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I. INTRODUCTION

The advent of quantum algebras [1,2] precipitated many new results in the area of in-

tegrable models. Likewise their supersymmetric counterparts quantum superalgebras [3–6]

facilitate systematic treatments of integrable models which accommodate both bosonic and

fermionic degrees of freedom. An important subclass are those which may be interpreted

as describing systems of correlated electrons for their obvious physical applications in con-

densed matter physics. Among these are the supersymmetric (SUSY) t− J model [7,8] and

supersymmetric generalizations of the Hubbard model [9,10]. Particularly, it would be ben-

eficial if these models could provide some knowledge of the transitions between the metallic,

insulating and superconducting phases. It has long been known that an insight into these

properties may be gained by studying the effects of the boundary conditions on such models

(e.g. see [11,12]). Subsequently several authors have studied electronic models with twisted

boundary conditions [16–19].

Integrable models with twisted boundary conditions may be formulated within the frame-

work of quantum (super)algebras. This notion of twisting is more general than that usually

treated in electronic models whereby a twisted boundary condition is thought of as the in-

troduction of a phase factor into the periodicity of the model. Here our twisted boundary

conditions correspond to more general transformations of the local states and have their ori-

gins in the underlying symmetry of the model [20]. For a given R-matrix R(u) any matrix

M satisfying [M1M2, R(u)] = 0 allows an integrable model to be constructed with the trace

over the auxiliary space weighted by M . This is what we will refer to as a twisted boundary

condition.

The work of Reshetikhin [21] on multiparametric quantum (super)algebras permits a

natural way to construct integrable models also dependent upon additional free parameters.

In fact the model of Perk and Schultz [22] may be formulated within this framework [23].

We will make it apparent that there exists under suitable conditions a integrability pre-

serving mapping between these multiparametric models and those with twisted boundary
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conditions. Some particular cases have been studied previously [24–27]. We show that these

methods may be applied to any model with an underlying quantum (super)algebra symme-

try. By establishing this correspondence between models with twisted boundary conditions

and multiparametric models, it is reasonable to expect that the multiparametric solutions

may provide suitable test models for describing the various phases associated with correlated

electron systems.

As examples we will consider the cases of the SUSY t−J model [8] and the SUSY U model

[10]. As well as giving the Hamiltonians for the integrable multiparametric generalizations

of these two models, we have also determined the corresponding Bethe ansatz equations

which provide the starting point for an investigation into their thermodynamics.

The paper is organized as follows. In section II we present the general construction of

multiparametric spin chains and their relation to models with twisted boundary conditions.

In section III we illustrate how our general formalism applies to construct multiparametric

versions of the SUSY t-J and U models. The Bethe ansatz equations of the models are also

obtained. A summary of our main results is presented in section IV.

II. GENERAL CONSTRUCTION

Using Reshetikhin’s construction [21] for multiparametric quantum algebras, it is

straightforward to obtain the associated multiparametric quantum spin chain. Here we

demonstrate that under appropriate constraints these models may be transformed to quan-

tum spin chains with twisted boundary conditions; i.e. the additional parameters arising

from Reshetikhin’s construction may be mapped to the boundary.

Let (A, ∆, R) denote a quasitriangular Hopf (super)algebra where ∆ and R denote the

co-product and R-matrix respectively. Suppose that there exists an element F ∈ A⊗A such

that

(∆⊗ I)(F ) = F13F23, (I ⊗∆)(F )= F13F12,

F12F13F23 = F23F13F12, F12F21 = I (1)

4



Theorem 1 of [21] states that (A, ∆F , RF ) is also a quasitriangular Hopf algebra with

co-product and R-matrix respectively given by

∆F = F12∆F21, RF = F21RF21. (2)

In the case that (A, ∆, R) is an affine quantum (super)algebra we have from [21] that F

can be chosen to be

F = exp
∑

i<j

(Hi ⊗Hj −Hj ⊗Hi)φij (3)

where {Hi} is a basis for the Cartan subalgebra of the affine quantum (super)algebra and

the φij, i < j are arbitrary complex parameters. For our purposes we will extend the Cartan

subalgebra by an additional central extension (not the usual central charge) H0 which will

act as a scalar multiple of the identity operator in any representation.

