the data and the

expected background within the limited statistics demonstrates the adequate modelling of the
selection criteria. The detection e�ciency for a Higgs boson signal with mh = mA = 55 GeV is
also given. Five events survive the selection while the background is estimated to be 1.29 events
at
p
s = 161 GeV and 2.54 events at

p
s = 170 � 172 GeV. Figure 6 shows the positions of

the surviving events in the (m�� ,mhad) plane superimposed on the expected background. The
detection e�ciencies for various values of m�� and mhad, where m�� is the mass of the object
(h0 or A0) decaying into the � -pair and mhad is the mass of the object decaying into the jet-pair,
are given in Fig. 5.

The e�ciencies are a�ected by the following uncertainties: Monte Carlo statistics, typi-
cally 2.2%; uncertainty in the tau-lepton identi�cation e�ciency, 3.6%; uncertainties due to

modelling of selection variables excluding the tau-lepton identi�cation, 6.3%; uncertainties in

the modelling of fragmentation and hadronisation, 2.4%; and uncertainty on the integrated
luminosity, 0.6% [21]. Taking these uncertainties as independent and adding them in quadra-
ture results in a total systematic uncertainty of 7.9% (relative errors). The uncertainties due

to the modelling of selection variables, including those used in tau-lepton identi�cation, were

estimated by displacing the cut values by an amount corresponding to the di�erence between

the means of the data and background Monte Carlo distributions. Using the same techniques,
the uncertainty in the number of expected background events was estimated to be 32%, domi-
nated by the systematic uncertainty associated with the requirement on j cos�i � cos�j j, which

is steeply falling for background at the position of the cut. Because of this predominance of

one single selection variable in the uncertainty on the number of expected background events,
the background is not subtracted when computing limits.

4.3 The channel h0A0
!b�bb�bb�b

When 2mA � mh the decay h0!A0A0 is allowed and may be dominant. In these cases the

process e+e�!h0A0!A0A0A0 can have a large branching ratio in the �nal state b�bb�bb�b. Due
to the presence of six b quarks in the expected signature, the events are characterised by a large

number of jets and a large charged track multiplicity. To reduce backgrounds b-tagging plays
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Figure 4: Selection variables relevant for the h0A0!q�q�+�� analysis. (a) The energy of the

most energetic electromagnetic cluster scaled by
p
s after cut (3). (b) The pairwise isolation

parameter (see text) after cut (4). The
p
s = 161 and 170� 172 GeV data are added together.

The points represent the data. The shaded histograms show the q�q background and the open

histograms show the four-fermion background, normalised to the integrated luminosity of the

data. Two-photon processes are not included. The dashed histograms are simulated signals

for mh = mA = 55 GeV, where the displayed production cross-sections have been chosen for

visibility. The background simulations are normalised to the integrated luminosity of the data.

Arrows indicate domains accepted by the selection.
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Figure 5: E�ciencies in percent for the signal process h0A0!q�q�+�� in the (m��,mhad) plane

at
p
s = 161 and 172 GeV, where m�� and mhad are the invariant masses of the tau-lepton pair

and hadron jet-pair, respectively.

19



p
s = 161 GeV

Cut Data Total Bkg. q�q 4f 

 �(%)

(1) 402 398.0 92.8 18.3 286.9 67

(2) 45 44.7 30.9 13.3 0.5 62

(3) 32 30.1 19.6 10.1 0.4 61

(4) 26 22.7 14.3 8.0 0.4 57

(5) 0 1.29�0.24 0.41 0.88 <0.21 46
p
s = 170� 172 GeV

Cut Data Total Bkg. q�q 4f 

 �(%)

(1) 358 306.9 75.2 36.8 194.9 67

(2) 50 55.1 23.6 31.2 0.3 63

(3) 37 40.1 15.2 24.7 0.2 61

(4) 31 32.3 11.0 21.3 <0.22 57

(5) 5 2.54�0.24 0.21 2.33 <0.22 46

Table 4: E�ect of the selection criteria on data, background (normalised to the integrated

luminosity of the data) and signal simulation (mh = mA = 55 GeV) at the two centre-of-

mass energies for the signal channel h0A0!�+��q�q. The quoted errors on the background are

statistical.
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Figure 6: The position in the (m�� ,mhad) plane of the h0A0!�+��q�q channel candidates,

superimposed on that of the arbitrarily normalised expected Standard Model background, forp
s = 161 and 170 � 172 GeV.
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a crucial role. The main background is from (Z0=
)�!b�bg(
) with hard gluon emission. At

161 and 170�172 GeV four-fermion processes also result in a small contribution. Backgrounds

from two-photon processes are reduced to a negligible level by the event selection.

The initial event selection follows that for h0A0!b�bb�b described in Section 4.1. The data

samples from
p
s = 130 � 172 GeV are all used. The following requirements are made:

(1) The events must qualify as hadronic �nal states as described in [39].

