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Abstract

The mass of the W boson is obtained from reconstructed invariant mass distri-
butions in W-pair events. The sample of W pairs is selected from 10.65 pb�1

collected with the ALEPH detector at a mean centre-of-mass energy of 172.09
GeV. The invariant mass distribution of simulated events are �tted to the
experimental distributions and the following W masses are obtained:

WW! q�qq�q mW = 81:30� 0:47(stat:)� 0:11(syst:) GeV=c2;

WW! `�q�q (` = e; �) mW = 80:54� 0:47(stat:)� 0:11(syst:) GeV=c2;

WW! ��q�q mW = 79:56� 1:08(stat:)� 0:23(syst:) GeV=c2:

The statistical errors are the expected errors for Monte Carlo samples of the
same integrated luminosity as the data. The combination of these three mea-

surements gives:

mW = 80:80� 0:32(stat:)� 0:11(syst:)� 0:03(LEP energy) GeV=c2:

(To be submitted to Phys. Lett. B.)
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1 Introduction

Pairs of W bosons have been produced at LEP since June 1996, when the centre-of-

mass energy of the colliding beams reached the W-pair threshold of 161 GeV. At this

energy, �rst measurements of the W mass at LEP were made using the measured cross

sections [1, 2]. A larger sample of W pairs was obtained when running at 172 GeV

during October-November 1996, allowing the W mass to be measured from the direct

reconstruction of the invariant mass of its decay products. Studies of W bosons have

taken place in p�p collisions, where large samples of single W's decaying into e�e and ���
have been used to measure the W mass [3]. Combining the hadron collider results, the

precision on the value for mW is 90 MeV=c2 [4]. The comparison of this measurement

with the prediction based on the Z mass and the Fermi constant constitutes a sensitive

probe of electroweak radiative corrections. Combined with the present precision on the

top quark mass [5], a precise W mass measurement can either improve the constraints on

the mass of the undiscovered Higgs boson obtained from electroweak �ts, or could reveal

new physics.

Unlike at p�p colliders, W's can be detected in all decay modes at LEP2, and the centre-
of-mass energy is known precisely. Thus, energy and momentum conservation constraints

can be applied to the event reconstruction, leading to a much improved invariant mass
resolution. This is true both in semileptonic W pairs, where one W boson decays into two
hadronic jets and the other into a lepton and a neutrino, and in W pairs decaying into

four jets where the relatively poor jet energy resolution is compensated by these kinematic
constraints. The purely leptonic double decays are not used in the measurement described
here.

This letter presents a �rst ALEPH measurement of the W mass by direct

reconstruction. An integrated luminosity of 10:65 � 0:08 pb�1 was recorded, at a mean
centre-of-mass energy of 172:09� 0:06 GeV [6]: 1.11 pb�1 at 170.28 GeV and 9.54 pb�1

at 172.30 GeV. The letter is organised as follows: �rst, the important properties of the

ALEPH detector for this analysis are recalled and a description is given of the Monte Carlo
event generators for the processes involved. Event selection and mass reconstruction for

the di�erent channels are then described, followed by the technique in which the invariant

mass distributions of reweighted Monte Carlo events are �tted to the data distributions
to extract the W mass for the purely hadronic and semileptonic channels separately.

Stability checks of the measurement and a study of systematic errors are then presented.

Finally, the measurements of the W mass in each channel are combined, taking into

account common sources of systematic errors.

2 The ALEPH detector

A detailed description of the ALEPH detector can be found in Ref. [7] and of its
performance in Ref. [8]. Charged particles are detected in the central part of the detector.

From the beam crossing point outwards, a silicon vertex detector, a cylindrical drift
chamber, and a large time projection chamber (TPC) measure up to 31 coordinates

along the charged particle trajectories. A 1.5 T axial magnetic �eld is provided by a

superconducting solenoidal coil. A resolution of �pT=pT = 6 � 10�4pT � 0:005 (pT in
GeV=c) can be achieved. Hereafter, charged particle tracks reconstructed from at least
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four hits in the TPC and originating from within a cylinder of 2 cm radius and 20 cm

length, centred on the nominal interaction point and parallel to the beam axis, are called

good tracks.

Electrons and photons are identi�ed in the electromagnetic calorimeter by their charac-

teristic longitudinal and transverse shower development. The calorimeter, a lead/wire-

plane sampling device with �ne readout segmentation and total thickness of 22 radiation

lengths at normal incidence, provides a relative energy resolution of 0:180=
p
E+0:009 (E

in GeV).

