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ABSTRACT

We present a study of constraints on heli-
city amplitudes when the external masses have
arbitrary spins. The reaction J1 N-»@N is
studied in detail and we find two types of

"conspiracy relations". The first one occurs
at t = O when the masses of J and € are
different; it is different from the Gribov—

Volkov type as it vanishes when the masses of

JU and G are equal. The Gribov—Volkov type
of relations is very different from the prece-
ding one and occurs when the masses of 7T and
@ are the same. We show how all these rela-
tions can be found without explicit reference
to the dnvariant amplitudes and argue that
generally all conspiracy relations can be ob-—
tained directly from the Trueman-Wick crossing
relation between helicity amplitudes.
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INTRODUCTION
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Due to the great utility of the Regge pole model, there has for a
time been a great interest in the reggeizing and analytical continuation of
helicity amplitudes corresponding to external particles with arbitrary
spins. In a now classical paper, Wang 1) has given a set of prescriptions
for constructing helicity amplitudes free of kinematical singularities.
There has, however, been scme uneasiness about how to tackle problems
leading to the so—-called conspiracy relations. These are linear combina-
tions of helicity amplitudes that must vanish at certain values of the
kinematical variables of the process studied. This vanishing is necessary
to avoid constructing reggeized amplitudes that violate Mandelstam analy-

ticity.

We decided to treat a concrete sufficiently complicated and simple
problem in detail to get an understanding of the different mechanisms that
can lead one to construct models with wrong analytical properties. The
example that we choose is JT N—+€ N : in addition to reasonable high
spins, it also contains three unequal masses., Still it is simpler to
handle and we believe that what we have learnt should make work easier for
those who want to reggeize high spin reactions. The plan of the paper is
then to start from the specific example N N~9€ N that we treat in the
most pedestrian manner by calculating all helicity amplitudes in terms of
the Mandelstam invariant functions (Section II)° We then find, (Section III)
two classes of congtraints dependent on whether or not the J»t and the e

messes are equal or not.

Next, we show how these constraints are obtained from the crossing
relations of Trueman and Wick (Section IV). 1In Section V we then show how

one can, from the crossing matrix, tackle the general spin probleu.



II. GENERALITIES FOR _Jt N— ON SCATTERING AMPLITUDE

a) Kinematics in the t channel

The general structure of the scaﬁtering amplitﬁdé fbr the process
YlN—+€ N is well known, because of its analogy with photoproduction or
electroproductiqn 2 . Nevertheless, our results depend so critically upon
the kinematics, that to make our derivation as clear as possible, we shall
défine everithing we need. TIn order to make the transposition to photo-
pfoduétion tfivial, we take the kinematics of the process e N—-JUN,

Whichvac¢QQnté fof_the same thing in what we intend to do.

We shall call k, d, Py and p2,7 respectively the four-momenta of

the 9 , JL and nucleons, and m, M and M their masses :

t .-
‘ Vo9

Then, in the centre-of-mass of the 1 ‘channel, we write the four-vectors

as
— P

ke (B Ro) 1 q=(Row) ) B=(F-E) 5 R= (7, E)

where s 5
[T{ | = \/(t—(mﬂ,«.)z)(t -(hq—,y)l):_ k.= t+ M=
< VE - 2Ve

= 4 t—4—P‘|Z' o :E - _\/g
r < 4 £
_l;%z R p (osB weDe = Y=5 = (U-$) Ve _

i P : 4P \E-gmE\TE-tm O (E-Gn-pl) (1)
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All these expressions are assumed to hold for t 4M29 with positive

determinatioh for the square roots. In the following we shall perform
an analytic continuation to negative t <following a path in the upper

half plane of the complex % plané°

b) Invariant amplitudes

We expand the scattering amplitude on the eight following invariants
;- <
T= U(Fz)(_z- St B‘L)U(Pq)
SRS N3 85.—
5= s he
S3

,(2)