(2) Jets are reconstructed using the Durham [25] algorithm with ycut = 0:0015. Events having

�ve or more jets are retained.

(3) As in the h0A0!b�bb�b analysis, the radiative process e+e�!(Z0/
)�!q�q
 is largely elimi-

nated by a requirement on the e�ective centre-of-mass energy, in this case
p
s0 > 110 GeV.

The distribution of the number of jets for events with four or more jets after application

of this requirement is shown in Fig. 7(a) for data and simulated background and signal.

(4) The number of charged tracks for the signal process is quite large, but the backgrounds

from (Z0=
)�!q�q(
) and four-fermion processes have long tails extending to high mul-

tiplicities (see Fig. 7(b)). Candidate events are required to have more than 35 charged
tracks.

(5) Three or more jets are required to show evidence for b quark 
avour, using the b-tagging
algorithms discussed in Section 2 (BTAG1 [26] and BTAG2 [27]). The secondary vertices
used in these methods are in addition required to have at least two tracks each with
two �VTX r-� hits assigned [3]. The decay length signi�cances S, ordered in decreasing

signi�cance, must be successively S > 8, 4, 3 for BTAG1 vertices and S > 8, 5, 3
for BTAG2 vertices. Events must pass either the BTAG1 requirements or the BTAG2
requirements. The distributions of the signi�cance of the most signi�cant and the third
most signi�cant vertex for the BTAG1 algorithm are shown in Fig. 7(c) and (d) for events
passing requirement (3).

Distributions of the variables relevant for the selection are shown in Fig. 7(a){(d) for the
130� 136 GeV, 161 GeV and 170� 172 GeV data combined. Within the limited statistics, the
agreement of the data with the Monte Carlo simulations is reasonable, except that it was found

that the PYTHIA simulation of e+e�!(Z0/
)�!q�q
 underestimates the number of events

with �ve or more jets. This discrepancy arises only in the Z0 radiative return peak. The loose

requirement on
p
s0 was made to decrease the number of Z0 radiative return events in order

to reduce the e�ect of this uncertainty on the �nal selection, while maintaining a high signal

e�ciency. This discrepancy, which would be eliminated with a harder requirement on
p
s0,

vanishes subsequently with the application of the remainder of the selection.
The numbers of events passing each requirement, compared with estimates from the back-

ground simulations normalised to the integrated luminosities, are shown in Table 5. Also

shown are the detection e�ciencies for simulated samples of e+e�!h0A0!A0A0A0!b�bb�bb�b

with mh = 60 GeV and mA = 30 GeV. No events pass the selection requirements for any of the

three data samples, consistent with the background expectations of 0, 0.23, 0.37 events for the
130 � 136, 161, 170 � 172 GeV samples, respectively.

The systematic errors on the detection e�ciencies for the signal are dominated by the

statistics of the 500-event Monte Carlo samples, typically 7%. In addition to the statistical

errors, there are errors due to the modelling of the selection variables. A Monte Carlo sample of
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Figure 7: Selection variables relevant for the h0A0!b�bb�bb�b analysis. (a) The number of recon-

structed jets using the Durham algorithm with ycut = 0:0015 after multihadronic event selection

and application of cut (3), for events with four or more jets. (b) The charged track multiplic-

ity after cut (3). (c) The highest secondary vertex signi�cance for the BTAG1 algorithm (see

Section 2 for de�nition) after cut (3). (d) The third-highest secondary vertex signi�cance for

the BTAG1 algorithm after cut (3). The distributions are added for the centre-of-mass ener-

gies 130 � 136 GeV, 161 GeV and 170 � 172 GeV. Data are indicated by points. The shaded

histograms show the q�q(
) background, and the open histograms show the four-fermion back-

ground, normalised to the integrated luminosity of the data. Two-photon processes are not

included. The dashed lines represent a simulated signal with mh = 60 GeV, mA = 30 GeV forp
s = 171 GeV, where the displayed production cross-sections have been chosen for visibility.

Arrows indicate domains accepted by the selection.
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p
s = 130� 136 GeV

Cut Data Total Bkg. q�q(
) 4f �(%)

(1) 1536 1489 1478 11 98

(2) 278 232 229 2.8 90

(3) 83 65.2 63.1 2.1 77

(4) 7 10.4 10.1 0.3 63

(5) 0 <0.08 0 0 22
p
s = 161 GeV

Cut Data Total Bkg. q�q(
) 4f �(%)

(1) 1499 1399 1346 53.2 100

(2) 220 175 158 17.1 91

(3) 95 75.4 59.8 15.6 84

(4) 14 17.0 11.3 5.7 71

(5) 0 0.23�0.04 0.16 0.07 34
p
s = 170� 172 GeV

Cut Data Total Bkg. q�q(
) 4f �(%)

(1) 1403 1254 1137 117.3 100

(2) 223 164.5 124 40.5 90

(3) 99 91.2 52.0 39.2 83

(4) 32 27.4 10.8 16.6 70

(5) 0 0.37�0.05 0.26 0.11 32

Table 5: E�ect of the selection criteria on data, background (normalised to the integrated

luminosity of the data) and signal simulation (mh = 60 GeV,mA = 30 GeV) at the three centre-

of-mass energies for the signal channel h0A0!b�bb�bb�b. The quoted errors on the background

are statistical.
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10,000 events with mh = 60 GeV, mA = 30 GeV for
p
s = 171 GeV was used to study systematic

e�ects. The most signi�cant of these e�ects on the e�ciencies is the b-tagging requirement,

where the modelling of the b fragmentation and lifetime and the vertex �nding algorithms can

introduce systematic e�ects. These e�ects are similar to those for the h0A0!b�bb�b analysis.