Muons are identi�ed by their penetration pattern in the hadron calorimeter, a

1.2 m thick iron yoke instrumented with 23 layers of streamer tubes, together with two

surrounding layers of muon chambers. In association with the electromagnetic calorimeter,

the hadron calorimeter also provides a measurement of the energy of charged and neutral

hadrons with a relative resolution of 0:85=
p
E (E in GeV).

The total visible energy and momentum, and also the missing energy, are evaluated by

an energy ow reconstruction algorithm [8] which combines all of the above measurements,

supplemented at low polar angles by the energy detected in the luminosity calorimeters.

The algorithm also provides a list of charged and neutral reconstructed objects, called
energy ow objects, from which jets are reconstructed with a typical angular resolution
of 30 mrad in space. The jet energy resolution is approximately given by �E =

(0:6
p
E + 0:6)GeV � (1 + cos2 �), where E (in GeV) and � are the jet energy and polar

angle. The jet energy and angular resolution as well as calibrations were obtained from

extensive studies of Z ! q�q events both in data and Monte Carlo. Discrepancies between
data and simulation were used in evaluating systematic errors.

3 Monte Carlo samples

The W mass is extracted by comparing the experimental distributions to the
corresponding Monte Carlo distributions, where generated events are processed through
a full simulation of the ALEPH detector response and through the same reconstruction

chain. Two Monte Carlo event generators are used to simulate the signal events, i.e.
four-fermion �nal states which can come from WW production and decay:

� KORALW, version 1.21 [9]. This program includes multi-photon initial state
radiation (ISR) with �nite photon transverse momentum via Yennie-Frautschi-

Suura exponentiation [10], �nal state radiation via PHOTOS [11], and Coulomb

correction [12]. It can generate CC03 diagrams, which correspond to the three
Feynman diagrams that contribute to the production of two resonant W's at tree

level, or include four-fermion diagrams computed with the GRACE package [13], with
�xed W and Z widths. The JETSET [14] package takes care of gluon radiation

and hadronisation. In four-quark �nal states, the colour ow between fermions is

chosen with probabilities proportional to the matrix elements squared for WW and
ZZ production [15]. Colour ow between two fermions produced by two di�erent

bosons, known as colour reconnection [16, 17], is not included. Samples of 100,000

events were generated with W masses of 79.25, 80.25 and 81.25 GeV=c2, for all four-
fermion diagrams. Loose cuts were applied at the generation level on the outgoing

electron angle or the fermion-antifermion pair invariant masses, avoiding regions of

phase space with poles in the cross section. Signal events produced in these regions
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would in any case be rejected by the selection cuts. Seven additional samples of

20,000 events each were generated with W masses of 79.25, 79.75, 80.00, 80.25,

80.50, 80.75 and 81.25 GeV=c2 for all four-fermion diagrams.

� For comparison, the EXCALIBUR [18] generator is also used. It includes ISR

collinear with the beams [19], �nal state radiation via PHOTOS [11], Coulomb

correction [12] and hadronisation by JETSET [14]. A sample was generated with

mW = 80:25 GeV=c2 and the same choice of colour ow with loose cuts applied at

the generation level as above. For colour reconnection studies the same events were

hadronised following the ansatz of [16].

Monte Carlo samples, with integrated luminosities corresponding to at least twenty

times that of the data, were fully simulated for all background reactions. Annihilation into

quark pairs, e+e� ! q�q(), was simulated with PYTHIA [14]. Two-photon () reactions

into leptons and hadrons were simulated with the PHOT02 [20] and PYTHIA generators.

KORALZ [21] and UNIBAB [22] were used for dilepton �nal states. Finally, PYTHIA and

FERMISV [23] were used for various processes leading to four-fermion �nal states. Where

appropriate, results from the two programs are cross-checked against each other. Some
four-fermion con�gurations are found in both the signal WW and background ZZ Monte
Carlo's. Hence, events with a avour content that could originate from WW production

are explicitly rejected from the ZZ sample.

4 Event selections

In the following sections, the event selections are described for the three types of events
considered: W+W� ! q�qq�q, W+W� ! e(�)�q�q and WW! ��q�q. Using a Monte Carlo

sample generated at mW = 80:25 GeV=c2, the expected observable cross sections for each
type together with their corresponding backgrounds are summarised in Table 1. They are
calculated from the numbers of events surviving the selection cuts described below and

the mass reconstruction procedures described in Section 5. The selection e�ciencies and

purities were also determined for other mW values and their dependence on the W mass

is negligible (see Section 8.4).