Lis R.€

Su=¥s %€

and, as shown by Ball 2>, the functions Bi are free of kinematical sin-—

gularities, and will be postulated to satisfy the Mandelstam representation

¢) Helicity amplitudes

As usual we define helicity amplitudes f in the t channel free

Q

of kinematical singularities in s by

AR _A-ul
;f N [4 beosBe] ¥ Ja-w@sBe| ¥ ]C ,
cdab 2 ( 2 i cdab (3)

with X = a-b and M = c-d, and helicity amplitudes with natural or

unnatural parity fi by

—

— 4 - o .
](cdag = )(cdab b ‘F~C‘d ab (4)
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After some algebraic manipulations, one obtains the helicity ampli-

tudes in terms of the invariant functions Bi°
fos
=+
£04 =

fu

4%4 =

The result is

i
‘f\l

= é_%&r[s<54+6,,)-mm(r35+351 + RoBg |

o
¥ 2V2 iR £ R,
WY 10 = 7 ™M

__2W2 LPLB4+(k P)(Bs+ BG)]

- '/z,"’ M

4 ) = QLVZ L F' ([35 + Em + P1‘3?.] ~ o

w107 Ty ()
= _F-\ - - ho ‘«0584,-" +~2Lh(.(k P)Bg-—E (Bq '%Z’)"‘

2k °° MVZ

+M(Bys RE(Bs-RY)) |

7+ T+ - - 2
'9 10 {'1/2_-»/300 = - i—:-:fL koBzﬁ l?o(T’iF)(Bs* %634"2 E(Bsﬁg‘ﬂ

kinematical singularities and constraints among helicity amplitudes.

These expressions contain all information of interest concerning the
We

shall now focus our attention on this.

III. CONSTRAINTS AMONG HELICITY AMPLITUDES

"conspiracy relations" among the amplitudes

B.!'s
i
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From Eq. (5) one now sees that for t going to zero, one gets two
f, requiring only that the

are finite at this point 3),



This may be shown by inverting the preceding relations, or, more
simply, by looking at the limit when t->0" of the helicity amplitudes.

One obtains _
Pow [0 2 Oy [M(Bs+By)-By] + OWE)
b—’«*0+ [oX] \/E

fAmn ?_“’ - ﬁlbﬂzwl“z)[l\’\(gg+ Bg)" 83] +0 (\/-f:‘-)
t—>o" M VE

Then

[l

Lim [
t-= ot

ooy Bl - 0 WE) (6)

and by a similar proccedure

Lom ["«};n‘\; - 2-§:o.§]: OC\/I)
t= ot

(7)

The two remaining amplitudes ?81 and 5;1 go to a constant.

One has now a strange situation : if we put the two boson masses
equal and go to the limit t=0, then the two relations vanish and one
obtains a third "conspiracy relation™ which has nothing to do with the two

preceding ones.

That relations (6) and (7) vanish is most easily seen in the follow-
ing way. We define helicity amplitudes Fi* free of kinematical singula-
J
rities by

Fo1= %t: 1‘04— 41 =

el
-
X+

~|

]

T +
Foo= RE )Loo F, \'/;_;t- 7610

S
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then relation (6) becomes

(£ om-p F — 0 |
(»t'cM By 44] (8.,a)

and relation (7)

[]\’\(an- ¥) Fio 4 Foo|= O (-32)
A

(8.b)
For m=M, this gives no relation.
Directly from expressions (5) one obtains
‘)(10—4 >0 ;\:—'}ZVZ[B#+Z%_§(BS+&€)]
foh =0 f;lf_pzi/i)b['\’”gsv“%a)- Bs] 9)
fio—0 §0‘0a~§[%—§—5‘58+”‘3a]

where PL =m and ?: = 2M2+2P¢2,

It is clear that now the three helicity flip amplitudes vanish.

