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Abstract

A search is described to detect charged Higgs bosons via the process e+e� ! H+H�, using

data collected by the OPAL detector at center-of-mass energies of 130�172 GeV with a total

integrated luminosity of 25 pb�1. The decay channels are assumed to be H+ ! qq0 and

H+ ! �+�� . No evidence for charged Higgs boson production is observed. The lower limit for

its mass is determined to be 52 GeV at 95% con�dence level, independent of the H+ ! �+��
branching ratio.
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1 Introduction

The interactions between elementary particles are well described by the Standard Model (SM)

[1] which assumes that particle masses are created via the Higgs mechanism [2] through spon-

taneous symmetry breaking. The Standard Model contains one doublet of complex scalar

�elds and predicts a single neutral Higgs boson. The minimal extension of the Higgs sector in

the Standard Model consists of two Higgs �eld doublets [3] and predicts �ve Higgs bosons of

which three are neutral (h0, H0 and A0) and two are charged (H+ and H�). Despite a wide

experimental e�ort, no evidence for Higgs bosons has yet been observed.

The discovery of a charged Higgs boson would be a clear indication of physics beyond the

Standard Model. Supersymmetry [4] is one of the possible extensions of the Standard Model.

The Minimal Supersymmetric Extension of the Standard Model (MSSM), is the most popular

example of such a model and contains two Higgs �eld doublets. At tree level it predicts that

the charged Higgs boson is heavier than the W� boson, MH�
2 = MW�

2 + MA0
2. Radiative

corrections change this prediction [5], however the detection of a charged Higgs boson lighter

than the W� boson would severely limit the parameter space of the MSSM.

Searches for charged Higgs bosons were carried out at
p
s � 91 GeV [6], with the limit

MH� > 44:1 GeV being the most restrictive. In 1995�96 the center-of-mass energy of the

LEP collider has been increased in several steps up to 172 GeV. New lower bounds on the mass

of the charged Higgs boson above 50 GeV were recently reported [7] by the ALEPH and the

DELPHI Collaborations.

On the basis of a study of the reaction b ! s, the CLEO Collaboration [8] has set an

indirect lower limit of MH� > (244 + 63=(tan�)1:3) GeV, where tan � is the ratio of the

vacuum expectation values of the two Higgs �elds. This limit is valid in the two-doublet

extensions of the Standard Model referred as Model II, if the only new particles are the Higgs

bosons. However, in supersymmetric models, possible cancellations between contributions of

the charged Higgs boson and supersymmetric particles invalidate this limit [9].

The CDF Collaboration recently reported a search for the decay t ! bH+ followed by

H+ ! �+�� . A lower limit of MH� > 147� 158 GeV is derived for very large tan � depending

on the t�t production cross-section. For tan� < 40 no limit is derived, since in this regime the

assumed decay chain is no longer dominant [10].

Charged Higgs bosons can be produced in pairs in the process e+e� ! H+H� with a cross-

section which to leading order depends only on the Higgs boson mass and the center-of-mass

energy [11]. The Pythia program [12] is used to calculate the charged Higgs pair-production

cross-section, including initial state radiation, at the various e+e� collision energies and for

various H� masses. Higgs bosons decay predominantly to the heaviest fermions kinematically

allowed, which in the case of charged Higgs bosons can be �+�� or c�s pairs, since the c�b decay

mode is largely suppressed by the small CKM-matrix element, Vcb.

The branching ratio is model-dependent. When combining the results from the various

search channels BR(H+ ! �+�� )+BR(H
+ ! qq0) = 1 is assumed, where BR(H+ ! qq0) is the

sum of all hadronic branching ratios of the charged Higgs boson.
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2 OPAL detector and Monte Carlo generation

The OPAL detector [13], with its acceptance of nearly 4� steradians, and its good tracking,

calorimetry and particle identi�cation capabilities, is well suited for this analysis which searches

for widely di�erent event topologies. The apparatus is composed of a central tracking detector,

consisting of a silicon microvertex detector [14] and several concentric drift chambers inside a

0.435 Tesla magnetic �eld, surrounded by presamplers, time-of-ight scintillators and a lead-

glass electromagnetic calorimeter located outside the magnet coil. The magnet return yoke is in-

strumented for hadron calorimetry and is covered by external muon chambers. Lead-scintillator

detectors, the forward detector and gamma catcher, and silicon-tungsten calorimeters close to

the beam axis complete the geometrical acceptance down to 25 mrad polar angle1.