4.1 W+W�

! q�qq�q events

At
p
s = 172 GeV the main source of background to the e+e� !WW! q�qq�q process

(denoted 4q) is e+e� ! q�q production, followed by the e+e� ! ZZ and e+e� !WW!
q�q`� processes. To select WW hadronic decays, the following cuts are applied in the

preselection: the missing energy must be smaller than 40 GeV, the number of energy

ow objects larger than 45, and the number of jets found with the JADE algorithm [24]
with ycut = 0:005 larger than three. The events are then forced into four jets using

the DURHAM-P algorithm (see Section 5.1). Further preselection cuts are applied to these
DURHAM jets: more than one good track inside a jet, and the fraction of electromagnetic

to total energy in a jet less than 0.9.

A feed-forward neural network with 21 input variables is then used to tag the signal

events. The most discriminating variables are found to be the sum of cosines of the angles
between the jets, the Fox-Wolfram moments, the largest of the minimum invariant masses
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Table 1: Cross sections of various processes after analysis cuts. The quoted e�ciencies are relative

to the predicted number of events for each channel in the KORALW four-fermion (4f) Monte Carlo

with mW = 80:25 GeV=c2. For the 4q channel, only WW ! 4q events which have passed the

analysis cuts are considered as signal. For the semileptonic channels, all WW events which have

passed the analysis cuts are considered as signal. (This includes � events in the e� sample and vice

versa.)

�cuts (pb)

Process 4q sel. e� sel. � sel.

WW! q�qq�q 4.43 0.00 0.01

WW! e(�)�q�q 0.02 3.08 0.12

WW! ��q�q 0.01 0.16 0.83

WW! `�`� 0.00 0.00 0.00

q�q() 1.02 0.03 0.06

ZZ 0.08 0.02 0.00

We� 0.00 0.01 0.00

Zee 0.01 0.02 0.00
�� 0.00 0.01 0.00

2-photon 0.00 0.00 0.00

E�ciency (4f) (%) 76.9 93.6 50.5

Purity (4f) (%) 79.5 97.7 94.0

from each of the three W+W� di-jet combinations, and the maximum invariant mass of

all six di-jet combinations. A description of the neural network and the variables it uses,
as well as the distribution of the neural network output, are given in [25]. To select W

hadronic events, the neural network output is required to be larger than �0:3. Monte
Carlo studies con�rm that the �tted W mass is stable as a function of the cut value. After
all analysis cuts, 65 events are selected. Monte Carlo studies predict 59.3 events (47.2

signal events and 12.1 background events).

4.2 W+W�

! e�q�q and W+W�

! ��q�q events

The characteristic features of W+W� ! e(�)�q�q events (denoted e�) are a high energy

isolated lepton and a large amount of missing energy due to the neutrino, along with two

or more jets.

The selection requires at least �ve good tracks with a total charged energy greater
than 0.10

p
s. The magnitude and direction of the missing momentum vector is used

to discriminate between the signal process and the q�q background, eliminating those
radiative returns in which the high-energy photon escapes down the beam pipe and the

non-radiative events which are fully contained within the detector. The charged track

with the highest momentum component antiparallel to the missing momentum is chosen
as the lepton candidate. Loose electron or muon identi�cation criteria and an energy of

at least 15 GeV are required for the lepton candidate.
After this preselection, the probability for an event to come from the signal process is

determined using the energy of the lepton, the total missing transverse momentum and

the lepton isolation. The procedure is described in [1]. Events are selected if they have a
probability larger than 0.36 to be an e�q�q event or a probability larger than 0.70 to be
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a ��q�q event. These cut values are determined using Monte Carlo, where the expected

error on the W mass is minimised. After all analysis cuts, 34 events remain: 14 in the

electron channel and 20 in the muon channel. Monte Carlo studies predict 34.7 (33.9

signal and 0.8 background) events.

In the case of candidate e�q�q events, the energy of the electron is corrected if evidence

for a bremsstrahlung photon is found, either in the form of a separate cluster in the

electromagnetic calorimeter or as an excess of energy in the electron cluster. This excess

is determined as in [26].

4.3 WW! ��q�q events

The WW ! ��q�q (denoted �) event selection cuts are described elsewhere [1, 27]. In

summary, an event is selected if it passes a series of preselection cuts and if it satis�es

either a topological or a global selection. It must also not pass the e� selection, so that

the two samples are independent. Unlike the cross section analysis [27], a � jet is always

searched for, and is required for the measurement of the W mass; these represent 90%

of the events selected as in [27]. After all analysis cuts, 10 events remain. Monte Carlo
studies predict 11.3 events (10.7 signal and 0.6 background).