Suppose that π is a loop representation of the affine quantum superalgebra. We let R(u),

RF (u) be the (super)matrix representatives of R and RF respectively, which both satisfy

the Yang-Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v).

For the supersymmetric case it is necessary to impose the multiplication rule

(a⊗ b)(c⊗ d) = (−1)[b][c](ac⊗ bd)

for homogeneous supermatrices a, b, c, d where [a] = 0 if a is even and [a] = 1 if a is odd

[28]. However with an appropriate redefinition of its matrix elements R(u) satisfies the

usual (non-graded) Yang-Baxter equation (e.g. see [29]). Throughout we adopt this latter

convention.

If R(u)|u=0 = P with P the permutation operator then RF (u)
∣

∣

∣

u=0
= P as a result of

(1). We may construct the transfer matrix

tF (u) = str0
(

π⊗(N+1)
(

I ⊗∆F
N

)

RF
01

)

= str0
(

RF
0N(u)R

F
0(N−1)(u)....R

F
01(u)

)

(4)
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where ∆F
N is defined recursively through

∆F
N =

(

I ⊗ I....⊗∆F
)

∆F
N−1

=
(

∆F ⊗ I....⊗ I
)

∆F
N−1. (5)

The subscripts 0 and 1,2,...,N denote the auxiliary and quantum spaces respectively and

str0 is the supertrace over the zeroth space. From the Yang-Baxter equation it follows

that the multiparametric transfer matrices tF (u) form a commuting family. The associated

multiparametric spin chain Hamiltonian is given by

HF =
(

tF (u)
)−1 d

du
tF (u)

∣

∣

∣

∣

∣

u=0

=
N−1
∑

i=1

hF
i,i+1 + hF

N1 (6)

with

hF =
d

du
PRF (u)

∣

∣

∣

u=0
.

Through use of (1) we may alternatively write

tF (u) = str0
(

π⊗(N+1) (I ⊗ JN) [(I ⊗∆N )(F10R01F10)] (I ⊗ JN )
−1
)

with

JN = GN−1GN−2....G1,

Gi = FiNFi(N−1)....Fi(i+1). (7)

We now define a new transfer matrix

t(u) = J−1
N tF (u)JN

= str0
(

π⊗(N+1) (I ⊗∆N ) (F10R01F10)
)

(8)

where we have employed the convention to let F denote both the algebraic object and its

(super)matrix representative. Through further use of (1) we may show that

t(u) = str0
(

F10F20....FN0R0N(u)R0(N−1)(u)....R01(u)F10....FN0

)
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and the associated Hamiltonian is given by

H = (t(u))−1 d

du
t(u)

∣

∣

∣

∣

∣

u=0

=
N−1
∑

i=1

hi,i+1 +
(

FN(N−1)....FN1

)2
hN1

(

F1N ....F(N−1)N

)2
(9)

where

h =
d

du
PR(u)

∣

∣

∣

∣

∣

u=0

.

The above Hamiltonian describes a closed system where instead of the usual periodic

boundary conditions we now have a more general type of boundary condition. The boundary

term in the above Hamiltonian is a global operator; i.e. it acts non-trivially on all sites.

However we can in fact interpret this term as a local operator which couples only the

sites labelled 1 and N . It can be shown that the boundary term commutes with the local

observables hi,i+1 for i 6= 1, N − 1. This situation is analogous to the closed quantum

(super)algebra invariant chains discussed in [30].

From the above construction we may also yield models with twisted boundary conditions

by an appropriate choice of F . Recall that we extend the Cartan subalgebra by the central

element H0. Let this element act as cI in the representation π where c is some complex

number. If we now choose φij = 0 for i 6= 0 in the expression (3) the matrix F factorizes as

F = M−1
1 M2 with

M = exp

(

l
∑

i=1

cφ0iHi

)

and l is the rank of the underlying quantum (super)algebra Uq(g). Using the fact that the

R-matrix satisfies

[R(u), I ⊗Hi +Hi ⊗ I] = 0, i = 1, 2, ..., l

tells us that

[R(u), M1M2] = 0.