The distributions of the signi�cances of the �rst, second and third most signi�cant vertices agree

between data and Monte Carlo within the limited statistics with those for the (Z0=
)�!q�q(
)

simulation for the selection variables of this analysis. The systematic errors on the e�ciency

due to the b-tagging requirement were found to be 1.7% due to the impact parameter resolution

and fragmentation uncertainties and 3.5% due to the b-hadron decay multiplicity uncertainty.

The systematic errors due to the jet reconstruction, the requirement on
p
s0, and the track

multiplicity are 1.2%, 1.7% and 7.2%, respectively. The total systematic error on the detection

e�ciency, not including Monte Carlo statistics, is thus 8.5%. Additional systematic errors

on the predicted total numbers of events arise from the error on the integrated luminosity

(0.6%) [21] and the theoretical uncertainty on the cross-section (1%).

The systematic errors on the background estimates similarly include contributions from the

modelling of the distributions used in the event selection and from Monte Carlo statistics. As

mentioned previously, the PYTHIA generator underestimates the number of events with �ve or

more jets by approximately 23% for the overall sample. Also the high-end tail of the charged
track multiplicity distributions could be mismodelled. The background estimate is also subject
to the modelling of higher-order QCD processes. In addition, the tagging of the third most

signi�cant vertex as a b is subject to the misidenti�cation of jets which do not result from
b quarks, as in the h0A0!b�bb�b analysis. To estimate all these sources of systematic errors
related to the modelling of the Standard Model physics, the backgrounds calculated using
the HERWIG Monte Carlo were compared with those from PYTHIA. The HERWIG Monte
Carlo describes the jet rates of the data much better. The di�erences between PYTHIA and

HERWIG in the predicted numbers of background events passing all selection requirements are
�0.15, �0.03, 0.03 events for

p
s = 130� 136, 161, 170� 172 GeV and are consistent with zero

within one standard deviation. These are less than the statistical errors on the predictions from
either Monte Carlo generator, which for PYTHIA are 100%, 17%, 15% for the 130 � 136, 161,
170� 172 GeV Monte Carlo samples, respectively. The systematic errors due to the b-tagging,

jet reconstruction,
p
s0, and track multiplicity requirements were estimated to be 3.2%, 5.5%,

4.4%, and 13.5%, respectively, using the same methods as were used to calculate the systematic

errors on the detection e�ciencies. Thus the systematic error on the background is dominated

by the statistical error and amounts to approximately 100%, 23%, 21% for the 130 � 136,
161, 170 � 172 GeV Monte Carlo samples, respectively. Since for this channel the predicted
backgrounds are very small, no background subtraction is applied.

5 Statistical combination of individual search channels

The searches for Higgs bosons performed by OPAL have not led to any signi�cant signals. The

negative results in individual search channels, based on data at various centre-of-mass energies,

are statistically combined to increase the sensitivity. A new statistical method [16], based on

\fractional event counting", is used for that purpose. The method is used to test the predictions
of speci�c models (e.g. the MSSM or Two Higgs Field Doublet Model) for speci�c parameter

sets by comparing them to the experimental results.

The method assigns a weight to each candidate event for a given hypothetical Higgs mass

m (test mass). The sum of the weights for all candidates is related to a probability to be
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consistent with a signal-plus-background hypothesis and a background-only hypothesis in an

analytical manner [16]. The probabilities for signal-plus-background and for background-only

are related in turn, using Bayesian statistics, to a con�dence level.

The weight, wij(m), for each candidate j of each search channel i at the test mass m is

determined by the product of a channel scaling factor, ci(m), and another factor, fi(m;mij),

which is determined by the expected mass distribution at m evaluated at the candidate mass,

mij.

The channel scaling factors ci are determined by the signal-to-background ratio:

ci(m) =

 
1 +

Bi(m) � s(m)

Smax
i (m) � si(m)

!�1
:

The expected number of signal events in channel i, si(m), is calculated using the model pre-

diction for the cross-section and branching ratio, the integrated luminosity of the data set to

which the search is applied,5 and the signal detection e�ciency. The total expected signal rate

is s(m) =
P

i si(m). The function Si(m;mij) is the signal probability density. Its maximum

for any possible mij is Smax
i (m). The function Bi(m) is the expected di�erential background

rate per GeV for test mass m. For channels where the mass is reconstructed, Smax
i (m) is in-

versely proportional to the mass resolution. For channels without mass reconstruction, the
ratio Bi(m)=Smax

i (m) is replaced by the total background rate. This implies that the ci are
larger for channels where the mass is reconstructed.