5 Invariant mass reconstruction

Following the event selection, the determination of the invariant mass of the W candidates
in each event requires several steps. The jet �nding is discussed �rst, followed by the
invariant mass reconstruction method via a kinematic �t. Finally the jet pairing method,

which concerns only the 4q channel, is described.

5.1 Jet clustering algorithm

The DURHAM [28] algorithm is used to cluster the energy ow objects into jets in a massless

combination (denoted as the P scheme) of the particles. Monte Carlo studies show that

for the 4q channel, this DURHAM-P scheme is the most successful jet clustering algorithm
for associating particle momenta correctly to their parent W bosons. However, to reduce

bias in the reconstructed invariant masses, the jet four-momenta are built from the sum of

the particle four-momenta, taking the particle masses into account. Using this procedure,
known as the DURHAM-PE scheme, the 4q events are forced into four jets. In the case of

semileptonic events, this procedure is applied to all energy ow objects that are not used
to construct the lepton, and these are forced into two jets.

5.2 Kinematic �t

In order to improve the mass resolution a kinematic �t is applied to the four reconstructed

objects (where object here refers to jets, leptons or to the missing momentum vector).

Average corrections are �rst applied to the object momenta and polar angles to take into
account loss of particles in the regions of the detector close to the beam axis. In the

�t, the measured momenta ~p m
i of the four objects are modi�ed to produce the corrected

momenta ~p corr
i = ai~p

m
i + bi~u

b
i + ci~u

c
i , where ai, bi and ci are the parameters of the �t.

5



The unit vectors ~u b
i and ~u c

i are perpendicular to the measured object axis, where ~u b
i is

in the plane de�ned by the object axis and the z axis, and ~u c
i is perpendicular to ~u b

i . The

input errors on ai, bi and ci are determined from Monte Carlo assuming the parameters

have Gaussian distributions. Both the parameter values and their errors depend on the

type of object, its energy and direction. The energies of jets are assumed to scale in the

ratio of their �tted to reconstructed momenta. For � events, the detected decay products

of each � are used to determine its most likely momentum and direction in the �t. For

all semileptonic events, the candidate neutrino from the W decay is assigned the missing

momentum and a zero mass. A �2 is then constructed with these parameters and the

constraints are imposed by Lagrange multipliers. The minimisation of this �2 is done via

an iterative procedure.

Imposing energy and momentum conservation alone corresponds to a four-constraint

(4C) �t giving two di�erent masses for the candidate W bosons. The results of the 4C �t

can be further improved by building a new observable from the �tted mass and energy of

each W, the rescaled mass:

mresc
ij = mij

Eb

Ei + Ej

;

where Eb is the beam energy and Ei, Ej are the object energies. The rescaled masses are

directly related to the velocities of the two W's, and each one depends on the mass of
both W's. Use of the rescaled 4C masses results in a large cancellation of the pure 4C
measurement errors, in particular those coming from misassignment of energy from one

W to the other. In the case of the hadronic events, the 4C �t with rescaling is chosen.

For the semileptonic events, the �t is improved by imposing equal masses as well as

energy and momentum conservation. This e�ectively becomes a 2C �t since the three-
momentum of the neutrino is not directly measured.

5.3 Jet pairing for W+W�

! q�qq�q events

For selected hadronic events, the four jets are coupled into two di-jets in three di�erent

ways. For each combination, two rescaled 4C masses are determined. A jet pairing

algorithm which selects just one of the combinations is used. It chooses the one for
which the di�erence between the two masses is the smallest, unless this combination

has the smallest sum of the two di-jet opening angles (the opening angle is the angle

between the two jets of a candidate W); in this case, the combination with the second

smallest mass di�erence is selected. For the chosen combination, the two masses m1

and m2 are treated separately. The order of these two masses is taken randomly,
so that the expected distribution for both masses is exactly the same. Both masses

must satisfy 50 < mi < 86 GeV=c2 and at least one of the two masses must satisfy
74 < mi < 86 GeV=c2.

6 Extraction of the W mass

To extract the W boson mass, the invariant mass distribution of reweighted Monte Carlo

events is �tted to the data events distribution, after the selection and mass reconstruction

steps. The �tting method and the results are described in the following sections.
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6.1 Fitting technique

The invariant mass distributions have a Breit-Wigner like shape which is distorted by

ISR, phase space boundary, detector resolution, misassignment of particles between W's,

background contamination and event selection. To take into account all these e�ects, the

measured invariant mass distributions are compared with the corresponding Monte Carlo

distributions generated with di�erent input W masses. A binned log-likelihood function

is used to extract the value of mW which best �ts the data. The W width is given the

Standard Model value for a given W mass. FormW = 80:25 GeV=c2, it is set to �W = 2:08

GeV.

