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Abstract

We report results of inclusive measurements of Λ
◦
s, produced in the forward

direction at the Spp̄S with
√
s = 630 GeV, using the UA8 small angle Roman Pot

spectrometers. These measurements cover the range in Feynman-xF and transverse
momentum, 0.6 < xF < 1.0 and 0.4 < pt < 0.7 GeV, respectively. Within a system-
atic uncertainty of ±20% on the absolute cross section measurements, the results
are indistinguishable from those made by some of us in two earlier experiments at
the CERN Intersecting Storage Rings, with energies,

√
s = 53 and 62 GeV. In the

xF -range, 0.6-0.9, the absolute cross sections are lower by a factor of 2 to 3 than
the predictions of the Lund model as embodied in the PYTHIA 5.6 and JETSET
7.3 Monte Carlo programs, indicating inadequacies in knowledge of the baryon frag-
mentation function. For the largest xF -range, 0.9-1.0, the measurements agree with
the Monte Carlo predictions. We have measured the average Λ

◦
polarization for our

events and find (6±12%), consistent with previous measurements at the ISR in the
present region of xF -pt.
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1 Introduction

Forward Λ◦ and Λ
◦

production has been extensively studied at the CERN Intersecting
Storage Rings in pp and pp̄ interactions with large aperture spectrometers[1-8]. Most of
the previous work has used inclusively measured Λ◦’s in the reactions:

p + p → Λ◦ + X (1)

p̄ + p → Λ
◦

+ X (2)

although results on Λ◦’s produced diffractively[5, 8] in pp interactions have also been
reported.

Λ◦’s measured inclusively in the fragmentation region (large xF ) of React. 1 are found
to satisfy Feynman scaling throughout the ISR energy range. In addition, detailed mea-
surements of the Λ◦ polarization in the fragmentation region of React. 1 yielded values
as large as 40%, and as large as 60% for diffractively-produced Λ◦’s, where there is no
dilution from Σ and Σ∗ decay. A remarkable demonstration of the s-independence of the
polarization[6] in the fragmentation region of React. 1 is that it changes by (0.8± 1.7)%
between 31 and 62 GeV center-of-mass energy.

Tests of Feynman scaling were extended, for charged particles, from the ISR to an
Spp̄S-Collider energy of 546 GeV by the UA5 Collaboration[9]. They find that, for charge
particle production in the beam fragmentation region, Feynman scaling over this larger
energy range is valid to ∼ ±10%.

In the work reported here, we have extended Feynman scaling tests over this energy
range to Λ

◦
’s produced in the beam fragmentation region of React. 2 with 630 GeV center-

of-mass energy. While Feynman-scaling is found to be valid over this large energy range
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– the invariant cross section is shown to be almost indistinguishable between ISR and
SPS-collider energies – the cross sections are found to be a factor of 2-3 times smaller
than predicted by the PYTHIA Monte-Carlo event generator. This observation will allow
PYTHIA to be “tuned” to give more reliable estimates of baryon production in the beam
fragmentation region. A measurement of Λ

◦
polarization in React. 2 is consistent with

zero, in agreement with earlier measurements in React. 1 in the same xF -pt region.
The p̄π+ decay products of the Λ

◦
produced in React. 2 were both detected in one

of the two UA8 Roman pot spectrometers[10], installed above and below the beam, re-
spectively, in the direction of the outgoing antiprotons. Although the UA8 apparatus
was not designed for this purpose, adequate acceptance was found for Λ

◦
’s which decay

between 19 and 21 meters downstream of the interaction point. When the Spp̄S lumi-
nosity reached values over 1030 cm−2sec−1, the measurement of forward Λ

◦
’s in the p̄-arm

became feasible.
The two Roman pot spectrometers provide independent measurements of React. 2.

Having two independent spectrometers (above and below the circulating beams) was par-
ticularly important in the early Λ◦ polarization measurements[2, 6], made with large for-
ward multi-particle spectrometers operated in two experiments at the CERN Intersecting
Storage Rings.

2 Apparatus and Trigger

A detailed description of our apparatus, its properties, triggering capabilities and inter-
face to the UA2 experiment are given elsewhere[10]. Thus, we only provide here a brief
summary of the spectrometer, in particular as regards the measurement[11] of React. 2.
UA8 was installed in the same interaction region as the UA2 experiment[12] and was
interfaced to the UA2 data acquisition system in such a way that UA8 could record data
in parallel with UA2.

The Roman-pot spectrometers, which used the low-β machine quadrupole magnets,
consisted of four pot installations positioned in each arm of intersection LSS4 at the
CERN Spp̄S-Collider. The four spectrometers are labeled according to which arm they
are in (P for outgoing proton and M for outgoing antiproton), and whether they are above
or below the beam pipe (“U” for “UP” and “D” for “DOWN”). As discussed below, the
MU and MD spectrometers were instrumented to allow data from React. 2 to be recorded
inclusively with the spectrometers running in a stand-alone mode (i.e. trigger provided
only by the UA8 spectrometers and no UA2 detectors used in the analysis).

