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ABSTRACT
{1 We present a phenomenological discussion of the
) properties of the AR system from the reaction 7 p - An,
Asymmetries in angular distributions and A(A) polarizations
are explained., We only use well-established symmetries
3 and the general laws of quantum mechanics.
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INTRODUCTION

This paper deals with an analysis of the AR system from the reaction
- - 1
T p ~> AAn at 12 GeV/c° This experiment has recently been terminated ),

and is a byproduct of the experiment on the K3K9 mass spectrumz) carried

out by the CERN-ETH group.

The paper is an extension of the experimental paper published by the
group1). It will mainly deal with an extensive discussion of the experi-~
mental results from a phenomenological point of view. Since the .polarization
of the A and A can be easily measured by the observation of their weak .de~
cay, a maximum of information on the AR system is obtained. This is .there-
fore a situation where we may get a good insight and a quite complete -
qualitative picture of the system, without using any model of strong inter-
action, applying only the well~established invariance principles and the
general laws of quantum mechanics., We shall see that ihis is, at least-in
this case, already a very powerful tool for a qualitative analysis, This

is also to a certain extent the'justification of this paper.

EXPERIMENTAL SITUATION

In this first part we would like to discuss the experimental situation
for the reaction nrp » nAk., We do not want to describe the experimental
set-up and the details of the experimental analysis anymore, since this
has been done elsewhere1—3). We only intend to give a short summary of the
results obtained in this experiment. Later, it will be our aim to glve an
interpretation of these results in terms of well—establlshed laws of quantum

mechanics.

First information on this reaction is given by a tp A plot

(t ) is the squared momentum transfer from the proton to the A(R)., This
plot 1s given in Fig. 1 for the events corrected for the detection: ef-
ficiency in the spark chamber., The events occur in two, clearly separated,
regions; namely, for small t (measured by the distance from the base of
the "triangle") and small t pA® No events exist for small t pi* These
regions define obviously different production mechanisms for ‘the AA.system.
In the first region (tpn small) we have the events with local baryon num-
ber and strangeness conservation (Fig. 2a). For the events in the second

region (tpA.small) only the baryon-number is locally conserved (Fig. 2b).




The third region would correspond to the exchange of a very complicated
baryonic system. Comparing the number of points in these three regions
we observe a nice example of the hierarchy of cross-sections related to

the "exchanged quantum numbers, -

In the following we shall restrict ourselves to the discussion of
‘the events in the first region; that is, AR events produced with a mechanism “
which is symbolized in Fig 2a. Let us next look at the AA mass distribution
‘of these events. This mass spectrum (Fig. 3) shows that these AR events
follow essentially a phase-space distribution without any evidence for
resonance production. We therefore conclude that this AR system is not
(except for very small masses) in a well-defined quantum state ]JMH) (
(1 means parity), but is a complicated mixture of such states with different
angular momenta and parities, Our main goal is to decide which states are

present and to describe their interference effects.

Hence, we lbok at the angular correlations in the c.m. frame of the
AR system. The conventions for the angles are given in Fig., 4. In Fig. 5
we show the experimental distributions in cos d and ¢. The first distri-

bution is reproduced by a polynomial
I(cos ¢#) = ag + a; cos & + az cos® &, (1)

where ap, = (normalized) 1, aj; = 0,97 * 0,32, and az = 2.59 * 0,95. An
F-test on higher powers shows that these terms are not significant. Hence,
‘we may already conclude that the AR system contains mainly states with (

orbital angular momenta L = O and 1, higher values of L being unlikély.

The ¢ distribution (essentially the Treiman-Yang distribution) is

represented by
I(¢) = by + by cos ¢ + bz cos 2¢ , - (2)

- where by = (normalized)1, b; = 0.48 * 0.20, and bz = 0.33 * 0,18. Higher
order terms are again not significant. We shall show later that this
_¢-distribution is consistent with the conclusions drawn from the cos ¢
”bdistribution. In particular, if a; # O then by # 0 (except in the case of

an accident, of course).
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The last experimental information is the polarization of the A and
A. Since we observe their decay in the spark chamber, the decay distri-

bution determines the polarization of the A and A. Namely

%5 for A (3)

dN ) =1+ a P cos © o
a = ~% for 4 .

d(cos ©

@ is the angle between the momentum of the proton (antiproton) and the

axis with respect to which we measure the polarization. The coordinate
system used is shown in Fig. 6. We obtain the following values for the

polarizations.