But the three remaining non-flip amplitudes are not independent. In fact,

they satisfy :
- _ 525 M ——‘] > O
o [444 - ZL:E;» {r’” +V2 7L°°, = (10)

and this relation has nothing to -do with (6) and (7).

The reason why these two sets of constraints are so different, and
why there cannot be a continuation from one set to the other one is simply
*due to the fact that : '

Com L ( ».ti_"ﬂ.\z.:."l’é)# Lim i Ro

g - — .
Wi=>m; t=o Ve t>o =My
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the left—hand side is infinite, the right-hand side is zsro.
To complete this discussion, let us notice that :

1) when all four masses are equal, then the constraint equation

(10) survives for +t-0;

. . . XS

2) when all four masses are different, as for instance in N N—-X Z
. < 0 . . .

or in A p=Ffn (if one takes into account the electromagnetic

mass difference of p and n) then the helicity amplitudes become

a2ll independent for +t=0. There is no longer any constraint of
types (6). (7) or (10).

In order to prove this last point, which looks at first sight rather

astonishing, we should write down explicitly the relations between helicity

“amplitudes and invariant functions in the four unequal mass case. This we

Iv,

shall not do, because in Section V we shall prove it in a more direct and
more general way. But in a very intuitive way, let us notice that the
factor E which represents the nucleon energy is zero when t—=0, Dbecause
E= V?/Z, but tends to infinity when the two fermions have different
masses,; as E1 = ((t+m§—mg),/(2 V%)), (even if the mass difference is
1071 ev 1),

We now try to get some insight into the various types of congtraints,
and we first show the connsction between our constraints and the Gribov—

Volkov 4) type of constraints.

CONSTRAINTS IN THE FORWARD DIRECTION
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The first "conspiracy relation" historically found is the well-
known relation of Gribov and Volkov. This relation was found in NN
scattering, that is, in the four equal mass case, for t going to zero,
But the important point to notice is that, in that ease, t=0 corresponds

to forward scattering in the s channel. 1In fact



2t

CosPs= A4 + e

Gribov and Volkov found their "conspiracy relation" by inverting the
relation between helicity amplitudes in the 1t channel and invariant
functions, requiring the latter to be regular around t=0, and they gave

a very natural explanation of their relation, by noticing that for coses=+19

. among the five independent amplitudes in the s channel, only three survive,
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namely those with helicity non flip. Then, because the number of independent
amplitudes should be the same at that point in all three channels, one should
get two relations between helicity amplitudes in the t channel. One of
these relations is the conspiracy relation, the other one is the vanishing

of one amplitude.

A11 this has been explicitly demonstrated by Abers and Teplitz 5),

6) .

using the crossing relation of Trueman and Wick ~7.:

rA— }‘,)/L' s

Because of formula (3), which is a consequence of total angular momentum

conservation, f)w’(coses=+1) =0 if AN #M.

Tn the case of NN scattering, there are two helicity flip ampli-

tudes f1 1 and fi_i_ll° The vanishing of fihl_ii leads to the G.V.
2 2 2 22 2 2 2
relation
& -t t t
§++++ - {'«H—— B 7C+-*~ + .)C+-+ =0 s

The vanishing of f111

leads to nothing new.
2 .

1
2

All this is well'known; but we have recalled it in order to give

some insight into the following.



The conclusion of this discussion is that the constraints between
helicity amplitudes fJc in the +t channel, through the T.W. crossing
relation, due to the vanishing of the helicity flip amplitudes % for
cos@s=+1, seem to be a very general property which should be met in all
scattering processes a+b—c+d. In the equal mass case cos@s=+1 corres—
ponds to t=0. But in the unequal mass case cos@s=+1 leads to a
relation between s and t, s=s(t). Thus in the unequal mass case the
helicity amplitudes of the + channel should satisfy a number of relations
along a curve s=g(t). We shall show that these relations are satisfied

in a trivial manner.