The signal selection e�ciencies and the background contributions are estimated using Monte

Carlo samples processed with a full simulation of the OPAL detector [15]. To generate the

e+e� ! H+H� events the Pythia [12] and Hzha [16] program packages are used. Both

include initial and �nal state radiation. The generated partons are hadronized using Jetset

[12]. Signal samples of 500 events for the c�ss�c, �+�� s�c and �+���
���� �nal states are produced

at �xed values of MH� between 40 and 75 GeV in steps of 5 GeV. For systematic checks some

high statistics samples of 2500 events are also generated with di�erent quark avors in the �nal

state.

The background estimates from the di�erent Standard Model processes are based on the

following event generators: Pythia is used to generate q�q() processes, Excalibur [17] and

Grc4f [18] for four-fermion �nal states, Bhwide [19] for e+e�(), Koralz [20] for �+��()

and �+��(), while Pythia, Phojet [21], Herwig [22] and Vermaseren [23] for e+e�q�q

and e+e�`+`� four-fermion �nal states from two-photon processes.

3 Event selection

The present search is performed at center-of-mass energies between 130 and 172 GeV, with

integrated luminosities measured by the silicon-tungsten calorimeters of approximately 2.5 pb�1

at both 130 and 136 GeV, 10.0 pb�1 at 161 GeV and 10.3 pb�1 at 172 GeV with 0.5�1.4%
error, depending on the center-of-mass energy, dominated by statistics. The analysis is sensitive

to all dominant H+H� �nal states, namely, the hadronic qq0q00q000, the semi-leptonic2 �+��qq
0

and the leptonic �+���
���� �nal states. The integrated luminosities can di�er from channel to

channel by less than 10%, since di�erent detectors are required to be fully operational in the

di�erent analyses.

The event analysis uses charged particle tracks, electromagnetic and hadronic calorimeter

clusters selected by a set of quality requirements similar to those used in previous Higgs boson

1The OPAL coordinate system is a right-handed 3-dimensional Cartesian coordinate system with its origin
at the nominal interaction point, z-axis along the nominal electron beam direction and x-axis horizontal and
directed towards the center of LEP. The polar angle, � is de�ned with respect to the +z direction and the
azimuthal angle, � with respect to the +x direction.

2The charge-conjugate �nal state q0q����� is also implied.
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searches [24]. The quality requirements applied in the search for the leptonic �nal state are

described in Reference [28]. Energy correction algorithms [25, 26] are used to prevent double

counting in the case of charged tracks and associated calorimeter clusters.

3.1 The leptonic �nal state

A search for anomalous production of di-lepton events with missing transverse momentum

has been presented in Reference [27] at
p
s = 130�136 GeV and in Reference [28] at

p
s

= 161�172 GeV. The latter includes a search for pair-produced charged Higgs bosons in the

leptonic channel, H+H� ! �+���
���� . At

p
s = 130�136 GeV the results of the search for pair-

produced scalar tau leptons are used, since the experimental signature of H+H� ! �+���
����

is identical to that of scalar tau (~��) pair-production, ~�+~�� ! �+ ~�01�
� ~�01, for the case when

the lightest neutralino, ~�01, is massless and stable. The experimental methods and results of

the analyses are summarized below. For details refer to [27, 28].

The signature for H+H� ! �+�� �
���� is a pair of tau leptons together with missing energy

and momentum. Tau leptons may be identi�ed by their decays into electrons, muons or hadrons.