The factor fi(m;mij) is given by the ratio

fi(m;mij) =
Si(m;mij)

Smax
i (m)

:

The overall event weight for each candidate is thus given by:

wij(m) = K � ci(m) � fi(m;mij):

The factor K is a normalisation constant that �xes the largest value of wij(m) to unity.
The sum of candidate weights over all channels w(m) =

P
i;j wij(m) is converted to a

con�dence level CL(m) [16] for this sum to be more likely due to signal-plus-background than

due to background-only. For example for CL = 0:05, the signal hypothesis is rejected at 95%
con�dence level.

In some channels as indicated previously, the background is statistically subtracted from

the data to enhance the search sensitivity. In these cases, the subtracted background is �rst
conservatively reduced by its systematic error. In calculating the ci the best estimate of the

background is always taken.
The uncertainty on the signal detection e�ciency is accounted for using the method de-

scribed in [44].
There is an overlap between some search channels in selected signal and background events.

In the case of overlap in the signal, there is the problem of assigning the correct weight to a

candidate. This situation did not not occur for the search results of this paper, because the

e�ciency of a given search channel for the topology of any other channel is taken to be zero.

Overlap in the background is only relevant when the background is subtracted from the data
in areas where the same candidate is found simultaneously in di�erent search channels. This

situation does not occur for the candidate events found in the search channels used here.

5Identical search channels using di�erent data sets are considered as individual channels.
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Figure 8: Upper limits at 95% CL on s2 (as de�ned by Eq. (3)) using all SM search channels

and assuming the SM Higgs branching ratios for the S0 (dashed line), and discarding all search

channels that use b-tagging but assuming a hadronic branching ratio of the S0 of 100% (solid

line).

6 Model-independent and Two Doublet Model interpre-

tations

Model-independent limits are given for the cross-section for the generic processes e+e�! S0Z0

and e+e�! S0P0, where S0 and P0 denote scalar and pseudo-scalar neutral bosons, respectively.
The limits are conveniently expressed in terms of scale factors, s2 and c2, which relate the cross-
sections of these generic processes to those of well-known SM cross-sections (c.f. Eqs. (1), (2)):

�SZ = s2 �SMHZ ; (3)

�SP = c2 �� �SM���: (4)

Figure 8 shows the 95% CL upper bound for s2 as a function of the S0 mass, obtained from:

s2 =
NSZ
95P

(� L �SMHZ )
;

where NSZ
95 is the 95% CL upper limit for the number of possible signal events in the data, � is the

signal detection e�ciency and L is the integrated luminosity. The sum runs over the di�erent

centre-of-mass energies considered. The dashed line is computed using all search channels and
assumes SM Higgs branching ratios for the S0. The solid line is computed assuming 100%

hadronic branching ratio for the S0 and uses only search channels that do not employ b-tagging

and is therefore more generally valid. Below mS0 � 5 GeV, the direct search loses sensitivity
rapidly and the limit for s2 is determined from �Z0 only, as described below.

Figure 9 shows contours of 95% CL upper limits for c2 in the S0 and P0 mass plane, for the

processes e+e�! S0P0!b�bb�b and q�q�+��, respectively. In both cases a 100% branching ratio
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Figure 9: Upper limits at 95% CL for c2 (see Eq. (4)) for: (a) the S0P0!b�bb�b search channel

assuming the b�b branching ratio for both S0 and P0 to be 100%, and (b) the S0P0!q�q�+��

search channel assuming a 100% branching ratio for this �nal state. The invariant masses of

the tau-lepton pair and hadron jet-pair are denoted m�� and mhad, respectively. The search

e�ciency is zero outside this area surrounded by the dotted line.

into the speci�c �nal state is assumed. The contours are obtained from:

c2 =
NSP
95P

(� L �� �SM���)
;

with NSP
95 being the 95% CL upper limit for the number of signal events in the data. The

results obtained for b�bb�b (Fig. 9(a)) are symmetric with respect to interchanging S0 and P0

while those obtained for �+��q�q are not. For this reason, the results for �+��q�q (Fig. 9(b))
are presented with the mass of the particle decaying into �+�� along the abscissa and that of

the particle decaying into q�q along the ordinate. The irregularities of the iso-c2 contours are
due to the presence of candidate events that a�ect NSP

95 .