Figure 1 shows a side view of the two UA8 spectrometers used. Each spectrome-
ter includes four Roman pots, each of which contain a chamber assembly and a plastic
scintillator, Sc1-Sc4, used for trigger purposes. The two quadrupoles Q1 and Q2 are,
respectively, vertically focusing and defocusing for a p̄ coming from the beam-crossing
region.

A system of wire chambers was constructed with high bandwidth readout electronics.
As discussed in Ref. [10], each chamber contained 6 multi-wire-proportional wire planes,
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y, y′, u, u′, v and v′, with 28 wires each, spaced by 2 mm. y and y′ have horizontal wires,
u, u′ and v, v′ are stereo views tilted by ±7◦, respectively, with respect to the horizontal.
The primed planes are shifted by half a wire spacing with respect to the unprimed planes,
to solve the left-right ambiguity. Thus, the y-resolution (vertical or bending plane) is much
better than the x-resolution (horizontal). With a 4-bit time-to-digital converter (5 ns least
count) on each wire, a chamber provides resolutions of ∼ 65µm and ∼ 670µm in the y
and x-views, respectively. The readout electronics also provided 8-bit logic signals, with
each bit corresponding to an “OR” of four contiguous wires from a 32-channel TDC[10].

Figure 2 shows a “beams-eye” view of the UA8 chamber aperture which is closest
to the center of the interaction region. The 4-lobed curve in the figure illustrates the
contour of the beam pipe which follows that of the quadrupole-magnet pole pieces. The
overlap between the beam pipe and rectangular chambers above and below the beam
illustrate the limited azimuthal range through which a particle may pass. A discussion of
the acceptance is given below in Sect. 3.2. Data were recorded with the bottom edge of
each pot set at either 12 or 14 beam widths from the beam axis, referred to below as the
“12σ and 14σ” data.

If a track is in the DOWN spectrometer, we define the “adjacent” spectrometer to
mean the UP spectrometer of the same arm. Similarly, we define “opposite” spectrometer
to be the one diagonally opposite the one containing a trigger particle.

As shown in Fig. 1, a typical Λ
◦

decays close to the end of the quadrupole Q1 in a
2 meter long region which starts 19 m from the interaction region. The p̄ and π+ are
detected in chambers 2 and 3 which are in a magnetic-field-free region between the two
quadrupoles. The p̄ travels through quadrupole Q2 and is detected in chamber 4 at the
end of the spectrometer. The low momentum π+ is strongly deflected by quadrupole Q2
and does not reach the last chamber.

Λ
◦

Trigger

The decay products of an Λ
◦

which decays near the end of the first quadrupole, Q1,
leave recognizable signatures in chambers 2, 3 and 4. Figure 3 shows a block diagram for
the Λ

◦
trigger for one of the spectrometers. As shown in this figure, the Λ

◦
trigger had

three components: (1) hit pattern logic based on latched “hit groups”1 in the y and y′

planes of all chambers in a spectrometer, (2) logic on the latched signals from the four
scintillators in a spectrometer and (3) a multiplicity signal which was generated on the
TDC card for the y plane of chamber 2. A more detailed description is given in the
following sections.

Hit pattern logic

For accepted events, the p̄ traverses chambers 2, 3 and 4, while the π+ only traverses
chambers 2 and 3. They are separated by at most 16 mm in chamber 2 and by at least
16 mm in chamber 3. An efficient trigger was devised which required the following hit
patterns. For this purpose, a “hit” is defined as a latched anode signal from at least one

1A “hit group” is a group of 4 contiguous wires, at least one of which has a hit signal on it.
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wire in a group of four successive wires and a “gap” is defined when there are no latched
anode signals in any of a group of four successive wires. The groups are numbered starting
from the group closest to the beam.

• No hits in chamber 1,

• chamber 2 not required to resolve the two tracks. Specifically, chamber 2 must have
1 hit, 2 or 3 adjacent hits, or 2 hits separated by one gap in the lowest three 4-wire
groups and no hits elsewhere,

• chamber 3 must resolve the two tracks. That is, we require 2 non-adjacent hits, or
2 adjacent hits and 1 non-adjacent hit,

• chamber 4 can have only one track. Therefore we require, 1 hit in groups 3 through
7 and no hits in groups 1 and 2.

The logic for this scheme was implemented using a total of 5 CMOS PALs for each
spectrometer. The hit pattern decision took about 50 nsec.

Scintillator logic

The scintillator logic was made in two steps: (1) signals from the scintillators in pots
2, 3, and 4 were required in the UP (or DOWN) trigger spectrometer, together with the
scintillator in pot 1 in veto; (2) scintillators 2, 3 and 4 in the adjacent DOWN (or UP)
spectrometer were put in veto. For example for the UP spectrometer, the final scintillator
logic was the coincidence, (1̄ · 2 · 3 · 4)UP · (2̄ · 3̄ · 4̄)DOWN.