In selecting candidate events the missing momentum is required to have a signi�cant component

in the plane perpendicular to the beam axis and the total missing momentum vector must point

away from the beam axis. Thereby Standard Model background with high energy particles

escaping down the beam pipe and giving rise to missing momentum along the beam axis, is

rejected.

A background that survives the above cuts arises from lepton pairs produced in two-photon

processes in which one of the initial state electron is scattered at a signi�cant angle to the

beam direction. Events that may have arisen from such processes are suppressed by vetoing on

energy being present in the forward detector, gamma catcher or silicon tungsten calorimeters.

To further suppress the remaining Standard Model background mainly from W+W� pro-

duction and two-photon processes additional cuts on the momentum of the observed particles

are applied. The cut values are optimized separately for each value of MH� considered using

an automated optimization procedure.

The results of the analysis are summarized in Table 1. Three candidates are selected in

agreement with the Standard Model expectation. None of them have identi�ed electrons or

muons, so all tau lepton candidates are consistent with hadronic decays.

In addition to the uncertainty due to the limited Monte Carlo statistics a 5% systematic

error is assigned to the estimated selection e�ciency to take into account de�ciencies in the

Monte Carlo generators and the detector simulation.

The dominant background at
p
s = 161�172 GeV results from W+W� production which

is well understood and the available high statistics Monte Carlo samples describe well the

OPAL data [29]. A 5% systematic error is assigned to the estimated background to take

into account the uncertainty in the expected W+W� production cross-section arising from the

uncertainty in the W� boson mass and de�ciencies in the Monte Carlo detector simulation. Atp
s = 130�136 GeV the dominant background comes from two-photon processes which are less

6



p
s MH� (GeV)

(GeV) 40 45 50 55 60 65 70 75

Number of events selected
133 0 0 0 0 0 0 � �
161 1 1 1 1 1 1 1 �
172 2 2 2 2 2 2 2 2

Number of events expected from Standard Model processes
133 1.1�0.4 1.1�0.4 1.1�0.4 1.1�0.4 1.1�0.4 1.1�0.4 � �
161 0.9�0.2 0.8�0.1 1.0�0.2 1.1�0.2 1.1�0.2 1.1�0.2 1.0�0.2 �
172 1.0�0.1 1.2�0.2 1.3�0.2 1.4�0.2 1.4�0.2 1.4�0.2 1.4�0.2 1.5�0.2

Signal selection e�ciency (%)
133 27.6�1.5 31.1�1.5 34.6�1.5 37.6�1.5 38.2�1.5 40.2�1.6 � �
161 44.2�2.2 46.8�2.2 50.2�2.2 51.2�2.2 53.0�2.2 56.4�2.2 59.0�2.2 �
172 29.0�2.0 35.0�2.1 40.4�2.2 44.6�2.2 46.2�2.2 46.6�2.2 51.2�2.2 50.8�2.2

Table 1: Leptonic Channel: The number of selected and expected events together with selection

e�ciencies at
p
s = 130�136, 161 and 172 GeV for di�erent values of MH�. The errors are

statistical only. The dashes indicate masses which are kinematically forbidden or not simulated.

Note that there is signi�cant overlap between the various MH�-dependent selections.

accurately modeled. The expected background at this center-of-mass energy is conservatively

set to zero in the background subtraction procedure described in Section 4.

3.2 The semi-leptonic �nal state

The semi-leptonic channel H+H� ! �+��qq
0 is characterized by an isolated tau lepton, a pair of

acoplanar jets and sizeable missing momentum due to the undetected neutrinos. The selection

is described below.

(1) The event must qualify as a hadronic �nal state as de�ned in [30].

