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Dispersion in the Interaction Point

S. Petracca*, Dip. di Scienze Fisiche E.R. Caianiello, Univ. of Salemno and ILN.EN. Salerno, Italy
and
K. Hirata, KEK, High Energy Accelerator Research Organization, Tsukuba 305, Japan

Abstract

In the presence of a dispersion at the interaction point, the
betatron and the synchrotron oscillations affect each other.
Just as linear effects, the beam-beam kick modifies the syn-
chrotron tune, the bunch length, the energy spread etc, as
well as the betatron tune and the Twiss parameters. Disper-
sion is no longer enough to describe the coupled dynamics
and we needs two more parameters.

1 INTRODUCTION

The dispersion is a dangerous concept. Usually [1, 2], it
is defined in terms of the closed orbit (xg) in the betatron
phase space of a fictitious particle with a constant energy
(D = [xo(E)—%0(E0)]/(E — Ep)). Once upon a time, this
was a good definition with a full physical meaning for the
coasting beam accelerators. In modern accelerators with
RF cavities, particularly in electron rings, however, no par-
ticle has a constant energy. The dispersion defined as above
isakind of a limiting concept which has a physical meaning
only in the limit with a vanishing synchrotron tune: v, — 0.
If it was a useful concept, why do not we define “bispersion”
as a closed orbit difference in the synchrotron phase space
for a particle with a fixed slope (y")?

To discuss the interaction between betatron and syn-
chrotron motions, we should use concepts consistent with
the synchrotron motions. Otherwise, our discussion will
become quite complicated and we might need an acrobatic
manipulation of logics to be accurate. (It is something like
to discuss quantum mechanics using classical concepts).

The effects of dispersion at the interaction point (IP) has
been studied for long time {3, 4]. The synchrotron motion
was assumed to be unaffected and the interest was only on
the effect of synchrotron motion on the betatron motion.
There are several reasons to study it more carefully now.
First of all, the monochromatic collision[S] became an im-
portant and practical issue for tan-charm factories. In addi-
tion, for future high performance colliders, we need more
detailed controle of dispersion and a deeper knowledge of
it.

This paper is organized as follows. In Sect. 2 we discuss
the factorization of a general 4 x 4 symplectic matrix. Then
in Sect. 3, the one-turn map is parametrized for the case
with dispersion at the IP. Conclusions follow under Sect. 4.
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2 GENERAL 4 x 4 SYMPLECTIC MATRIX AND
ITS FACTORIZATION

It is well known that any stable symplectic 2 x 2 matrix m
can be represented as{1]

o ( cosp  sinp )t'l, a
—siny  cosp

where . = 27y, v being the tune. Here

‘=(-;§B\/B 1/(3/B>'

In Ref. [6], it was shown that any stable symplectic 4 x 4
matrix M can be factorized as follows:

M = H diag(m,, m,) H™?, )

(MR (S

and my(yy is m in Eq.(1) with suffices of u(v) for p, o and
[. Here, h is a 2 x 2 matrix and

ﬁ:jhtj=(—g]’ —TIC) j=(_01 é)

Here, b = /1 — det(k) is a constant. Note that H, as well
as M, is symplectic in 4-dim sense:

where

HYJH = J, J = diag(3, 7).

The 4 x 4 symplectic matrix has 10 free parameters. The
u and v modes have 3 parameters each (v, o, ). We need
4 parameters, 7, 7', ¢, and ¢’ to characterize the coupling
between two degrees of freedom.

In Ref.[7], it was shown that when the dispersion D van-
ishes in cavities, then 7 is identical to D and ¢ vanishes all
over the ring. For more general cases, D and D’ are not suf-
ficient and we need h, in particular ¢ and ¢’. To be precise,

. 0 D
smi= (0 o) ®

We thus call 77 the (generalized) dispersion.
The normal modes (u, u') and,(v, v’) are defined as

(u,v,v,0") = diag(t;t,t;}) H 1x,

where x are 4-vectors (physical variable): xt = (y, p, z, 6).
It seems convenient here to discuss the expressions of the



beam sizes under the assumption that the beam envelope
matrices for the normal modes are given as follows: (u?) =
W? = €, W) = (V2 = ¢, and (wu) = (W) =
(uv) = (wv') = (vu’) = (u'v') = 0. Ata glance, one can
get, for example,

(u?) = b%Buew + {n” + (BuC — aym)*}B e,
(P2> = b2'7u5u + {77 2 + (ﬁvcl - avn’)z}ﬂ;lfu:
(22) = {n? + (cuns Bum)2}B7 Leu + BubZe,
(%) = {¢® + (aul + BuC')?}B: teu + B y0en,
(yp) = —aub®ey + {vom’ — (¢’ +{7') + BuC( }eu,
<y2> = "b(au"? + ﬂun,)eu — b(au"] — ﬂv()ev»
<y5> = bﬁu(auc + ﬁucl)eu + b('}'u"'] - C)évy

where v = (1 + a2)/B.