In this case the Hamiltonian (9) reduces to

H =
N−1
∑

i=1

hi,i+1 +M2N
1 hN1M

−2N
1 (10)

which is precisely the form for a system with twisted boundary conditions (see [20]).
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III. EXAMPLES

In this section we illustrate how our formalism applies to construct a multiparametric

version of the SUSY t-J model [7] and the SUSY U model [10]. Both models are gl(2/1)

invariant and their formulation through the quantum inverse scattering method can be

found in [8] and [31], respectively. The first model describes electrons with nearest-neighbor

hopping and spin exchange interaction on a chain, while the second can be considered an

extension of the Hubbard model with additional pair-hopping and bond-charge interaction

terms. These models are of interest because of their possible connection with high-Tc su-

perconductivity. In order to turn our discussion more general, we will in fact handle with

their anisotropic or q-deformed versions [32], [33,34]. Of course, in the rational limit q → 1

all results reduce to their corresponding isotropic ones.

A. The supersymmetric t-J model

We begin by introducing the multiparametric Uq(gℓ(2/1)) R-matrix, which in terms of a

generic spectral parameter x and a deformation parameter q reads

RF (x) =



























































a 0 0 0 0 0 0 0 0

0 t
2
1b 0 c− 0 0 0 0 0

0 0 t
2
2b 0 0 0 c− 0 0

0 c+ 0 b

t2
1

0 0 0 0 0

0 0 0 0 a 0 0 0 0

0 0 0 0 0 t
2
3b 0 c− 0

0 0 c+ 0 0 0 b

t2
2

0 0

0 0 0 0 0 c+ 0 b

t2
3

0

0 0 0 0 0 0 0 0 w



























































(11)

where

a = xq −
1

xq
, b = x−

1

x
, c+ = x(q −

1

q
), c− =

1

x
(q −

1

q
), w = −

x

q
+

q

x
(12)
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and t1, t2, t3 are independent parameters written in terms of φ01, φ02, φ12 as

t1 = exp(−2φ01 + φ02 + φ12)

t2 = exp(−φ01 + φ02 + φ12) (13)

t3 = exp(φ01 − φ12)

The above matrix was already presented by Perk and Schultz [22] when studying a

multicomponent generalization of the six-vertex model.

Next we construct the transfer matrix tF (x) according to eq.(4) from which we find the

associated multiparametric Hamiltonian (see eq.(6) ) on a one-dimensional periodic lattice

HF =
N−1
∑

i=1

hF
i,i+1 + hF

N1,

where

hF
i,i+1 = −(

1

t22
c†i↑ci+1↑ + t22c

†
i+1↑ci↑ +

1

t23
c†i↓ci+1↓ + t23c

†
i+1↓ci↓)

− 2
[

1

t21
S+
i S

−
i+1 + t21S

−
i S

+
i+1 + 2 cos γ (Sz

i S
z
i+1 −

nini+1

4
)
]

+ i sin(γ)(ni − ni+1)− i sin(γ)(niS
z
i+1 − Sz

i ni+1)− cos γni + 2 cos γ (14)

Above c
(†)
i± ’s are spin up or down annihilation (creation) operators, the ~Si’s spin matrices,

the ni’s occupation numbers of electrons at lattice site i and γ is the anisotropy parameter

(q = eiγ). A similar version of a multiparametric SUSY t-J model has already been discussed

in ref. [35]. Notice that here it emerges systematically from our general construction. By

setting t1, t2, t3 → 1 in eq. (14), the usual terms of the anisotropic SUSY t-J model [32] can

be recovered.

The Hamiltonian (14) can be exactly solved through the algebraic nested Bethe ansatz

method. This procedure is carried out in two steps and the Bethe ansatz equations are given

by

t
2(N−M2)
1 t2M2

2 t−2M2

3

(

a(x
(1)
k )

b(x
(1)
k )

)

N
M1
∏

i=1

a(x
(1)
i /x

(1)
k )

b(x
(1)
i /x

(1)
k )

b(x
(1)
k /x

(1)
i )

a(x
(1)
k /x

(1)
i )

M2
∏

j=1

b(x
(2)
j /x

(1)
k )

a(x
(2)
j /x

(1)
k )