A : P ~0.14 = 0,32

11

g = -0.10£0.32, P =-0.15+0.32, P,

-0,84 £ 0.32 , Py -0.40 * 0,32 , Px = -0,21 * 0.32

A : P
z

]
I

We observe that the y- and x-components of the polarization are consistent
with zero, If we admit that the difference in PZ for the A and & (a two
standard deviation effect) is not due to a statistical fluctuation, we

have to explain this asymmetry in polarization,

THE_QUANTUM_ NUMBERS OF THE AA-SYSTEM

We want to describe this system in terms of eigenstates of C (charge
conjugation) and II (parity). We prefer this representation to the helicity
representation usually used, in order to keep track of the C-eigenvalues
through the whole calculation. In the following this will be quite impor-

tant. Let us label the state in the c.m. system as follows:

lp,J,M; Es),

where p is the momentum of the particles in the c.m, system (pA = —pK);
J,M is the total angular momentum and its projection; { is the orbital
angular momentum; and s the total spin of the system. The corresponding

wave function is then given by
tig = Mlem sp> ulVeve Yevd Y[(9,0)1, () 0 X, - (4)

vy vz are the projections of the A and i spins; X1(X2) are the Pauli

spinors of the A(A). Since the AA system may be an eigenstate of C, the
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generalized Pauli principle applies. Assume that particle and antiparticle

are two different states of the same particle., Any fermion-antifermion

system must be antisymmetric under exchange of the two particles.

Particles and antiparticles have the same space-time properties. C

therefore commutes with the generators of the Poincaré group

[C,PN] =0, [C’JIIV] =0
as well as _ .
» [c,n] =0, [C,T]=0 T : time reversal.
However, C anticommutes with charge- and baryon number-operators
f{cQ} =0, {CB} =0.
The two different states of the same particle (describing particle and
antiparticle) differ therefore in the sign of q and b.

Thus the generalized Pauli principle is fulfilled if
| -, 120
CA(o,r) |AAD> = (-1)°7|aRD>, (5)

where o = % is ihe spin of the A's. A(o,r) is an operator which ex-

changes spin and coordinates. It follows from (4) that

-2
A(G;I‘)‘/’M = (-1 ){f-i-s aéb'AK s
since

Y? - (—1)£Yi for exchange of coordinates
. §-01~02
Ssuloyviozvay » (-1) {sit|o2vaoive) for exchange of spins.

Hence we obtain

Cppz = g (6)

If |AR> is an eigenstate of C it is also an eigenstate of A(o,r). This
follows from Eq. (5). This situation occurs, however, only if the A énd
Z have the same polarization. The G-parity is defined by G = C-eiﬂTz.

Since the AR System has isospin zero, it follows trivially that CAK=:GAI'
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The parity is clearly given by
mlp,3,M; ¢,8p = n(&)n(d) (-1)¢|p, 3,15 £ s
where 7n are the intrinsic parities, Az has therefore the pafity
I=-(-1)¢ . y N ¢ )
Hence it'foliows‘that CIl is determined by the-total‘spin s of the system

,CWM=(4fﬂ%3 '  ‘,tei-:f&

" We now give a table of the quantum numbers of the loﬁest AR states in

spectroscopic: notation

1So‘ 381 1P1 BPO 3P1 3P2
L 0 0 1 -1 1
s 0 0 1 1
J 0 1 1 0 1 2
II - - + + + +.
C + - - { +' | +’t
o - e - e

It would now be easy to transform from this spectroscopic notation to’ the

helicity representation by means of the transformation matrix =’

{IMes | IMA A2 = (&ﬂ)‘/z '<eo sh ]I <oy ozxzyl;x}‘,"

2J+ 1
where A = A - A2, 04 = 02 = 1/2

and s =0, 1.

However, we have already mentioned the reason why we want to keep:a nota-

tion in terms of elgenstates of C, I, and CIL

Let us now draw a few qualltatlve conc1u51ons concernlng the produc—

tion process of this AA system. We assume a 7 exchange graph which domi-

nates the production., In this case, the upper vertex:in Fig. 2a represents

a reaction such as 7 7 » AR with one pion off the mass shell. Since

wa = +1, the AR system has to be in a state with G = CAI +;: Together

w1th parlty conservatlon, our table then gives a selectlon of trlplet states
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with positive parity and even angular momenta. Within this production
mechanism, the quanlum numbers of the AR system are thercfore restricted
to the sequence '
[c ++ ++ ++
J7V 0, 2, 4, ...