To avoid having to generate large Monte Carlo samples at many di�erent input

W masses, a Monte Carlo event reweighting technique is used. Large samples were

generated for all four-fermion diagrams and constant width at three input masses

mMC
W = 79:25; 80:25 and 81:25 GeV=c2. These Monte Carlo events are reweighted using

the ratio of squared matrix elements:

wi(mW;�W) =
j M(mW;�W; p

1
i ; p

2
i ; p

3
i ; p

4
i ) j2

j M(mMC
W ;�MC

W ; p1i ; p
2
i ; p

3
i ; p

4
i ) j2

;

where pji denotes the four-momentum of the jth outgoing fermion for a particular event
i, �W is the W width, and M(mW;�W; p

1
i ; p

2
i ; p

3
i ; p

4
i ) is the matrix element of the process

e+e� !W+W� ! f1�f2f3�f4. The matrix element is evaluated for the CC03 diagrams.

The background Monte Carlo samples are also used in the �t such that the background
cross section is �xed. The signal selection e�ciency is assumed to be constant with mW,

hence the signal purity varies only due to the W-pair cross section dependence onmW. The
resulting invariant mass distribution is �tted to the data using the three WW reference
Monte Carlo samples. The �nal data result is obtained using the reference sample with

the input mass which is closest to the �tted data mass. The �t is performed in the 74-
86 GeV=c2 mass range, which is chosen following Monte Carlo studies. These show that
the reweighted Monte Carlo �tting technique has maximal sensitivity to the shape of the

invariant mass distribution in this mass range. Negligible information about the input W
mass can be extracted from the reduced statistics data below this mass range.

When the Z mass was measured at LEP1, a mass de�nition corresponding to a propa-

gator including an s-dependent width was used, whereas in the formulae and Monte

Carlo used to extract the W mass, a Breit-Wigner propagator with �xed width is used, as
suggested in Ref. [29]. To make both measurements consistent with each other, a positive

shift of 27 MeV=c2 is applied throughout on the measured W mass.

6.2 The results

For the events selected, the �t results are: m1 = 81:43+0:52
�0:53 GeV=c

2 and m2 = 81:16+0:56
�0:62

GeV=c2 for the two rescaled masses in the 4q channel, mW = 80:54 � 0:37 GeV=c2 for

the e� events and mW = 79:56� 1:94 GeV=c2 for the � events. For the hadronic channel,
the event-by-event correlation between the two rescaled masses is 63:5 � 7:4%, in good

agreement with the Monte Carlo expectation of 66:7� 0:3%.

Due to the small size of the data samples, the statistical errors resulting from the �ts

have a large uncertainty. For each selection, a large number of Monte Carlo subsamples are

studied, each with the same integrated luminosity as the data, such that they contain the
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Figure 1: Mass distribution (m1 and m2 combined) for hadronic data (points with error bars),

background Monte Carlo (shaded area) and signal+background Monte Carlo for the best �t to the data

(solid line histogram).

expected number of events for the di�erent selections. The widths of the pull distributions,
where the pull is de�ned as (m�t

W �mMC
W )=��t, are consistent with unity as a function of

the �t error, con�rming the reliability of the �t errors. The mean value of the �t error
distributions for these Monte Carlo subsamples is taken as the expected error. These
are 0.58 GeV=c2 for each of the two hadronic masses, 0.47 GeV=c2 for the e� events and

1.08 GeV=c2 for the � events. Both the �t errors and the expected errors are reliable
estimates of the W mass error. However, since the expected errors are determined with

better precision, they are quoted as the �nal statistical errors.

For the hadronic events, the expected correlation between the �tted masses extracted
from the two rescaled mass distributions is computed using the Monte Carlo subsamples.

The correlation value is 33:2 � 5:1%, independent of the W mass. The combined result

for the 4q channel, using the Monte Carlo expected errors and correlation gives:

4q : mW = 81:30� 0:47 GeV=c2:

For the e� and � channels, the results quoting the expected errors are:

e� : mW = 80:54� 0:47 GeV=c2

� : mW = 79:56� 1:08 GeV=c2:

Figures 1 and 2 show the mass distributions for the selected events in each channel.