If the decay of the Z0 into a �nal state containing S0 or P0 is possible, the width �Z

will be larger than when only the known Standard Model decays are possible. The excess

width that is still possible when subtracting the predicted Standard Model width from the

measured �Z value can be used to place upper limits on the cross-sections of Z0 decays into
�nal states with S0 or P0 bosons. The additional width of the Z0 resonance from �nal states

not classi�ed as lepton pairs can be extracted from the measurement of the branching ratio
BR(Z0!``) = �(Z0!``)=�(Z0!all). The limits obtained from this equation are not sensitive

to radiative corrections that equally a�ect all �nal states, because these cancel in the ratio. The

current measurement is BR(Z0!``) = 0:03366�0:00006 [45]. From this value and the predicted
SM value obtained from [46], the di�erence between the measured and predicted Z0 width is

(�1:2 �4:4(exp) �1:7(QCD) �1:8 (EW)) MeV, resulting in an excess width less than 7.1 MeV
at 95% CL. The uncertainties are due to experimental errors, QCD corrections and electroweak

corrections, respectively. This excess width of the Z0 can still be a�ected by corrections, such as

vertex corrections and oblique corrections, that are di�erent for di�erent �nal states. However,
these corrections are expected to be small for the Two Higgs Field Doublet Model (2HDM). In
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Figure 10: Regions excluded at 95% CL in the Type II 2HDM. The black region is excluded

using constraints from �Z only. The dark grey region uses the direct searches for the SM

Higgs in addition, but discarding the search channels that use b-tagging, assuming a hadronic

branching ratio of the h0 of 92%. The light grey region is excluded for tan � > 1 in the 2HDM,

assuming SM Higgs branching ratios for h0 and A0.

the case of a very light Higgs (mh < 2m�) that remains invisible or that decays into photons,
electrons, or muons, some of the �nal states Z�S0 with the Z� decaying to leptons could still
be classi�ed as a lepton pair and the above limit does not apply. However, in this case the
decay-mode-independent search limit of [47] is applied.

In the 2HDM the bosons S0 and P0 are identi�ed with h0 and A0, and the couplings s2 and

c2 are identi�ed with sin2(� � �) and cos2(� � �), respectively. The assignment of the possible
excess width in �Z to the process Z0!h0Z� yields an upper bound for s2 which depends only
on the mass of h0; the assignment to Z0!h0A0 yields an upper bound for c2 which depends
on the masses of both h0 and A0. Combining these limits, the black region in the mass plane

shown in Fig. 10 is excluded at 95% CL regardless of h0 and A0 decay modes. In the 2HDM,

disregarding the possibility of h0!A0A0, the most important �nal states of the decays of the h0

and A0 bosons are b�b, c�c and �+��. The branching ratios depend on tan �, but the hadronic
branching fraction always exceeds 92% [48]. For tan ��1 the b�b channel dominates while for

tan � < 1 the c�c contribution may become the largest.

In Fig. 10 the excluded area in the (mh,mA) plane is shown when the limits on c2 and
s2 are combined. Below the dotted line, where the h0!A0A0 decay is kinematically allowed

and competes with the h0!f�f decay, the smaller of the detection e�ciencies is used. The
excluded area is therefore valid regardless of the h0!A0A0 branching ratio. The dark grey

area is excluded at 95% CL when BR(h0!q�q)�92%, generally valid in the 2HDM. The limit

in the 2HDM for equal h0 and A0 masses is at mh = mA = 41:0 GeV.6 The light grey area
is excluded when SM Higgs branching ratios are assumed for h0 and A0. This assumption is

valid in the 2HDM for tan � > 1. In that case the limit for equal h0 and A0 masses is at

6Throughout this paper numerical mass limits are quoted to 0.5 GeV precision.
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mh = mA = 56:0 GeV. The holes in the exclusion of the light grey area at the edge of the dark

grey excluded region are caused by the single candidate event in the h0A0!b�bb�b search.

7 Interpretations of the search results in the MSSM

In its most general form, the MSSM has more than one hundred parameters. In this paper

we consider a constrained MSSM, with only �ve free parameters in addition to those of the

SM. The model assumes uni�cation of the scalar-fermion masses (m0) at the grand uni�cation

(GUT) scale, and uni�cation of the gaugino masses (which are parametrised using M2, the

SU(2) gaugino mass term at the electroweak scale) and scalar-fermion tri-linear couplings (A)

at the electroweak scale. These simpli�cations have practically no impact on the MSSM Higgs

phenomenology. In particular, a common scalar-fermion mass and tri-linear coupling is justi�ed

since only the scalar top (~t) sector gives important contributions to Higgs boson masses and

couplings.

Other free parameters of the model are the supersymmetric Higgs mass parameter �, tan �,

and the mass of the CP-odd neutral Higgs boson, mA. As mentioned previously, the top quark

mass has a strong impact on mh. Therefore, it is also varied within reasonable bounds.
In scanning the MSSM parameter space, values of the above parameters are input to the

HZHA event generator [30, 48] which is supplemented with parts of the SUSYGEN [49] program.
The HZHA program provides the masses and couplings of all Higgs bosons as well as those of
the supersymmetric partners. It also calculates the cross-sections for e+e�!h0Z0 and h0A0 [50]

at each centre-of-mass energy, corrected for initial-state radiation. SUSYGEN produces scalar-
fermion masses on the electroweak scale, starting from the same input parameters.