The consequences of such a restriction are the following:

i) The .cos, ¢ distribution is symmetric even in the case of interferences

between different states.

ii) If we neglect absorption effects, the Treiman-Yang angle has an iso-
tropic distribution,.
iii) Since the AR system is produced in an eigenstate of C, the polariza-

tions of the A and A have to be equal.

Neither of these criteria are tulfilled experimentally. We therefore con-

clude that we have to deal with a complicated production mechanism produc-

ing our system in a C = +1, as well as ina C = -1 state.

THE SPIN DENSITY MATRIX OF THE SYSTEM

In order.to obtain some insight in the spin structure of the AR

system, we construct its spin density matrix. Let [T be the density

_ matrix:for the prpduction of a Aﬂ system in a well-defined J-state. The

density matrix for the system after an eventual final-state interaction

is then given by

‘ \ % I8t
-p=Z $pp (MEs) ps $pq (M'els?) .
MM
ge!
ss’

Explicitly we get according to Eq. (4) (see also Ref. 4)

<@1V21P|V4V§> = z: A Tes T?:S: Cspt| Yovs Vo) <ot u! | Vevi Vevsy <M|tmsp)

ee!
ss’/ , -
<Mt e 'mls !> x Y?(Q) Y?,(Q) . (9)

‘The angular distribution is now obtained by working out the trace with

respect to both spin variables. We also use the following property of the
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spheric functions
L+t

Yp(Q) Y () _ f2t)(at7+1) > ==

e L=[e-¢" | 2L+
x {ot'o|Loy <£m,£’-m’lLM>Y¥(Q) .

Furthermore,_wevobserve that if we sum over both spin variables we get no
contribution of the terms with S # S/. This is due to the orthogonality
of the Clebsch-Gordan

<éu|7%v1?§vé> <é'#'ljzv1ygvé>’” ass’ 8#

Fi -
u
VeV2

The angular distribution has therefore no contribution from interferences

between states with different spin (no triplet-singlet interference).

Hence we finally get for the angular distribution

I(Q)

Tri2 <@1V21PIV;V2>

Z Z Pm TZS T;,k's <S,ul1/2v1 y2v2> <Sll' lyzlh 1/2v2> X
MM/ ViPa |
ge! :
x <M |emsp> <MY e rmisp> x J2e+1) (267 +1) Z :

Jhm T LT

x <Lot’o|Lo> <Em,t’-m’ |LM> Y%(Q) . (10)

Due to the fifth Clebsch-Gordan in Eq. (10), the coefficient of Y% is zero
if £+£'+L is odd. If { and ¢’ are both even or odd, L has to be even.
This therefore gives a symmetric contribution to the angular distribution.
Since S = 8/, this corresponds to the interference of two states with the
same J and the same charge conjugation. If, on the contrary, { is even
(odd) and ¢’ is odd (even), L has to be odd, and we therefore obtain an
asymmetric contribution to the angular distribution. According to our
table of quantum numbers, this corresponds to én'interference of states

with different charge conjugation C.

Equation (10) is essentially equivalent to Eqs. (1) and (2) if only
the orbital angular momenta £ = 0,1 are present. In Eq. (10) ‘we have also

S | . o . Lo .
terms such as Y7 ~ sin ¢ which, however, do not seem to be significant in
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the experimental distribution. We also observe that the presence of a -
cos ¢ term (C = *1 interference) implies automatically a cos ¢ term in
the Treiman-Yang distribution. Our angular correlations are therefore

consistent with the qualitative theoretical picture described above,

Let us now discuss the polarization. " The first question which
arises is, whether thlS C = *1 interference is also capable of explaining

‘the polarlzatlon.

Hence we look at the separate spin density matrix of the A and A: .

