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Abstract

Using the data collected by the L3 experiment at LEP from 1991 to 1995 at ener-

gies around the Z mass, a measurement of the weak anomalous magnetic dipole mo-
ment, aw� , and of the weak electric dipole moment, dw� , of the � lepton is performed.
These quantities are obtained from angular distributions in e+e� ! �+�� !
h+���h

��� , where h is a � or a �. The results are: Re(aw� ) = (0:0�1:6�2:3)�10�3,

Im(aw� ) = (�1:0�3:6�4:3)�10�3 and Re(dw� ) = (�0:44�0:88�1:33)�10�17e �cm.
This is the �rst direct measurement of aw� .
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Introduction

The weak anomalous magnetic and weak electric dipole moments, aw� and dw� , are intrinsic prop-

erties of the � lepton. In the Standard Model they are zero at Born level but higher order loop

corrections lead to aw� = �(2:10+0:61 i)�10�6 [1] and dw� � 3�10�37e cm [2]. A measurement

of aw� or dw� signi�cantly di�erent from these predictions would point unambiguously to new

physics such as substructure of the � [3]. Moreover, CP violation in the Z! �+�� vertex could

be manifested in the value of dw� [4].

Weak dipole moments produce asymmetries in the azimuthal angular distributions of the

� charged decay products in a coordinate system de�ned by the � direction of ight and the

electron beam. We can measure these asymmetries in the channels e+e� ! Z ! �+�� !
h+���h

��� , where h is a � or a �, since it is possible to reconstruct the � ight direction, up to

a twofold ambiguity, for these �nal states [5].

In this paper we present measurements of the weak anomalous magnetic and weak electric

dipole moments of the � lepton. The weak electric dipole moment, dw� , has been measured pre-

viously in other experiments [6,7]. This is the �rst direct measurement of the weak anomalous

magnetic moment, aw� .

Method of the measurement

In analogy with the electromagnetic dipole moments, the weak dipole moments aw� and dw� are

introduced using the following e�ective Lagrangian [8]:

Leff
int = � i

2
dw�

� ���5 Z�� +
1

2

eaw�
2m�

� ��� Z�� (1)

with Z�� = @�Z� � @�Z�.

The cross section for e+e� ! Z ! �+��, divided in a spin-independent (�0) and a spin-

dependent part (�S), can be written [1, 8]:

d�

d
��
=

d�0

d
��
+

d�S

d
��
: (2)

The spin-dependent part reads:

d�S

d
��
=

�2�
128 sin3 �W cos3 �W�2Z

f(s� + s+)xX+ + (s� � s+)yY�

+(s� + s+)yY+ + (s� + s+)zZ+g: (3)

Here s� is the spin vector of the �� in its rest frame, � is the �ne structure constant, �Z
is the Z width,  = mZ=2m� where mZ is the mass of the Z and m� is the mass of the � ,

� =
q
1� (1=2) and �W is the weak mixing angle. The coe�cients X+, Y�, Y+ and Z+ are

given by:
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X+ = gA sin ���f� [2g2V + (g2V + g2A)� cos ��� ]
gV

 sin �W cos �W
+2 [2g2V(2� �2) + (g2V + g2A)� cos ��� ]Re(a

w
� )g; (4)

Y� = 2gA� sin ��� [2g
2
V + (g2V + g2A)� cos ��� ]

2m�Re(d
w
� )

e ; (5)

Y+ = �2gV� sin ��� [2g2A + (g2V + g2A)� cos ��� ] Im(aw� ); (6)

Z+ = � gVgA
sin �W cos �W

[(g2V + g2A)�(1 + cos2 ���) + 2(g2V + �2g2A) cos ��� ]

+2gA [4g
2
V cos ��� + (g2V + g2A)�(1 + cos2 ���)]Re(a

w
� ); (7)

where gV and gA are the neutral current vector and axial-vector coupling constants, respectively

and e is the positron charge. The imaginary part of dw� is not considered [9].