For the above parameters, the following ranges are considered:

� m0: 0 to 1000 GeV. The masses of physical scalar-fermions are obtained in SUSYGEN

by running m0 from the GUT scale down to the electroweak scale using the relevant
renormalisation group equations.

� M2: 0 to 2000 GeV. The U(1) and SU(3) gaugino mass terms, M1 and M3, are calculated
from M2 using the ratios of the corresponding coupling constants, M1 : M2 : M3 = �1 :

�2 : �3.

� A: �2.5�m0 to 2:5�m0. This range is chosen to include all possible ~t mixings.

� �: �1000 to 1000 GeV.

� mA: 5 to 160 GeV. Beyond this range, values in 5 GeV slices around mA = 250, 400,

1000 and 2000 GeV are also explored. Masses below 5 GeV are not considered since in

that domain the decays of A0 are uncertain. As discussed in the previous section and
shown in Fig. 10, for mh < 43:0 GeV, small values of mA are excluded on more general

grounds. Note that the parameter mA which is used as input to HZHA and SUSYGEN
is the \running mass", while the mass of the CP-odd Higgs boson A0, which is used to

express the results, is the physical mass.

� tan �: 0.7 to 50. This spans the theoretically favoured range, 1 < tan � < mt=mb, but
also includes values less than unity, which are not ruled out by theory.

� mt: 165, 175 and 185 GeV. The range of values includes approximately two standard
deviations of the measured top quark mass [12].

29



Most parameters are scanned by dividing their ranges into bins of variable size and choosing

the values in each bin at random (\strati�ed scanning"). Exceptions are the parameter mt, for

which three discrete values are used, and the values of mA greater than 160 GeV, for which

5 GeV bands around the values are used.

The following parameter scans are considered in order of increasing complexity:

(A) The parameters m0 and M2 are �xed at 1 TeV, � is �xed at �100 GeV and mt = 175 GeV.

The parameter A is �xed to 0 (minimal ~t mixing) or
p

6 TeV (maximal ~t mixing.) The

parameters mA and tan� are varied as described above. This simple scan serves as a

benchmark corresponding to the scans proposed in [10].

(B) We also consider two scans which correspond to cases of minimal and maximal mixing in

the ~t sector, inducing small and large corrections to the h0 boson mass, respectively. In

these scans the parameters m0, M2, mA, tan �, and mt are varied independently, � is

constrained to �0:1mQ and the parameter A is set to

� A = 0 for minimal mixing, and

� A =
p

6 mQ for maximal mixing.

The mass mQ of the \left-up" scalar quark at the electroweak scale is uniquely determined

in terms of m0 and the other input parameters [49].

(C) In the most general scan considered here, all parameters described previously are varied

independently in the ranges that are listed above.

The number of parameter sets considered in scan (A) is about 50,000, that of the scan (B)
is approximately 1,000,000, and that of scan (C) is close to 6,000,000.

Before comparing the above parameter sets to the data, these are subject to a selection
on the basis of theoretical and experimental considerations. Only those sets are selected that
provide a ~t1 mass larger than the lightest neutralino mass. Additional experimental constraints
are applied, which do not relate directly to the searches described here. A parameter set is
rejected if the sum of the partial decay widths of Z0!h0Z� and Z0!h0A0 is more than 7.1 MeV

(see the discussion of the constraint from �Z in Section 6). Parameter sets giving rise to chargino
or neutralino masses [23], or stop masses [51] excluded by OPAL searches at LEP2 are also

discarded.

It has been shown [52] that large values of A and � may give rise to non-zero vacuum expec-
tation values for the ~t �elds which break charge and colour symmetry. Criteria for charge- and

colour-breaking (CCB) minima of the MSSM Lagrangian have been determined [53], but these
may be substantially modi�ed if also \tunneling" from the CCB minimum to the electroweak

minimum is taken into account. A calculation that includes the e�ect of tunneling is available
for one speci�c scenario out of a number of distinct possibilities [54], but a complete treatment

of CCB criteria is not yet available to our knowledge. A simple approximate criterion to avoid

CCB minima is [52]:

A2 + 3�2 < x (m~tL

2 + m~tR

2); (5)

where m~tL
and m~tR

denote the left- and right-handed scalar top masses and x�3. For the

speci�c calculation that includes tunneling this bound was shown to be modi�ed to x�7:5 [54].
For the general scan (C) of the MSSM parameter space results will be shown without applying

CCB criteria, and for CCB criteria applied with x = 3 and x = 7:5.
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The experimental exclusion limits, at the 95% CL, are presented below, separately for the

scans (A), (B), and (C). In each scan the total predicted number of events from all search

channels is calculated using cross-sections, branching ratios, luminosities and search e�ciencies

for all di�erent MSSM parameter sets. From this expected signal prediction and the number of

observed events a con�dence level is calculated according to the prescription in Section 5. For

scans (A) and (B) the 99% CL exclusion is also shown, to indicate the sensitivity to the chosen

exclusion con�dence level. The results are presented for each scan in four �gures: (a) in the

(mh, mA) plane for tan � > 1, (b) in the same plane for tan� > 0:7, (c) in the (mh, tan �) plane,

and (d) in the (mA, tan�) plane. For scans (A) and (B) the lower limits for the minimal and

maximal mixing cases di�er by only small amounts and only the weaker of the two exclusion

limits is given. The theoretically accessible area corresponds to the larger one, for maximal

stop mixing. The theoretically inaccessible areas are shown in the �gures as speckled.