7 Consistency and stability checks

The following checks are made to con�rm the consistency and stability of the method and

its results.
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Figure 2: Mass distributions for e� (a) and � (b) data (points with error bars), background (shaded

area) and signal+background Monte Carlo for the best �t to the data (solid line histogram).

7.1 Linearity of the reweighting technique

A critical test of the reweighting method is to ensure that the �tted mass agrees with

the true input mass, when performing a �t to a Monte Carlo sample. The linearity of

the �tted mass with the true input mass is studied for the hadronic, e� and � channels

separately using the seven independent Monte Carlo samples with di�erent input masses.

For all channels, these distributions have slopes consistent with a value of one, and no
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signi�cant o�sets are observed.

7.2 Event selection and mass range dependence

The hadronic events are selected by requiring the neural network output to be larger than

�0:3. The stability of the result is studied as a function of this cut in Monte Carlo events.

No statistically signi�cant di�erences are observed in the �tted mass. By doing the same

exercise with the data events, the same conclusion is reached. Similar studies are done for

the semileptonic events, for which selections using event probabilities are applied. Again,

no signi�cant di�erences are observed.

The stability of the result as a function of the mass range used for the �t is checked

for the three decay channels using both data and Monte Carlo samples. No signi�cant

mass range dependence is observed.

7.3 Mass measurement using a Breit-Wigner �t

As a cross-check of the reweighting method, simple relativistic Breit-Wigner functions are

�tted to the observed invariant mass distributions of the three channels (4q, e� and �).
In this method, the distortions described in Section 6.1 introduce a bias in the �tted mass
which must be corrected for. The bias is found to be a linear function of the true input

mass and is determined by �tting a straight line to the �tted mass versus the true mass,
using the seven Monte Carlo samples generated with di�erent mW values. The straight
line function is known as the calibration curve.

For the 4q channel, the expected error for a sample the size of the data is 0.45 GeV=c2

before calibration and the correlation between the two mass estimators is (47:1� 4:2)%.

The calibration curve obtained is given by m4q = (80:68� 0:02) + (0:73� 0:04) � (mtrue
W �

80:25) (GeV=c2); this function is used to correct both masses. After calibration, the
expected error on the masses is 0.62 GeV=c2 and the corrected values for the masses are

m1 = 81:33 � 0:62 GeV=c2 and m2 = 81:17 � 0:62 GeV=c2. Combining the two masses
with the expected correlation gives a �nal result for the W mass of:

4q : mW = 81:25� 0:53 GeV=c2;

which agrees with the result obtained with the reweighting technique.

For the e� and � channels, the expected errors before calibration are 0.43 GeV=c2

for the e� and 0.93 GeV=c2 for the � events. The calibration curves are given by
me� = (80:77� 0:02)+ (0:87� 0:02) � (mtrue

W � 80:25) (GeV=c2) and m� = (81:00� 0:03)+
(0:73�0:04) � (mtrue

W �80:25) (GeV=c2). The expected errors on mW, after calibration, are

0.49 GeV=c2 and 1.28 GeV=c2 for the e� and � events respectively. The corrected mass

values are:

e� : mW = 80:52� 0:49 GeV=c2

� : mW = 80:79� 1:28 GeV=c2;

also in agreement with the results obtained with the reweighting technique. For the �

data result, the mass di�erence between the Breit-Wigner and the reweighted results is

studied using Monte Carlo subsamples. The probability of obtaining a di�erence larger
than the observed one is 14%.
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8 Systematic uncertainties

The systematic uncertainties on the W mass measurement are described in the following

sections. They are summarised in Table 2.

8.1 Finite reference Monte Carlo statistics

The �nite number of Monte Carlo events used as a reference in the reweighting method

contributes a systematic uncertainty. A procedure is used where the reference sample is

divided into smaller samples of equal size. Each of these samples are then �tted to the

same data. The RMS of the �tted masses scales as the square root of the number of samples

that the reference is divided into. From this method, the systematic error coming from

Monte Carlo statistics is estimated to be �mW = 30; 35 and 90 MeV=c2 for the 4q, e�

and � channels respectively.

8.2 Monte Carlo fragmentation parameters

The main fragmentation parameters in JETSET (�, Mmin, �, B and baryon production)
are varied independently to extreme values, typically four standard deviations from their
measured values [30]. With each variation, a new reference sample is made. The e�ect of

these variations on the �tted mass is � 10 MeV=c2 for all the channels studied.