(2) There must be at least one tau lepton identi�ed following Reference [31], which has to be

well isolated. The ight direction of the tau lepton is approximated by the direction of

the momentum vector of its visible decay products. The ratio of both the track momenta

(R
11=30
tr ) and the electromagnetic cluster energy (R11=30

em ) within an 11� half-angle cone

relative to that within a 30� half-angle cone around the direction of the tau lepton should

be larger than 0.95 and the cosine of the angle between the direction of the tau lepton

and the nearest track should be smaller than 0.94. If there is more than one tau lepton

in the event and only one of them decays leptonically, that one is kept, otherwise the one

with the largest R
11=30
tr is retained.

(3) Most of the two-photon and radiative two-fermion events are eliminated by requiring that

the polar angle of the missing momentum, �p, satis�es j cos �pj < 0:9.
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(4) Events with an energetic photon, identi�ed as electromagnetic cluster with energy greater

than 15 GeV that has no track within a 30� half-angle cone about the cluster axis, are

rejected to eliminate the remaining radiative events.

(5) The two-fermion background is further reduced by requiring the visible invariant mass of

the event, Mvis =
q
E2
vis � ~P 2

vis, to be smaller than 0.8
p
s; the total missing momentum

transverse to the beam direction, pT, to be larger than 0.13
p
s and the aplanarity3 to

exceed 0.005.

(6) At center-of-mass energies of 161�172 GeV to further suppress the remaining four-fermion

background, mainly from W+W� with one W� decaying leptonically, two additional

conditions have to be satis�ed. There should be no track in the event with momentum

larger than 0.25
p
s and the cosine of jet-jet angle in the hadronic system must exceed

�0.65 (�0.55) at ps = 161 (172) GeV. The two jets of the hadronic system obtained by

removing the decay products of the tau lepton are de�ned using the Durham jet-�nding

algorithm [37].

Table 2 shows the number of selected data events, the total expected background and the

signal e�ciency for MH� = 50 GeV after each cut at all four center-of-mass energies. The

agreement between data and background simulation is good. After all requirements no event is

selected in the data sample, while 2.7�0.2 (statistical error) events are expected from Standard

Model processes. Of these, the four-fermion processes account for 13.3�3.0, 65.8�7.0 and

90.5�5.4% at
p
s = 130�136, 161 and 172 GeV, respectively.

In the semi-leptonic channel the Higgs mass can be reconstructed from the hadronic system

with 2�3 GeV resolution by scaling the dijet invariant mass by the ratio of the beam energy

to the total energy of the two jets. This simple correction improves the mass resolution by

almost a factor of two and at the same time shifts the mass of the W� bosons towards its

nominal value, thereby decreasing the expected background in the mass range below 65 GeV.

The mass distributions are shown in Figure 1 before and after cut (6) for the selected events

and the expected background together with a signal of MH� = 50 GeV. Note that cut (6) is

also e�ective to reduce the background in the mass range below 60 GeV and that the remaining

background is concentrated around a mass of 70 GeV.

The avor independence of the selection is tested using Monte Carlo samples of H+H� !
�+�� s�c and H+H� ! �+��b�c. The observed di�erences are consistent within the statistical

error of 2:4%, which is conservatively incorporated into the systematic error.

The signal selection e�ciencies are a�ected by the following uncertainties: Monte Carlo

statistics, see Table 3; uncertainties on the tau lepton identi�cation e�ciency (including the

errors on electron and muon identi�cation), 3%; modeling of the cut variables excluding the

tau lepton identi�cation, 6%; and dependence on the avor of the �nal state quarks, 2.4%.

3Aplanarity is de�ned as 3
2
�3, where �i are the eigenvalues [�1 � �2 � �3 with �1 + �2 + �3 = 1] of the

sphericity tensor S�� =
P

i p
�
i p

�
i =
P

i jpij2, and measures the transverse momentum component out of the event
plane.
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Figure 1: Semi-leptonic channel: Scaled invariant mass distributions at
p
s = 130�172 GeV

normalized to the collected luminosity, (a) before cut (6) and (b) after all cuts. The selected

events are shown as dots with error bars, the Standard Model background estimate as a shaded

histogram and a signal sample for MH� = 50 GeV assuming BR(H+ ! �+�� ) = 0.5 as an open

histogram.
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130 GeV 136 GeV

Cut data SM bgrd. E�ciency [%] data SM bgrd. E�ciency [%]