We return to our J{ N»»FiN problem, and note that t=0 does not
correspond to forward direction in the s channel. But nevertheless we
found a constraint at t=0, and it is apparent in Eqg. (5) that there is
no other singular point except for p=0 or k=0. The assumed constraint

for coses=+1 seemsg to be rather hidden in our case.

The answer is that there is no constraint in the unegqual mags case

for cosBg=+1.
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In the J{ N-»PN problem we have six independeht hélicity ampli—

tudes in the s chaﬂnel

T SN T foin = fo
Yy g'/!’/z oYy 31 = Ta-pnotn “h- T To o'
3 s s s s s
_ C (
—g—‘/z N & wo-ro Ty oy = f’l‘}’;_ O-% )(:‘,/z, o = %O Vo O - %

For coses=+1 only f%% and f_%_%. are non—-zero. Thus we expect
four relations between helicity amplitudes in the +t channel. 1In fact,
there are four relations, but they are completely trivial, because in
that case cos94=+1 corresponds to cos®_ =t1, and due to the factor

4=
(1+cos©t)l)‘+H‘I/2(1—coset)'A—V‘I/2 in fﬁf‘

{:ﬂ(c@set:iﬂ:o LF XET o0



10.

Explicitly, the following helicity amplitudes vanish

t : et ‘ - b ,
o4 = g‘_'/_Lyz_lo ( 14 = ]Lyz~}/llo = {-'Yz"z 1o
| C[V\d i {iov‘z Q&SSt,:—I {'O‘C LBﬁee: +1
- | SV . +
%D-' = S""'/z."/z_l 0 4‘0: {"/1"/2.00 Yoo = 4‘/2 y, 00

‘There is no "conspiracy relation" of the Gribov-Volkov type.

On the other hand, if we make the two boson masses equal m= M ,
then cosé =+1 corresponds to b= O, and as cosé, ——(2(s—M }L)A}AM);!H
one does not find trivial zeros in f%M. Appllcatlon of the T.W. crossing

relation leads to the "conspiracy relation" of Eq,‘(10),

For example'

S @R[ swlath g - coslaade fi7 ]

) - - 1
*e_l/_[gm )—(d-{,:z{b ‘Fo: tees 2%:2(6 F/m_l ¥ S!hX(_— {'005'“)M~XB "”( COSXG“X" (12)

TR

For cosé_=+1, then X Xb )(d=m/2 and f_%1%0;09 This gives

fwm - ‘)' f_OO = O (13)
I one uses
st | T O (tzo) = 2225
= =ass4 L1 : . and AVE =
2 7[112\f11 aripe
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then Bq. (13) leads to Eq. (10)

{;a“ 2 [T e kS

4 Mp

Tet us now show how we can obtain the =0 conditions (6) and (7)
on the f;w 's when 1n¥}&, from the crossing relations, without making
reference to the invariant amplitudes {Bi} . Evidently, at t=0,
coses;£i1, and we have no zeros on the left-hand side of the crossing
relation (11)° However, the left-hand side is regular when t 1is conti~-
nued from the small negative value of % (when cos@s=+1) to t=0.
Inspection of the crossing matrix UU[K'fA' [i,we's Eqéo (42) and (432]
shows , however, that some of the elements of this are 51ngularo By looking
up which combinations of fE\'H‘ are multiplied by these singular factors,
and requesting their product to be regular, we recover Eqs. (6) ana (7).

We shall return to this in the next Section.

We have worked oui explicitly, on a specific example, namely the
U N—»f’N process, the -~ wrious mechanisms of constraints among helicity
amplitudes. We now try to generalize this to the general case for any

masses and any spins.