8.3 Diagrams in Monte Carlo reference

The matrix element used in this analysis corresponds to the CC03 diagrams instead of
the complete matrix element which corresponds to all possible diagrams producing four

fermions in the �nal state. The e�ect of this approximation is studied by comparing
the weights derived from the CC03 matrix element with those derived from the complete

matrix element as given by EXCALIBUR [18]. The contribution of the non-CC03 diagrams
after the event selection is negligible. Using the four-fermion matrix element to weight
the Monte Carlo events, the �tted mass from the data di�ers from the original one by 3

MeV=c2.

8.4 Selection e�ciency

The selection e�ciencies are varied by �2� of their statistical uncertainty, where �=0.20,

0.13, 0.77% for the 4q, e� and � channels respectively. In addition, the mass dependence
of the selection e�ciencies are studied over a 2 GeV=c2 mass range using the seven Monte

Carlo samples with di�erentmW values, where maximal di�erences of 1:7�0:9%, 0:8�0:6%
and 0:4�0:2% are observed for the 4q, e� and � selection e�ciencies respectively. A linear
dependence as a function of mass is implemented in the �t, with the slope obtained from

the above studies. Both variations have a negligible e�ect on the �tted results.

8.5 Background contamination

For the hadronic events, the expected background remaining after the selection is about

20% of the sample. The small size of the data sample does not allow a detailed comparison
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of its properties with the ones predicted by the Monte Carlo samples used. To overcome

this problem, a technique using Z peak data was developed to evaluate the systematic

uncertainty coming from the background estimation. High statistics Z peak data taken

in 1994 are compared to q�q Monte Carlo to evaluate the e�ect of any discrepancies

in the background shape and normalisation. Selections similar to the preselections of

this analysis, but scaled down according to beam energy, are applied to Z peak data.

The observed disagreements at LEP1 energies are then applied as correction factors

to the expected background in the 172 GeV analysis. The resulting observed shifts in

the extracted W mass are then evaluated, and the largest mass shifts are taken as the

systematic uncertainty due to the de�cient modelling of the background. For the hadronic

channel, the evaluated systematic uncertainty is �mW � 20 MeV=c2.

For the semileptonic events, the error from this source is expected to be small because

the total background is only a small fraction of the signal. The error due to the background

shape is estimated using data from LEP1, in a similar way as for the the hadronic channel.

The uncertainty in the background normalisation is estimated by comparing the number

of data and expected Monte Carlo events with an electron or muon probability less than

0.1. The resulting error from both sources is negligible.

8.6 Detector calibration

Studies indicate there are di�erences between data and Monte Carlo in the energy

calibrations of the electromagnetic (ECAL) and hadronic (HCAL) calorimeters of up to
1.5% and 4% respectively. The e�ect of these discrepancies is estimated by globally
rescaling the ECAL energy by �1.5% and the HCAL energy by �4% at the event

reconstruction level and determining the change this produces in the W mass. Using the
biggest change in both cases, the ECAL and HCAL errors are combined in quadrature to
give the �nal errors: 56, 47 and 187 MeV=c2 for the 4q, e� and � channels respectively.

8.7 Jet corrections in the kinematic �t

In studies of two-jet decays of the Z, the jet energy scale corrections described in
Section 5.2 di�er for data and Monte Carlo by up to 30% in the region j cos �jj � 0:95

where �j is the angle between the jet direction and the beam axis. A systematic error is

evaluated by changing the corrections applied to the jet energy and angles by 30% of their
values in a correlated way. Fitting to the data, systematic errors of 40; 90 and 94 MeV=c2

are obtained for the 4q, e� and � channels respectively.

8.8 W boson width variation

The value of the W mass obtained from the �t is studied as a function of the W width.
The width is varied about its central value by the known experimental error �� = 0:07

GeV [31]. The di�erence in the �tted mass is at most 10 MeV=c2 for all the studied

channels. A systematic uncertainty of 10 MeV=c2 due to the uncertainty on the W width

is quoted.
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Table 2: Summary of the correlated and uncorrelated systematic errors on mW.

�mW (MeV=c2 )

Source 4q e� �

Correlated errors

MC Fragmentation 10 10 10

Reference MC diagrams 3 3 3

Detector calibration 56 47 187
Jet corrections 40 90 94

W width 10 10 10

Initial State Radiation 15 15 15
LEP Energy 30 30 30

Uncorrelated errors

Reference MC Statistics 30 35 90

Background contamination 20 - -
Colour reconnection 50 - -

Bose-Einstein e�ects 40 - -

Total 107 113 231

8.9 Initial state radiation

KORALW [9], the main event generator used in the studies, features QED initial state
radiation up to O(�2L2), i.e. up to second order in the leading-log approximation. The

e�ect of the missing terms on the W mass measurement is studied at generator level in [32]
by degrading KORALW to O(�1L1) and checking the size of the pure O(�2L2) correction. A

systematic e�ect on the W mass of 15 MeV=c2 is quoted. The e�ect of the degradation of
KORALW is also checked while properly taking into account detector e�ects. The di�erences
observed are smaller than 15 MeV=c2. A systematic error of �mW = 15 MeV=c2 from

ISR is assigned.