The results for scan (A) are shown in Fig. 11. The structure near mh = 60 GeV is caused

by the candidate in the analysis for the LEP1 leptonic channel at mh = 61:2 GeV. From

Fig. 11(a), for tan � > 1, 95% CL lower limits can be obtained for mh > 59:0 GeV and

mA > 59:5 GeV. When the tan � range is enlarged to tan � > 0:7 (Fig. 11(b)), the lower limit

of mh is not a�ected, but no lower limit on mA can be given. Figures 11(a) and (b) show the

region mA > 5 GeV. For mA < 5 GeV and mh > 43 GeV the value of sin2(� � �) is always
very close to unity in scan (A). Therefore, in this region only the Z0h0 production process is
relevant for the exclusion, and the limit depends neither on mA nor on the A0 decay modes.

Hence, the limit for mh at mA = 5 GeV is also valid for mA < 5 GeV. Figure 11(c) shows
the projection onto the (mh, tan�) plane. Large values of tan � correspond to mh�mA. In
the (mA, tan �) projection of Fig. 11(d) the strongest limit for mA of 89.0 GeV at 95% CL is
obtained at tan ��1.4. However, at 99% CL this limit drops considerably.

Figure 12 shows the results for scan (B). Di�erences with respect to scan (A) are due to

the possibility of having lower m~t values. This leads in general to modi�ed couplings and in
particular, for some parameter sets, to a strongly enhanced branching ratio for h0!gg. The
wider range of m~t in conjunction with mt = 185 GeV leads to larger theoretically accessible
regions. Despite these modi�cations, many essential features such as the limit for mh at very
high mA, the limits for mh and mA near mh = mA and the absolute lower limit on mh remain

unchanged. The absolute lower limit on mA for scan (B) is mA > 23:0 GeV at 95% CL, but
the range 26:5 < mA < 55:0 GeV is excluded at 95% CL. The small unexcluded \island" at

60:5 < mh < 61:5 GeV and 23:0 < mA < 26:5 GeV is due to the simultaneous e�ect of a

large branching ratio for h0!A0A0 and the LEP1 leptonic channel candidate. Because the
theoretically allowed region at low mA and high mh is increased in scan (B) with respect to
that in scan (A), there is an additional unexcluded triangular region near mh = 68 GeV with

a minimum value at mA = 55:0 GeV at 95% CL.

For the results of scan (C), shown in Fig. 13, all exclusions are at 95% CL. For this scan
the exclusion regions are shown for three cases: Without the application of any CCB criterion

in black, for the CCB criterion of Eq. 5 with x = 7:5 in black and dark grey, and with x = 3 in
black, dark grey and light grey. The situation changes dramatically with respect to scans (A)

and (B) due to the appearance of unexcluded parameter sets with small values of mh. These

points are characterised by a large mass di�erence mA �mh and small sin2(� � �), hence the
h0Z0 production is suppressed (cf. Eq. (1)). The h0A0 production is kinematically allowed at

LEP2 energies in most of the a�ected region, but the cross-section is small, and the current
integrated luminosity is not su�cient to exclude these parameter sets. The existence of such

parameter sets has already been pointed out in [55].
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Figure 11: The MSSM exclusion for scan (A) described in the text of Section 7. Excluded

regions are shown for (a) the (mh, mA) plane for tan � > 1, (b) the (mh, mA) plane for

tan � > 0:7, (c) the (mh, tan�) plane, and (d) the (mA, tan �) plane. The black areas are

excluded at 99% CL. The black plus the dark grey areas are excluded at 95% CL. The speckled

areas in (a) and (b) are theoretically inaccessible.