V. THE GENERAL PROBLEM OF CONSTRAINTS AMONG HELICITY AMPTLITUDES

Tn order to exhibit and characterize the various kinds of constraints
among helicity amplitudes, we shall need only the two following properties.
1) Bach helicity amplitude may be written

_ . Xt gl ‘ A=pl —p
Jazh:l_Afé?SE?] 2 LA;i%éEP] < M) P:-S”AOIt (14)

where f. is free of kinematical singularities in %
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2) The helicity amplitudes £° in the s channel and £ in the

t channel are related through the T.W. crossing relation

S Sa S Sc ’ bd t
c

IR‘B/b,

(15)

a) ‘The forward direction constraints

It is well known fhat the boundafy of the physical domain for
u

brst)=0

cos@§=+ﬂ,.:eosze =+1 or cos?et=+1, is given in all three channels‘by
the same-curve in the (s,t,u) plane, namely ‘
‘where

S | S L
s t)s St - S (G- i) (- e )~ £ (ma g ) (e -a ) =

If

2 22 2 2 b 2

— (m =gy ) (g g - g = iy, )

cos® =+1
S

.eﬁ
5

(16)
is the c.m. angle for the process
d+b ~ c+a.

choose it

then
There is .an ambiguity in sign in the definition of .
for simplicity to be cosd =+1
In

a+b—c+d,
implies ooset_i1, when mayfmc, Gt being the c.m. angle of
t

this kinematical gituation
S .

4/\#‘:0 CF )\—fA#O

t

TN p

cos@,. We
when cos@s=+1°

B , !
o f X-pFO
But there are exactly fhe same number of'helicity amﬁlitudes'in each channel
satisfying these relations because

. o o .
)\‘N:Aa—/\b*{/\c_—)\d)r/\d~>5'—()lt.—)\q)= )\-}A :
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We are then led to the following statement :

Ir es is the c.m. angle of the process a+b—c+d, then
cos@s=i1 implies no constraints among helicity amplitudes in the t
channel d+b—c+a, when mcyéma.

It m, = and Mg =D
leads to relations among helicity amplitudes of the Gribov-Volkov type.

then the Trueman-Wick crossing relation

b) The +t=0 constraints

A. Since all kinematical singularities in 1t of fi}k are contained

in the (1icos@s) factors, and as

(0sBs=[25t +5-52 m? + (Mg -n ) (M~ W’“d)] /Qf\b X d

with
‘5061%) = [_-S_(W\a.‘mb)al[‘&"(MQ+W\5)ZJ
Dﬁ; = [S-(mc~wd)l] [S- ((MC_+W\JI)1_]
it is clear that fir& has no pole for t=0.

B., On the other hand, one has, for example, for the angles entering

the crossing matrix

\
Sin Y, =< Ma [ dst)] /‘Z/ng Cac

with

Lae= [E-(Maimy TL = (wma- me)* ]
I§ m =1, then 81n;{a and cos)ja have a pole for +t=0, and
d}r\(X;a) has a pole of order n, with



14.

bpl s A bl 4 J=sup UALIK) T

h= =
4 < <

because ' +pl A _W lx\—Ml,l/\-"}f;l

d/\r« R N g [ Atles) wSXa] z, Ld;iﬂi)(“] PJ_ M (wAa)

where PJTM& is a Jacobi polynomial of order J-M, and M= sup(l)\l ,IM |)

Because fSM,\ should not have this pole in t;n, " it 'is necessary

that some combinations of helicity amplitudes £° go to zero as £,

Let us work out explicitly this for J7 \T-—>€1\T We express the
£ ~2130.
channel This has been given in (12) cosXc and s1n/'{ are finite

when t—-0, but Kd and 7(b are not.

hellclmy amplltude in terms of helicity amplitudes in the %

Ay = [(s+mimd)t =2 ML;_(,M?“- W‘)]/J;“v Thd
W Xd = [~ (sem-p)t ~2M (- ”t)]/Jfol Tod

Ay, = DVP S Xy = w‘/—

Doqb= -Z\/Eqs
:lpc;d :Z\/g ks

Cog= 2VEDP, = \/?V£.-4"Ml

After some algebraic manipulations, it may be shown that

P+t B 9 Ma (- m")

LA g + ) =
: 4 S ke G (t-am*) €

and (18)