= −1 , k = 1, . . .M1,

t
−2(N−M1)
1 t

2(N−M1)
2 t2M1

3 (−1)M2

M1
∏

i=1

a(x
(2)
k /x

(1)
i )

b(x
(2)
k /x

(1)
i )

M2
∏

j=1

a(x
(2)
j /x

(2)
k )

b(x
(2)
j /x

(2)
k )

b(x
(2)
k /x

(2)
j )

w(x
(2)
k /x

(2)
j )

= 1 , k = 1, . . .M2 (15)
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where x
(m)
k (m = 1, 2 ; k = 1, ...,Mm) denote the Bethe ansatz parameters, N is the number

of lattice sites, M1 is the number of holes plus down spins and M2 is the number of holes.

We see from (15) that the additional parameters t1, t2, t3 have the meaning of external fields

(see e.g. [36,37])

Following the approach presented in the previous section, we perform the transformation

(8) and then set t3 =
t2
t1

(or φ12 = 0 , see eq. (13)) in order to find the anisotropic SUSY t-J

model with twisted boundary conditions (10)

H =
N−1
∑

i=1

hi,i+1 + hN1,

where hi,i+1 = lim{t1,t2,t3→1} h
F
i,i+1 and

hN,1 = −
[

t2N2 c†N↑c1↑ +
1

t2N2
c†1↑cN↑ +

(

t2
t1

)2N

c†N↓c1↓ +
(

t1
t2

)2N

c†1↓cN↓

]

− 2
[

t2N1 S+
NS

−
1 +

1

t2N1
S−
NS

+
1 + 2 cos γ (Sz

NS
z
1 −

nNn1

4
)
]

+ i sin(γ)(nN − n1)− i sin(γ)(nNS
z
1 − Sz

Nn1)− cos γnN + 2 cos γ (16)

B. The supersymmetric U model

Let us now construct a multiparametric version of the anisotropic SUSY U model, which

has been proposed recently as a new integrable model for correlated electrons (see ref. [33,34]

for more details).

We begin by recalling the trigonometric R-matrix associated with the one parameter

family of four-dimensional representations of Uq(gℓ(2/1))

R(x) = PŘ(x),

Ř(x) =
qx − q2α

1− qx+2α
P1 + P2 +

1− qx+2α+2

qx − q2α+2
P3. (17)

Here x and q are, respectively, the spectral and deformation parameters and α is a free

parameter which arises from the underlying representation. P is the permutation operator

and Pi, i = 1, 2, 3 are projectors whose explicit form can be found in [34].

10



We find the corresponding multiparametric R-matrix

RF (x) =



















































































































∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 t
2
1∗ 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0

0 0 t
2
2∗ 0 0 0 0 0 ∗ 0 0 0 0 0 0 0

0 0 0 t
2
1t

2
2∗ 0 0 t1t2t3∗ 0 0 t1t2

t3
∗ 0 0 ∗ 0 0 0

0 ∗ 0 0 ∗

t
2

1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0

0 0 0 t1t2t3∗ 0 0 t
2
3∗ 0 0 ∗ 0 0 t3

t1t2
∗ 0 0 0

0 0 0 0 0 0 0 t
2
1t

2
3∗ 0 0 0 0 0 ∗ 0 0

0 0 ∗ 0 0 0 0 0 ∗

t2
2

0 0 0 0 0 0 0

0 0 0 t1t2

t3
∗ 0 0 ∗ 0 0 ∗

t2
3

0 0 ∗

t1t2t3
0 0 0

0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ∗
t
2

2

t2
3

0 0 ∗ 0

0 0 0 ∗ 0 0 t3

t1t2
∗ 0 0 ∗

t1t2t3
0 0 ∗

t2
1
t2
2

0 0 0

0 0 0 0 0 0 0 ∗ 0 0 0 0 0 ∗

t2
1
t2
3

0 0

0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 ∗
t
2

3

t2
2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗



















































































































(18)

where t1, t2 and t3 are independent parameters also given by eq. (13) and “∗” denote the

elements of the R-matrix (17), which can be obtained from the projectors given in [34]. We

do not write them explicitly here since we will not need them later. Notice that here, in

contrast to the previous case (see eq.(11)), the new parameters t1, t2, t3 occupy also non-

diagonal positions. This is a peculiarity of higher representations and can also be verified

for other higher spin models ( e. g. spin 1 XXZ chain). In fact, our prescription for the

element F of the multiparametric R matrix is particularly interesting in these cases, where

it is not obvious how to construct RF .