In the coordinate system of Fig. 1 Eqn.(3) can be rewritten [1, 8]:

d�S(�+�� ! h+���h
��� )

d(cos ���)d�h�
=

�2��

128 sin3 �W cos3 �W�2Z
�h�(�X+ cos �h� + (Y� � Y+) sin�h�); (8)

where �h is the azimuthal angle of the hadron and �h is the polarisation analysing power [10],

which depends on the � decay mode.
In order to measure aw� and Re(dw� ), the following asymmetries are de�ned using the angular

dependences in Eqn.(8):

A�cc =
��cc(+)� ��cc(�)
��cc(+) + ��cc(�)

; A�s =
��s (+)� ��s (�)
��s (+) + ��s (�)

; A�sc =
��sc(+)� ��sc(�)
��sc(+) + ��sc(�)

; (9)

where

��cc(+) = �(cos ��� > 0; cos�h� > 0) + �(cos ��� < 0; cos�h� < 0);
��cc(�) = �(cos ��� > 0; cos�h� < 0) + �(cos ��� < 0; cos�h� > 0);

��s (+) = �(sin�h� > 0) ;

��s (�) = �(sin�h� < 0) ;

��sc(+) = �(cos ��� > 0; sin�h� > 0) + �(cos ��� < 0; sin�h� < 0) ;
��sc(�) = �(cos ��� > 0; sin�h� < 0) + �(cos ��� < 0; sin�h� > 0) . (10)

Superscripts � indicate the charge of the � , while + or � signs in parenthesis indicate angular

regions. Subscripts indicate combinations of sines and cosines [8]. These asymmetries are
directly related to the weak dipole moments as given below:

A��

cc = ���cc � ��cc Re(a
w
� ) A��

s = ���s Im(aw� ) A��

sc = ���sc
2m�

e
Re(dw� );

A��

cc = ���cc � ��cc Re(a
w
� ) A��

s = ���s Im(aw� ) A��

sc = ���sc
2m�

e
Re(dw� ): (11)
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The coe�cients �hi and �hi with i = cc; s; sc are obtained by integration of Eqn.(2) over the

angular regions given in Eqn.(10). The quantities �hi are typically of the order of 10, while �hi
are 10�5�hi . The latter are therefore neglected in this measurement. The values of �Z, mZ, m� ,

gV, gA and sin2�W are taken from Ref. [11].

Flight Direction Reconstruction of the �

The angle �h is obtained by reconstructing the � direction of ight. An illustration of the event

kinematics is shown in Fig. 2. Assuming that the � leptons are produced back-to-back and

their energies are E� = mZ=2, the angle between the hadron h� and the �� is:

cos �h��� =
mZEh� �m2

� �m2
h�q

(m2
Z � 4m2

� )(E
2
h� �m2

h�)
: (12)

If we de�ne the unit vectors:

n̂1 = n̂2 � n̂3 =
1

sin 
(p̂h� � p̂h+ cos );

n̂2 =
1

sin 
(p̂h� � p̂h+); (13)

n̂3 = �p̂h+;

where cos = p̂h� � p̂h+, and p̂h� are unit vectors in the direction of the hadron h� momenta,
the � direction can be written ê� = an̂1 + bn̂2 + cn̂3, where

a =
1

sin 
(cos �h��� + cos �h+�+ cos );

c = cos �h+�+; (14)

b = �
p
1� a2 � c2:

The ambiguity in the � direction reconstruction is reected in the sign ambiguity of the b

parameter.

Selection of the Data

This analysis uses the complete data sample collected by L3 from 1991 to 1995 at energies
around the Z mass, corresponding to an integrated luminosity of 150 pb�1. The L3 detector

is described elsewhere [12]. The analysis is restricted to events with j cos �thrustj < 0:7. A

preselection of leptonic Z decays is done, requiring low multiplicity events with back-to-back
topology. This preselection rejects backgrounds such as hadronic Z decays, two-photon events

and beam-gas interactions. Each event is divided in two hemispheres by a plane perpendicular

to the thrust axis. Hadronic � decays are identi�ed by requiring, in each hemisphere, a track

in the central tracking detector pointing to an energy deposition in the calorimeters which is
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not consistent with an electromagnetic shower or a minimum ionizing particle in the hadron

calorimeter. Then an algorithm [13] is applied to determine the number of neutral electro-

magnetic showers and their energies. Two distinct neutral electromagnetic showers form a �0

candidate if their invariant mass is within 40 MeV of the �0 mass. A single neutral electromag-

netic shower forms a �0 candidate if its energy exceeds 1 GeV . Its transverse energy pro�le

must be consistent with a single electromagnetic shower or a two-photon hypothesis for which

the invariant mass is within 50 MeV of the �0 mass.

The �� ! ����
1) selection admits no �0 candidates and no neutral showers with energy

greater than 0:5 GeV . The calorimetric energy deposition must be consistent with the measured

track momentum.