A+t BI(S)
s (Xp-Ad) = ) ,l
4s R Qg (E-4MDE
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Now, when ©t—0, cos(k’d+ﬂ’b) is going to infinity like 1/t and
cos(X b—)(d) behaves as a function of s. Trom this we deduce that
COS((de+X'b)/2) and sin((?<d+;<b)/2) are going to infinity like 1//%,
with

(o> MdXe U Siu ’Xﬁ;} >

<

'.Ltftl; - < f@; v \/z (19)

These relations are exactly the same as those deduced in Eqgs. (6)
and (7), from the invariant amplitudes [the factor two in (19) is intro-
duced when one goes from the £ to the fjo One may convince oneself
that the two relations (19) are really independent, by looking at other
relations with the fs'59 where the same combinations of helicity ampli-

tudes always occur, but with different multiplicative factors.

It is remarkable to notice that if the four masses are different,
then cos}&) and oos;Xd are no longer singular for .t=0, so that there

is no constraint at this point and we make the general statement :

When the four masses of a scattering process at+b-c+d are all
different, there is no constraint among helicity amplitudes for +t=0.
There are constraints at this point only when three kinds of different
masses occur with ma;émc and m =My, and these constraints have

b
nothing to do with the forward type of constraints.
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VI. CONCLUSIONS

Tt results frdm the preceding discussion that there are'tWO types

of constraints among helicity amplitudes in the t channel :

i) the first type of constraints occurs only in reactions a+b—c+d

with pairwise equal external masses (m =1, mb:=md)9 in the

a
s channel forward direction (or backward direction), and is due

to the vanishing of helicity flip amplitudes fsz

ii) the second type of constraints occurs at those points where the

rotation matrices are infinite, i.e., when

[t- (myima)*] [t-(my-ma)-] =0

7)

Theybare uéually known as "threshold conditions", see for instance Jones

but occur at t=0 only when my =mg, and ma;émc°

We summarize the various possibilities in the following table :

- N traint number of

masses ype ol constraln cther constraints constraint
for t =20 .

points

m m, my md cos@S +1 type I 9y 0 3
‘mb,l.md t =0 - type II q,=0i p =0 4
ma;«r!mC m, =m, t =0 type II q, = 0s p,=0 4
mb¥md | none qt=02 pt=0 - 4

In all cases these two types of constraints can be computed directly from
the Trueman—Wick crossing relation, without reference to invariant ampli-

tudes.
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Therefore, one may avold the tremendous algebraic machinery of
going from the invariant amplitudes to the helicity amplitudes and then
inverting the obtained relations in order to get the constraints. It is
not necessary either to go from the heliclty frame to the usual partial
wave Tframe to obtain the threshold conditions. This last procedure involves
rather complicated Clebsch—Gordan coefficient calculations and further
assumptions on the threshold behaviour of partial wave amplitudes. In our
opinion, this is a non-negligible progress. Nevertheless, it seems that
the geheral formalism developed by Wang L in order to extract the kine-
matical singularities, loses some of its general interest because one is
forced to evaluate explicitly the crossing relations, which, at the. same
time, gives both the kinematical singularities of helicity amplitudes

and the constraints among them.
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ADDENDUM

After this paper was written, we have been informed that. the whole
problem of kinematical singularities, crossings and constraints among
helicity amplitudes, has been reviewed and solved by G. Cohen~Tannoudji,
A, Morel and H., Navelet from Saclay. Among other powerful results, these
authors have reached the same conclusion as ours with regard to the
constraint problem, using transversity helicity amplitudes. Nevertheless,
they found that some phases between matrix elements of the crossing matrix
of Trueman and Wick have to be changed, so that the explicit constraint

relations derived from the T.W. formula might be wrong..

We are much indebted to Dr. Cohen-Tannoudji for.haﬁing informed
us of his results prior to publication, as well as for very illuminating

discussions.
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