Next we construct the transfer matrix tF (x) according to eq.(4) from which we find the
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multiparametric version of the anisotropic SUSY U model (see eq.(6) )

HF =
N−1
∑

i=1

hF
i,i+1 + hF

N1,

where

hF
i,i+1 = −ξc+i↑ci+1↑[−η−1ν+]ni↓ [−η−1ν−]ni+1↓ − h.c.

−ρc+i↓ci+1↓[−ην−]ni↑ [−ην+]ni+1↑ − h.c.

+[α]−1
q ξρc+i↓c

+
i↑ci+1↑ci+1↓ + h.c.

+[α]−1
q (ni↑ni↓ + ni+1↑ni+1↓)

+qα+1(ni↑ + ni↓ − 1) + q−α−1(ni+1↑ + ni+1↓ − 1) (19)

and ξ =
t2
3

t2
2

, η = t1t3
t2

, ρ = 1
t2
1
t2
3

, ν± = sgn(α)q±
1

2 ( [α+1]q
[α]q

)
1

2 . In the h.c. terms one should

notice that the parameters ti → t−1
i , i = 1, 2, 3. Equation (19) is a generalization of the

anisotropic SUSY U model [34], which can be recovered in the limit t1, t2, t3 → 1 .

This model can be exactly solved by means of the algebraic nested Bethe ansatz method

and the Bethe ansatz equations are given by

t
2(N−N2)
1 t2N2

2 t−2N2

3

(

x
(1)
k qα+1 − q−1

x
(1)
k q−α − 1

)N

=
N2
∏

j 6=k

x
(1)
k − x

(2)
j q2

q(x
(1)
k − x

(2)
j )

; k = 1, . . . N1

t
−2(N−N1)
1 t

2(N−N1)
2 t2N1

3

N1
∏

i

x
(1)
i − x

(2)
k q2

q(x
(1)
i − x

(2)
k )

=
N2
∏

j 6=k

−x
(2)
j + x

(2)
k q2

x
(2)
k − x

(2)
j q2

; k = 1, . . .N2 (20)

where x
(m)
k (m = 1, 2 ; k = 1, ..., Nm) are the Bethe ansatz parameters, N1 is the total

number of spins and N2 is the number of spins down.

According to the approach presented in the previous section, we perform the transfor-

mation (8) and then choose t3 = t2
t1

in order to find the anisotropic SUSY U model with

twisted boundary conditions, which yields

H =
N−1
∑

i=1

hi,i+1 + hN1,

where hi,i+1 denotes the local terms of the anisotropic SUSY U model [34] and

12



hN,1 = −t2N1 c+N↑c1↑(−ν+)nN↓(−ν−)n1↓ − h.c.

−t2N2 c+N↓c1↓(−ν−)nN↑(−ν+)n1↑ − h.c.

+[α]−1
q (t1t2)

−2N c+N↓c
+
N↑c1↑c1↓ + h.c.

+[α]−1
q (nN↑nN↓ + n1↑n1↓)

+qα+1(nN↑ + nN↓ − 1) + q−α−1(n1↑ + n1↓ − 1) (21)

IV. CONCLUSIONS

In this paper we have demonstrated a correspondence between multiparametric spin

chains and models with twisted boundary conditions in the expectation that this connec-

tion will provide further insight into the description of phase transitions of such integrable

systems. Our approach can be applied to any model with an underlying quantum (su-

per)algebra symmetry. We are particularly interested in models which describe systems of

correlated electrons and have studied the SUSY t− J and U models as examples.

Another important class of integrable models are those associated with the Temperley-

Lieb algebra. In [38] Zhang proposes a systematic method to generate multiparametric

extensions of these models. It is possible to adapt the techniques employed in this paper to

establish a mapping from models based on the Temperley-Lieb algebra with twisted bound-

ary conditions to associated multiparametric generalizations. With respect to correlated

electron systems, an example based on the Temperley-Lieb algebra has been described in

[39,40] to which this procedure can be applied.
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