To select �� ! ���� decays, exactly one �0 candidate is required in the hemisphere. The

invariant mass of the ��0 system must be between 0.45 GeV and 1.2 GeV and its energy must

be larger than 5 GeV .

A total of 8638 events is selected and classi�ed as one of the following �nal states:

(i) e+e� ! �+�� ! �+����
��� ;

(ii) e+e� ! �+�� ! �+����
��� or �

+����
��� ;

(iii) e+e� ! �+�� ! �+����
��� .

The number of events, the e�ciency and the background fraction for each channel are
quoted in Table 1. The e�ciency and the background fraction are determined from a Monte

Carlo sample [14,15], which is passed through the full detector simulation, reconstruction and
selection procedure.The background arises from misidenti�ed � decays. The non-� background

is negligible.

Final State Number of events E�ciency (%) Background (%)

(i) 3703 43 25
(ii) 3783 44 24

(iii) 1152 51 24

Table 1: E�ciencies and backgrounds for the selected sample inside the �ducial

volume.

Analysis

The algorithm for the � ight direction reconstruction described previously is applied to the

selected data and Monte Carlo samples. The samples are divided into two subsets, the �rst

consisting of events taken between 1991 and 1993 and the second taken in 1994 and 1995. This
is done because the Silicon Microvertex Detector [16] has been available since 1994, allowing

for a more precise measurement of tracks.

1)No distinction between charged pions and kaons is made. Charge conjugate decays are considered by

implication.
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The reconstruction algorithm can give zero, one or two solutions, which correspond to

b2 < 0, b2 = 0 or b2 > 0, respectively. The case of no solution occurs because of �nite detector

resolution or because the initial/�nal state radiation distorts the back-to-back topology. In this

case, the event is not used in the analysis. The fraction of reconstructed events is 55% for

the 1991-1993 sample and 64% for the 1994-1995 sample. Fig. 3 shows the distributions of the

b2 parameter in both samples for data and Monte Carlo. The good agreement shows that the

e�ciency and the resolution in the reconstruction is the same for data and Monte Carlo.

The resolution in the reconstruction of the � ight direction has been studied using Monte

Carlo events and is shown in Fig. 4 for the �-� channel. In this analysis, for most of the

events, the two possible � ight directions are used, each contributing with weight 1=2. In

the data sample from 94-95, the ambiguity in b is solved [17] for the �-� subsample with an

e�ciency varying between 80% and 60% for low and high track momentum, respectively. The

ambiguity in the � ight direction and the inuence of the resolution of the detector change the

theoretical relations of Eqn.(11). This e�ect is taken into account in the following way. First, a

Monte Carlo study is performed, to obtain the resolution function for �h. Modi�ed expressions

are then obtained by convoluting this resolution function with the theoretical cross section of

Eqn.(8), and taking into account the cross feed between channels (i), (ii), and (iii) and other

background:

0
B@
Acc

Asc

As

1
CA =M

0
B@

Re(aw� )
m�d

w
� =e

Im(aw� )

1
CA (15)

with a di�erent matrix M for each decay channel [18]. The e�ects of the detector resolution
and of the ambiguity in the � ight direction slightly reduce the sensitivity of the measurement
of the weak dipole moments. As the o�-diagonal terms of M are not zero, there is a small

mixing among the weak dipole moments in the asymmetries.
This analysis has been checked with Monte Carlo samples corresponding to large values

of the weak dipole moments. After applying the complete procedure, the input values were

recovered.

Systematic Errors

The main sources of systematic errors in the asymmetries are the reconstruction of the � ight

direction and the selection criteria.

The systematic error associated to the reconstruction of the � direction arises from four
sources: the uncertainties in the resolution functions, the detector homogeneity, the detector

alignment with respect to the electron beam and photon radiation. To obtain the contribu-

tion due to the resolution, the uncertainty in the width of the resolution functions has been

propagated to the asymmetries. This amounts to 0:013 (0:026) for 1991-1993 sample and

0:010 (0:024) for the 1994-1995 sample in the � (�) channel. The homogeneity of the detector
has been studied using a dimuon sample which is known to have a back-to-back topology. This

analysis was done in steps of the azimuthal and polar angle and no distortion in the detector

was observed. The contribution to the systematic error is determined to be 0.002 (0.003) in the

� (�) channel. The alignment of the detector with respect to the electron beam was studied

using radiative dimuon events and found to be perfect. The e�ect of photon radiation has
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been estimated by using the KORALZ generator [14]. Two independent samples have been

generated, one of them including photon radiation and the other one not including it. The

di�erence in the asymmetries obtained using these two samples, of 0:001 (0:002) in the � (�)

channel, is assigned as the systematic error.