8.10 LEP energy

The relative uncertainty on the LEP energy translates into the same relative uncertainty

on the �tted mass, since the beam energy is directly used in the kinematic �t. For the

quoted LEP beam energy uncertainty of �Eb = 30 MeV [6], a systematic uncertainty of

�mW = 30 MeV=c2 is assigned to all the channels.

8.11 Colour reconnection and Bose-Einstein e�ects

In hadronic events, the possible existence of colour reconnection and Bose-Einstein

correlation e�ects between the two W's is pointed out as a source of systematic error

on the W mass determination [16, 33, 34, 35], some of which quote large uncertainties.
However, their size is likely to be sensitive to the topology of the selected events and

to the actual procedure used to extract the W mass. The colour reconnection e�ect is
studied using two Monte Carlo samples generated with EXCALIBUR, one with a colour
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reconnection implementation, following the ansatz of [16], and the other without. The

hadronic events of both samples are identical at the parton level. These are used as data,

and the KORALW Monte Carlo sample with mW = 80:25 GeV=c2 is used as a reference to

�t the W mass. A di�erence of 20 � 50 MeV=c2 is observed between the �tted masses

extracted from the data samples with and without colour reconnection.

To determine the e�ect of the Bose-Einstein (BE) correlation on the W mass

measurement, the weighting method described in [32] is implemented using a KORALW

Monte Carlo sample. The reference sample with mW = 80:25 GeV=c2 is then �tted to

this weighted Monte Carlo sample. A di�erence of 26 � 40 MeV=c2 is observed between

this �tted mass and that obtained when no BE e�ect is included.

For both the colour reconnection and BE e�ects, the systematic error quoted is the

statistical uncertainty of the estimated di�erence rather than the speci�c value of the

di�erence observed.

9 Summary and conclusions

A Monte Carlo reweighting technique is used to measure the mass of the W boson. It is
based on the direct comparison of the data mass distributions with those from the Monte
Carlo weighted events.

Fully hadronic W decays are selected using a neural network method, while the
semileptonic decays are identi�ed using two separate selections: one for the e(�)�q�q events

and one for the ��q�q events. The mass variables are determined in a four-constraint �t
with rescaling for the 4q channel, and a two-constraint �t for the semileptonic channels.
The resulting invariant mass distributions are compared with reweighted Monte Carlo

events, and the values of the W mass are extracted in a binned log-likelihood �t. The
following results are obtained:

WW! q�qq�q mW = 81:30� 0:47(stat:)� 0:11(syst:) GeV=c2;

WW! `�q�q (` = e; �) mW = 80:54� 0:47(stat:)� 0:11(syst:) GeV=c2;

WW! ��q�q mW = 79:56� 1:08(stat:)� 0:23(syst:) GeV=c2;

where the statistical errors are the expected errors for Monte Carlo samples of the same

integrated luminosity as the data. The average result for the semileptonic channels

is: mW = 80:38� 0:43(stat:)� 0:13(syst:) GeV=c2. The correlated and uncorrelated

systematic errors are combined using the statistical error weights. Combining all channels,

with �2=ndf = 2:6=2, the average W mass is:

mW = 80:80� 0:32(stat:)� 0:10(exp:syst:) � 0:03(th:syst:)� 0:03(LEP) GeV=c2;

where the theoretical systematic is due to ISR, Bose-Einstein and colour reconnection
uncertainties and the last error is due to the LEP energy uncertainty. This

result is consistent with the ALEPH result from the combined study of the cross

section at threshold [1] and at 172 GeV [27]: mW = 80:20 � 0:33(stat:) �
0:09(syst:) � 0:03(LEP) GeV=c2: Combining the cross section measurements with the

direct reconstruction measurement of this letter, the result is: mW = 80:51�0:23(stat:)�
0:08(syst:) GeV=c2:
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The W mass as measured in this letter is in agreement with direct determinations at p�p

colliders [3] and at LEP both at 161 GeV [1, 2] and 172 GeV [36] centre-of-mass energies.

It is also consistent with expectations based on precise measurements [37] obtained at the

Z peak and elsewhere, assuming the validity of the minimal Standard Model.
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