1 736 728.8�3.2 99.0�0.4 688 689.0�3.2 97.8�0.7
2 53 51.3�1.3 61.0�2.2 56 47.2�1.3 57.2�2.2
3 28 25.0�0.8 57.8�2.2 25 22.4�0.7 54.8�2.2
4 26 21.5�0.7 57.4�2.2 24 19.0�0.7 54.8�2.2
5 0 0.5�0.1 40.4�2.2 0 0.2�0.1 42.4�2.2

161 GeV 172 GeV

Cut data SM bgrd. E�ciency [%] data SM bgrd. E�ciency [%]

1 1509 1464.5�3.1 98.6�0.5 1394 1294.6�2.2 98.2�0.6
2 126 110.6�1.4 67.4�2.1 131 116.3�1.1 67.6�2.1
3 46 48.8�0.7 65.2�2.1 63 64.4�0.7 65.8�2.1
4 41 42.9�0.7 64.8�2.1 58 59.8�0.6 64.8�2.1
5 2 4.1�0.1 50.2�2.2 12 15.4�0.2 44.8�2.2
6 0 0.7�0.1 48.2�2.2 0 1.3�0.1 44.2�2.2

Table 2: Semi-leptonic channel: Comparison of the number of observed events and expected

background together with the selected fraction of simulated signal events (MH� = 50 GeV)

after each cut. The errors are statistical only.

The background estimate has the following errors: Monte Carlo statistics, see Table 2;

modeling of the hadronization process estimated by comparing di�erent event generators, 9%;

modeling of the variables used to identify tau leptons, 5%; and modeling of the remaining

selection variables, 5%.

p
s Signal selection e�ciencies (%) for MH�

(GeV) 40 GeV 45 GeV 50 GeV 55 GeV 60 GeV 65 GeV 70 GeV 75 GeV

130 37.0�2.2 42.4�2.2 40.4�2.2 35.0�2.1 27.6�2.0 � � �
136 37.0�2.2 45.6�2.2 42.4�2.2 38.6�2.2 35.0�2.1 � � �
161 42.6�2.2 46.0�2.2 48.2�2.2 43.0�2.2 35.0�2.1 31.0�2.1 26.8�2.0 �
172 41.8�2.2 43.2�2.2 44.2�2.2 42.2�2.2 37.0�2.2 35.8�2.1 29.8�2.0 12.2�1.5

Table 3: Semi-leptonic channel: Signal selection e�ciencies for the various center-of-mass en-

ergies and charged Higgs masses. The errors are statistical only. The dashes indicate masses

which are kinematically forbidden or not simulated. For higher masses the selection e�ciency

drops due to cut (6).
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3.3 The hadronic �nal state

The hadronic channel, H+H� ! qq0q00q000, is characterized by an event topology with four well

separated hadron jets and large visible energy. The selection is described below.

(1) The event must qualify as hadronic �nal state as de�ned in [30].

(2) Events with a radiative photon or large missing energy are eliminated by requiring the

e�ective center-of-mass energy,
p
s0, calculated as described in Reference [36], to be at

least 0:87
p
s and the visible invariant mass to be at least 0:7

p
s.

(3) The events are reconstructed into four jets using the Durham jet-�nding algorithm [37]

with the visible energy as the scale parameter. The jet resolution parameter, y34, at which

the number of jets changes from 3 to 4, has to be larger than 0.01 at
p
s = 130�136 GeV,

and larger than 0.005 at
p
s = 161�172 GeV. The tighter cut at lower energies is necessary

because of the higher q�q background. Moreover each jet must contain at least one charged

track.