<y1|pAlv{>.= Trolvive|p|vivey ) (11a)
<v2|pK]v£> = Tr1<@1vzlp]viv§> - - | (11b)

The polarizations for each éolid—angle interval are then given by
I(Q)?A = Try (<y1]pA|v:> - 3) (12a)
1(0)B

Tra (<VzlPKIV2> . -&)) (12b)

If we work out the traces (11a) and (11b) with the help of the represen-

tation (10) we reallze that
s loylvh> = <?alp11vé> if S =87,

From this follows

;o By=PFz. . - (13)
'We conc lude, therefore, that the direct terms and the 1nterferences v
! So; p,) and (381, 3P3) which can already explain the asymmetry in

I(Q) do not g1ve any asymmetry in polarlzatlon

Indeed; if we remember Eq.-(8) and s = s’, we see that we only deal
with interferences of states with equal CII quantum number. That is, even
if we include these interferences we get a final state which is an eigen-
state of CH The polarlzatlons have therefore to be equal. In order to
aexplaln the asymmetrlc polarlzatlon,.we have therefore to look also for

"ulnterferences w1th dlfferent (1 quantum numbers _that is, states with
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different total spin. If we measure polarization, triplet and singlet
terms may interfere, and <@1[pA|v§> and <?2Ipllv£> can have contributions

from s £ s’ as can be seen in calculating the traces (11a) and (11b).

The interference ('P,, °Py) that is between the states |1M10> and
]1M11> gives, e.g. e

<@1IPAIV{>>= -<?2|Rﬁl?£>
leading to the polarizations

B, = B -

These are, however, interferences between states with different . They

give a contribution te the polarization which, according to Eq.-(9), is

proportional to

Y(Q)Y (o) Nz 's
[o!

££’8 ’c

Remember that we have only measured the polarlzatlon averaged over the

angular distribution. This interference therefore g1ves no contrlbutlon

" to our polarization. The same argument also applles, of course, to the

interferences leadlng to equal polarlzatlon of A and I

We have therefore to conclude that the asymmetry in the integrated

" polarization comes from interferences between states with different total

angular momenta (J = J’) and opposite CIl, but equal orbital angular

momenta (£ = £’)., These terms are, for example,
('S0, 384) , (P4, ’Po) .
These interferences give us finally
B, >=<B:>. )

Together with the parallel contributions from the non-interfering terms,
any configuration is possible, depending on the production amplitudes for
the different states.

Finally, we should like to point out that the treatment of inter-

ferences between states with different total angular momenta is outside
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the framework of the density matrix defined in Eq. (9). A generalization
of the 'density matrix and a methad of treating those problems formally has
beeh'proposed in Ref, 5. '

CONCLUSIONS -

We have selected from all experimental events of T p » Aln the subset
with low momentum transfer from protonbto neutron. Those events are
probably all produced with the same production mechanism. We have not
intended to explore this mechanism. Our main interest was to explain the
observed features of the AA system (angular correlation and polarization)
in a purely phenomenological way using only well-established symmetry laws
of quantum mechanics. The asymmetry in the cos ¢ distribution and the
behaviour of the ¢ distribution could be directly read off from the spin
density matrix of the AA system. We can interpret this result as a
direct consequence of the interference between the C=+1 and C = -1 part

of the AA system. The interpretation of the asymmetry in the integrated

polarization was slightly more painful. It must come from an interference

‘between stéfés'with opposite CII, unequal total angular momenta but equal

‘orbital angular moménta.‘ From this we conclude that the structure of the

AR system produced in this reaction 7 p > Aln is as complicated as it can
be. The only simpiification comes from the fact that no high angular

momenta are present. However, this is probably only due to the high

" “threshold ~of this reaction.
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Figure captions

Fig. 1

Fig. 2

" Fig. 3

Fig. 4

Fig. 5

Fig. 6

~ Conventions for the angles in the "decay" distribution

Momentum transfer plot for the 12 GeV/c data (79 ‘events),

density corrected for detection efflclency.

Graphs indicating three p0551b1e production mechanisms of a

AR pair:

a) local strangeness and baryon number conservation;

b) local baryon number_conservation only;

c) exchapge of a complicated baryonic strahge system.

Invariant mass diStributioh for eVents{dominated_by graph 2a.

'(ﬁ-normal to the production plane, pﬂ_ls the dlrectlon of the

incoming plon)

Angular distribution of AA in their c.m. system for 12 GeV/c
events selected for t(p » n) > -2.5 (GeV/c)?:
a) Jackson angle distribution;

b) Treiman-Yang angular distribution.

Coordinate frame for the definition of the polarizations, -
z is parallel to Bﬂ X BA' The A and A are transformed to

rest along the y-axis in that system.
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