®

3 BEAM-BEAM COLLISION

We assume that there is a single IP in the ring and there is a
dispersion 7. The revolution matrix from the IP to IP with-
out the beam-beam kick is

Mare = Ho dlag(mg,mg) H(;l:

where Hp is H, Eq.(3), with Ak being replaced by

[0 m

By sin pd )

0
COS fiy, £
cos i

v

0

My = ( ~1/B3 sin pg
and mJ being m$ with y replaced by 2. Note that for usual
electron rings, we have v, < 0. In the weak-strong picture
the dynamics of the single (test) particle in the weak beam
is influenced by the strong beam, which is not affected at
all. In the linear approximation the particle receives a kick
at IP from the strong beam. This interaction is described by
the matrix

1 0 0O

| —4n&/82 1 0 0
Mbb_' 0 0 1 0 k) (6)

0 0 0 1

which contains the vertical (nominal) beam-beam parame-
ter &, viz., for Gaussian bunches:

Te Nﬂg

~ 21y 00(0% + 00)

§o @)
N being the number of particles in the strong beam, r. the
classical electron radius, -y the relativistic factor, 02 the ver-
tical beam size.

00 = [Be +n3ed/8) 2, ®)

¢ and ¢ are the vertical and longitudinal emittances, and
all quantities are evaluated at the IP.

Now, the complete revolution matrix with the beam-
beam collision is:

M = MY*M,..MY>. ©)

4 CHANGE OF OPTICS

For the tunes, we can get the explicit form easily(7}

2cosfiy = cos p2+cos 1 —27€q(sin ,u2+x sin u9)+v/D,

(10)
where
D = (cos /‘3 — cos pd — 2n&o(sin ys — xsin u9))?
+16mw%2 x sin g sin g, (11)
and 9 2
) 12

X= 25 = 070

BBy alBy
is the synchrotron tune shift factor. The motion is stable if
andonly if{cosfr| <land D > 0.
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Figure 1: The (growthrate ~1) at & = 0.05, 89 = 0.1m,
2 = 10m and 1o = 0.5m as a function of +$ and ».

To lowest order in &, we get

13)

A synchrotron tune shift is thus predicted due to the com-
bined effect of 7 and &. The perturbative equation ,
Eq.(13), implies that the linear instability occurs for

Vy = Uy + &, v:— v+ EX.

¢ v, < half integers (betatron instability)
¢ v, < half integers (synchrotron instability).
e v, + v, Sintegers (synchro-betatrori instability).

The instability regions in the (), v2) plane is shown in Fig.
1, in terms of the growthrate. The three unstable regions
stated above are clearly seen.

For other parameters, we get the exact values numeri-
cally. In particular, the change of ’s and (s are of inter-
est. At the middle of the IP, by symmetry reason, we have
7’ = { = 0. InFig.2, we show n as a function of &. (When
12<0, M can become unstable and we do not get . Out-
side the instability region, the n(?) is the same as n(—10).)
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Figure 2: The dispersion 7 as a function of & for several
vz, With 9 = 0.1m, B¢ = 10m, 19 = 0.1, 79 = 0.1m. For
0 < 19 < 0.01, the curve is almost identical with that for
9 =0.01

9 =0.01.
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Figure 3: The ¢’ as a function of & for several v¢ > 0, all
other parameters are the same as previous figure.

Here, we see clearly, how the dispersion depends on v,. In
Ref.[4], the evaluation of D at the IP was done as follows:

D(€0) = D(0)/[1 + 27 cot(ud/2)].

This formula does not show the dependence on v? and
agrees only with the curve in Fig.2 for 2 = 0. The de-
viation of 7 from D is remarkable for v =~ 1.

For ¢’, we show it in Fig.3 for v2 > 0. We also see the
remarkable growth of ¢’ in particular for v? = v0. From
Eq.(5), there seems to be a possibly dangereous growth of
{p?) because of ¢’. Also from Eq.(5), the (y6) can be modi-
fied a lot which might affect the effective energy resolution
of the monochromatic collision.

5 DISCUSSION AND CONCLUSION

Because of the synchrotron instability, v, = 0 is one of the
singular point of M. Thus, we should modify Eq.(4) as

. 0 D
U.l}—rﬁr(lJ+h—(0 D,)‘

The discussion based on D might be dangerous with syn-
chrotron oscillations. As discussed in Ref.[7], D is a well

defined concept even with the presence of the synchrotron
oscillation as long-as D = D’ = 0 in cavities. By the
beam-beam insertion, however, this condition can be vio-
lated even if it was so before the insertion. In such a case, if
one insists D, (s}he might fall into an unsolvable confusion.
The (generalized) dispersion 7 is a natural extension of D
which (with ¢'s) can work for general cases.

One might understand the change of v, as caused by the
change of the momentum compaction factor a., through
the change of D all around the ring (am = (D/p), p be-
ing the bending radius). It is similar to understanding the
beam-beam tune shift (614) as caused by the change of 8,
all around the ring (2rv = [ ds/f), instead of looking at
the eigenvalues. When the synchro-betatron coupling be-
comes large, in particular for the monochromatic collision,
we can no longer use the traditional dispersion D which
suited to the coasting beams and we should treat the optics
more carefully and use more genaral formalism, There can
be a factorization method of the the revolution matrix sim-
pler and better than that discussed here. At least, however,
it is unthinkable that we can treat coupled synchro-betatron
oscillations with less parameters than the number of free pa-
rameters of the symplectic matrix (3,10, and 21 for 1d, 2d,
and 3d problems).
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