32



����
����
����
����

25

50

75

100

125

40 50 60 70 80

mh (GeV)

m
A

 (
G

eV
)

Excluded

OPAL 

scan (B)

tanβ>1

mh = 2 mA

mh
 = mA

Theoretically

inaccessible

(a)

5

OPAL 



tanβ>0.7

��
��
��

25

50

75

100

125

40 50 60 70 80

 = mA

mh (GeV)

m
A

 (
G

eV
)

Excluded
 = 2 mAmh

mh

(b)

5

OPAL

h

1

10

40 50 60 70 80 90

Excluded

m  (GeV)

ta
n 

β

4

40

0.7

(c)

95% CL+
99% CL

1

10

40 50 60 70 80 90

OPAL

Excluded

mA (GeV)

ta
n 

β

4

40

0.7

(d)

Figure 12: The MSSM exclusion for the scan (B) described in the text of Section 7. Excluded

regions are shown for (a) the (mh, mA) plane for tan � > 1, (b) the (mh, mA) plane for

tan � > 0:7, (c) the (mh, tan�) plane, and (d) the (mA, tan �) plane. The black areas are

excluded at 99% CL. The black plus the dark grey areas are excluded at 95% CL. The speckled

areas in (a) and (b) are theoretically inaccessible.
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Figure 13: The MSSM exclusion for scan (C) described in the text of Section 7. Excluded

regions are shown for (a) the (mh, mA) plane for tan � > 1, (b) the (mh, mA) plane for

tan � > 0:7, (c) the (mh, tan �) plane, and (d) the (mA, tan �) plane. All exclusion limits are

at 95% CL. The black areas are excluded without applying any CCB criterion. When the CCB

criterion of Eq. 5 is applied with x = 7:5 the dark grey areas are excluded in addition. For

this CCB criterion with x = 3, the black, dark grey and light grey areas are all excluded. The

speckled areas in (a), (b) and (c) are theoretically inaccessible.
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If no CCB criterion is applied (the black area only is excluded), no absolute lower limit

for mh can be given (Fig. 13(a) and (b)). For the CCB criterion applied with x = 7:5, the

unexcluded area near mh = 5 GeV is due to the relatively weak limit on sin2(� � �) for this

mass range, as shown in Fig. 8. For x = 3, the lower limit on mh is 50.0 GeV at 95% CL

for mA > 5 GeV in Fig. 13(a), and it can be seen in Fig. 13(c) that this limit corresponds to

tan � = 50. Such high values of tan� always result in mh�mA when the soft SUSY-breaking

masses are high (> 1 TeV.) However, as can be seen from the �gures, in a general scan large

values of tan � are not excluded for large mass di�erences jmA�mhj, due to large higher-order

corrections involving a low-mass stop. For mA < 5 GeV the model-independent limit applies (cf.

Fig. 10). This leads, for the x = 3 CCB criterion, to mh > 43:0 GeV at 95% CL. Figure 13(c)

shows that there is no exclusion at all at 95% CL in the (mh, tan �) plane for the general scan

if no CCB criterion is applied. This is due to the fact that for any (mh, tan �) combination the

other parameters can be chosen to simultaneously generate a large mA and a small sin2(� � �).

However, many of these speci�c parameter sets are discarded by applying a CCB criterion. In

contrast, Fig. 13(d), which shows the (mA; tan �) projection, is only marginally di�erent from

Fig. 11(d) and 12(d) of scans (A) and (B). The exclusion limits on mA are only slightly a�ected.

The results in this section suggest that the MSSM parameter bounds, and in particular the

limit on mh, derived from the benchmark scan (A) and minimal/maximal mixing scan (B) are
not valid when a more general scan (C) of the parameter space is performed.

8 Summary

Searches for neutral Higgs bosons presented here have not revealed any signi�cant excess be-
yond the background expectation from SM processes. Evidence for both the e+e�!h0Z0 and

e+e�!h0A0 production processes has been searched for, allowing also for the decay h0!A0A0,
when kinematically possible. Limits on these processes have been placed in a model-independent
manner and within the framework of the 2HDM and the MSSM. These new limits substantially
improve those previously published by OPAL.

In the model-independent approach, limits have been placed on the product of cross-section
and branching ratio for h0Z0 production assuming SM branching ratios and fully hadronic �nal

states, and for h0A0 production with b�bb�b and �+��q�q �nal states.

In the 2HDM interpretation, limits have been placed in the (mh;mA) plane both for the
case of any value of tan� and for that of tan � > 1. Along the h0-A0 mass diagonal 95%
CL lower limits are set at mh =mA > 41:0 GeV, independently of the value of tan� and at

mh=mA > 56:0 GeV for tan� > 1.

In the MSSM, three di�erent scans over the model parameters have been performed. For the
simplest, benchmark scan, in which all parameters except mA and tan � are �xed, a lower limit

at 95% CL on mh > 59:0 GeV and mA > 59:5 GeV is derived for tan� > 1. For tan� > 0:7,
the limit on mh remains at 59.0 GeV, but no limit for mA is obtained.

For the MSSM parameter scan with minimal and maximal ~t mixing, where only the � and

A parameters are constrained and all other parameters are left free, the 95% CL excluded area
has slightly less extent than for the benchmark scan.

In the general scan of the MSSM parameter space, parameter sets arise that cannot be

excluded at 95% CL. All of these correspond to small, but non-negligible, cross-sections for the

process e+e�!h0A0, and will either be observed or excluded as the integrated luminosity of the

data increases. A fraction of those parameter sets can be excluded if requirements are made to

avoid charge- and colour-breaking vacua.
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