1991-1993 1994-1995

Source �A

� Direction Reconstruction 0.013 0.010

Channel � ! ��� Selection cuts 0.009 0.013
Finite MC Statistics 0.003 0.002

� Direction Reconstruction 0.026 0.024

Channel � ! ��� Selection cuts 0.011 0.015

Finite MC Statistics 0.004 0.004

Table 2: Breakdown of the systematic error �A on the azimuthal asymmetries Acc,

As and Asc.

To estimate the contribution to the systematic error of the selection, the cuts have been
varied within 20% and the fraction of background has been varied within one standard deviation.

Finally, we took account for the e�ect of limited Monte Carlo statistics on the e�ciencies.
No charge dependence of the e�ciencies was observed. The estimated systematic errors are

given in Table 2. These values apply to all the asymmetries.

Results and Conclusions

Distributions in the azimuthal angle �h for the selected events are shown in Fig. 5 for the
complete data sample. The measured values for the asymmetries Acc, Asc, As are given in
Table 3.

Acc Asc As

�� ! ����
91-93 0:005� 0:021� 0:016 �0:009� 0:021� 0:016 �0:016� 0:021� 0:016
94-95 0:000� 0:018� 0:016 0:036� 0:018� 0:016 �0:009� 0:018� 0:016

�+ ! �+ ���
91-93 0:027� 0:020� 0:016 �0:010� 0:020� 0:016 0:004� 0:020� 0:016
94-95 0:028� 0:018� 0:016 �0:008� 0:018� 0:016 �0:015� 0:018� 0:016

�� ! ����
91-93 0:044� 0:029� 0:028 0:032� 0:029� 0:028 �0:015� 0:029� 0:028

94-95 �0:019� 0:024� 0:028 �0:010� 0:024� 0:028 0:011� 0:024� 0:028

�+ ! �+ ���
91-93 �0:028� 0:029� 0:028 0:038� 0:029� 0:028 0:022� 0:029� 0:028

94-95 0:029� 0:025� 0:028 �0:024� 0:025� 0:028 0:031� 0:025� 0:028

Table 3: Measured azimuthal asymmetries for each channel. The �rst error is sta-

tistical and the second is systematic.
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The values of the weak dipole moments are obtained by solving Eqns.(15). Combining the

results for each weak moment taking systematic errors and their correlations into account

yields the �nal results:

Re(aw� ) = (0:0� 1:6� 2:3)� 10�3 ;

Im(aw� ) = (�1:0� 3:6� 4:3)� 10�3 ;

Re(dw� ) = (�0:44� 0:88� 1:33)� 10�17e � cm ,

where the �rst error is statistical and the second is systematic. The values are compatible with

the predictions of the Standard Model. The limits at 95% C. L. are jRe(aw� )j < 4:5 � 10�3,

jIm(aw� )j < 9:9� 10�3, jRe(dw� )j < 3:0� 10�17e � cm.
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Figure 1: Reference system used in this analysis. The z axis points in the � ight

direction and the x axis is �xed by the plane containing the � and the electron ight
directions.
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Figure 2: Geometric view of the � ight direction reconstruction. Each of the hadron

directions de�nes a cone of possible � directions. The construction involves reecting

one cone in the plane normal to the � direction. Requiring that the � 's be produced
back-to-back allows one to solve for the � direction up to a twofold ambiguity.

12



0

100

200

300

400

-0.1 -0.05 0 0.05 0.1
x 102

L3
1991-1993

b2

E
ve

nt
s

0

100

200

300

400

500

600

-0.1 -0.05 0 0.05 0.1
x 102

L3
1994-1995

b2
E

ve
nt

s

Figure 3: Distribution of the parameter b2 for data (dots) and Monte Carlo (his-
togram). The background is shown as hatched histograms.
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Figure 4: Reconstruction of the � ight direction for � � � events. The left plot
shows the distribution of the angle � between the reconstructed and the generated

� direction when the ambiguity is solved properly. The right plot shows the same

distribution when the wrong solution is taken.
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