(4) At
p
s = 161�172 GeV, the remaining radiative q�q events are further suppressed by

vetoing on jets with properties compatible with those of a radiative photon, namely,

exactly one electromagnetic cluster, not more than two tracks and jet energy above
p
s�

121 GeV.

(5) To further reduce the q�q background the following requirements are imposed: the polar

angle of the thrust axis has to satisfy j cos �thrj < 0:8; the event shape parameter4, C,

has to be larger than 0.6 at
p
s = 130�136 GeV and larger than 0.45 at

p
s = 161�172

GeV; and the cosine of the angle between any pair of jets must be smaller than 0.62 atp
s = 130�136 GeV and 0.66 at higher center-of-mass energies.

(6) To test the compatibility of the event with the decay of two equal mass objects a four-

constraint kinematic �t requiring energy and momentum conservation is performed and

the mass di�erence between the two dijet systems is calculated for all three possible jet

pair combinations. The event is discarded if the �2-probability of the �t is below 0.01

or if the smallest mass di�erence is larger than 6 GeV at
p
s = 130�136 GeV and 8

GeV at higher center-of-mass energies. For all events passing this cut, to obtain the best

possible dijet mass resolution a �ve-constraint kinematic �t is performed for all three jet

pair combinations imposing energy and momentum conservation and equal dijet invariant

masses and the event is rejected if the largest �2-probability is below 0.01.

(7) At center-of-mass energies of 161 GeV and above a veto is applied against W+W� events

using the dijet masses calculated after the four-constraint kinematic �t. At
p
s = 161

GeV, since the W� bosons are produced practically at rest, the two jets having the largest

measured opening angle are assigned to one of the W� bosons and the two remaining

jets to the other. An event is rejected if both jet pairs have an invariant mass greater

4The C parameter is de�ned as C = (�1�2 + �1�3 + �2�3), where �i are the eigenvalues [�1 + �2 + �3 = 1]

of the generalized sphericity tensor S(1)�� =
P

i(p
�
i p

�
i =jpij)=

P
i jpij.
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than 70 GeV. At
p
s = 172 GeV the event is rejected if any of the three possible jet

pair combinations yields invariant masses greater than 74 GeV for both of the two dijet

systems.

For the remaining events, the jet pair association giving the highest �2-probability in the

�ve-constraint kinematic �t is retained. The resulting mass resolution is 1.0�1.5 GeV.
Table 4 shows the number of selected events, the estimated background and the fraction

of signal events retained for MH� = 50 GeV at all center-of-mass energies after each cut.

The agreement between data and expected background is good. In total, twelve events are

selected in the data, while 15.3�0.4 (statistical error) events are expected from Standard Model

processes. The four-fermion processes account for 10.1�1.2, 32.3�1.7 and 64.8�3.5% of the

expected background at
p
s = 130�136, 161 and 172 GeV, respectively. Figure 2 shows the

invariant mass distribution of the selected events together with the Standard Model background

expectation and a signal of MH� = 50 GeV.

130 GeV 136 GeV

Cut data SM bgrd. E�ciency [%] data SM bgrd. E�ciency [%]

1 744 733.8�3.2 99.8�0.2 676 679.7�3.1 99.8�0.2
2 173 201.7�2.1 94.2�1.0 184 180.2�1.9 93.0�1.1
3 11 11.5�0.6 62.8�2.2 14 11.6�0.6 59.4�2.2
5 4 3.7�0.3 49.2�2.2 4 3.9�0.3 50.4�2.2
6 2 1.2�0.2 33.4�2.1 2 1.6�0.2 34.4�2.1

161 GeV 172 GeV

Cut data SM bgrd. E�ciency [%] data SM bgrd. E�ciency [%]

1 1497 1453.5�3.1 100.0�0.2 1393 1310.8�3.4 100.0�0.2
2 392 374.5�1.4 93.6�1.1 359 368.9�1.3 94.6�1.0
3 62 53.2�0.5 75.6�1.9 88 82.5�0.5 72.2�2.0
4 59 50.8�0.5 75.6�1.9 87 80.2�0.5 72.2�2.0
5 21 19.2�0.3 67.2�2.1 36 38.1�0.3 59.4�2.2
6 8 8.9�0.2 52.4�2.2 14 18.6�0.3 48.8�2.2
7 3 5.0�0.2 45.4�2.2 5 7.5�0.2 42.2�2.2

Table 4: Hadronic channel: Comparison of the number of observed events and expected back-

ground together with the selected fraction of simulated signal events (MH� = 50 GeV) after

each cut. The errors are statistical only.

The systematic e�ects on the signal selection e�ciency are the following: Monte Carlo

statistics, see Table 5; �nal-state quark avor dependence, 2.4%; and modeling of the cut

variables, 5%.

The background estimate is a�ected by the following systematic uncertainties: limited

Monte Carlo statistics, see Table 4; modeling of the hadronization process estimated by com-

paring di�erent event generators, 7%; modeling of the cut variables, 6%. Since the theoretical

uncertainty on the prediction of the QCD four-jet rates is not known, conservatively its exper-

imental error of 15% [38] is taken which is dominated by statistics. Taking into account the

relative weight of the QCD background, this results in an 8% error on the background estimate.
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Figure 2: Hadronic channel: Invariant mass distribution using a �ve-constraint kinematic �t

at
p
s = 130�172 GeV normalized to the collected luminosity, after all cuts. The selected

events are shown as dots with error bars, the Standard Model background estimate as a shaded

histogram and a signal sample for MH� = 50 GeV assuming BR(H+ ! qq0) = 1 as an open

histogram.

p
s Signal selection e�ciencies (%) for MH�

(GeV) 40 GeV 45 GeV 50 GeV 55 GeV 60 GeV 65 GeV 70 GeV 75 GeV

130 32.4�2.1 32.4�2.1 33.4�2.1 29.6�2.0 22.2�1.9 � � �
136 29.8�2.0 36.6�2.2 34.6�2.1 26.0�2.0 26.8�2.0 � � �
161 36.0�2.1 41.4�2.2 45.4�2.2 41.4�2.2 36.4�2.2 31.4�2.1 28.0�2.0 �
172 24.6�1.9 40.4�2.2 42.2�2.2 39.6�2.2 39.0�2.2 29.4�2.0 31.2�2.1 20.0�1.8

Table 5: Hadronic channel: Signal selection e�ciencies for the various center-of-mass energies

and charged Higgs masses. The errors are statistical only. The dashes indicate masses which

are kinematically forbidden or not simulated. For higher masses the detection e�ciency drops

due to cut (7).
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4 Results

The statistical method of Reference [39] is used to calculate 95% con�dence level lower limits

on the charged Higgs boson mass. This method has been developed to derive exclusion limits

for particle searches when several candidate events are observed in di�erent decay channels

with di�erent mass resolutions and di�erent background conditions. The method introduces

an event weight for each channel and derives the con�dence limit from the sum of the event

weights for all candidates. The mass spectrum of the background is also taken into account.

The predicted background is accounted for by considering the selected events as signal

plus background. In the calculation of the limit the expected background is decreased by its

statistical and systematic error.

The lower bounds on the mass of the charged Higgs boson, at the 95% con�dence level,

obtained from the searches in the leptonic, semi-leptonic and hadronic channels, are presented

in Figure 3 as a function of the H+ ! �+�� branching ratio. The limits are obtained using the

cross section calculated by Pythia for the process e+e� ! H+H�. They take into account the

integrated luminosities of the data and the selection e�ciencies as a function of MH� at each

center-of-mass energy. The uncertainty on the signal e�ciency is incorporated into the limit

using the method described in Reference [40].

Charged Higgs bosons are excluded at 95% con�dence level independent of the H+ ! �+��
branching ratio up to a mass of 52 GeV. Upper limits on the production cross-section times

branching fraction of the decay to a given �nal state assuming the s-dependence of the charged

Higgs boson production cross-section, scaled to
p
s = 172 GeV, are presented in Figure 3 for

all three �nal states.
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