This logic suppressed the background events which were mainly due to secondary
interactions in the quadrupoles originating from beam halo particles. This condition is
compatible with an inclusive trigger because the particles emitted in the same arm as the
fast Λ

◦
are necessarily low momentum particles which could not reach the scintillator Sc2

through quadrupole Q1.

Multiplicity logic

As a further refinement of the trigger, we required that there be two or three hit wires
in chamber 2. Three hits arise quite frequently because there exists a 10% probability
for a particle going through a wire plane to generate two adjacent hits. This additional
multiplicity logic was necessary because the Hit Pattern Logic was based on four-wire
groups and therefore could allow events with up to twelve hit wires, if the hits were
distributed among the twelve wires closest to the beam.

This condition was implemented by adding a simple circuit to the TDC card of the y
plane for chamber 2 (for both the spectrometers above and below the beam in the p̄ side)
which counted the wire hits as they were being read into the Hit Buffers via the readout
modules.
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The trigger decisions of Hit Pattern Logic, Scintillator Logic and Multiplicity Logic
were combined in the NIM Trigger Logic to give an overall Λ

◦
decision for each of the

p̄-spectrometers. The total time for this trigger decision was about 1.3µsec.

Rates and Suppression

The total Λ
◦

rates for four trigger stages are given in Table 1 for a luminosity of
1030cm−2s−1 and for the sum of UP and DOWN spectrometers. The raw trigger rate is
the counting rate of the scintillator coincidence 1̄234. Since we were required by the UA2
data acquisition system to run with a total UA8 rate of 0.2 Hz, the Λ

◦
trigger usually

used about one fourth of the total UA8 trigger rate. Roughly 10% of this trigger rate are
true Λ

◦
events.

The data sample collected during two months of the 1989 collider run corresponds to
an integrated luminosity of 1.5 pb−1. During these runs, pots 2 and 3 were positioned
12 beam widths (σ) from the beam. Pots 1 and 4 were set at 14σ. These positions
represented a good compromise between the expected Λ

◦
event rate and the additional

background rate generated in the UA2 experiment by the presence of the pots.

3 Event Reconstruction

3.1 Fitting Procedure

A χ2 fit is used to select good Λ
◦
’s from the sample of candidates. The p̄ stays closest to the

beam and crosses chambers 2,3,4. It has its momentum, direction and position measured.
The π+ crosses chambers 2,3 and has only its direction and position measured. To test
the hypothesis that the p̄ and π+ come from a particle of mass M which decays inside the
quadrupole, Q1, a χ2 minimization is performed using the program MINUIT[13]. There
are 7 free parameters: M , the Λ

◦
momentum P and its track slopes dx/dz, dy/dz, the zv

coordinate of its decay vertex and the decay angles cosθ and φ. θ is the angle of the decay
p̄, measured with respect to the normal to the production plane, n̂ = p̄B ×Λ

◦
/| p̄B ×Λ

◦
|

in the Λ
◦

rest frame and φ is its azimuthal angle with respect to the Λ
◦

direction. p̄B
and Λ

◦
are the beam antiproton and Λ

◦
laboratory momenta, respectively. These seven

parameters are determined for each event by minimizing the quantity:

χ2 =

∑30
i=1(ci − c0i)

2

σ2
i

(3)

The ci are the measured hit positions in all chamber planes and the c0i are the calculated
coordinates in the corresponding planes for the p̄ and π+. The c0i are calculated from the
above set of seven parameters, using first order matrix transport equations to propagate
the particles inside the quadrupoles. The index i runs from 1 to 30 (5 chamber points
times 6 planes per chamber) if there are no missing hits. σi is the spatial resolution on a
single wire plane position measurement[10], typically equal to 160 µ.
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The resulting χ2 distribution, shown in Fig. 4, looks reasonable, although there is a
tail which extends to quite large values. The percentage of background events in the
distribution is discussed below.

There exists one unique solution for about half the events. The other half have two
solutions with equally good χ2. This arises for the following reason; when the Λ

◦
and

its decay plane are in the vertical plane y − z (see Fig. 1), the two decay particles al-
ways stay in that plane, because there is no field component along the y direction inside
the quadrupoles. The occurence of a 2-solution event depends on the resolution of the
x-coordinate measurement of each point in a chamber and on the systematic error on the
chamber positioning along x. Due to the orientation of the stereo views in the cham-
bers, the x-resolution is much worse than the y-resolution: σx = 670 µ and σy = 65 µ.
The systematic shift along the x direction is about 1 mm. For both spectrometers, the
percentage of 2-solution events is well reproduced by Monte Carlo calculations.

The fits for the 2-solution events are only effective in the y − z plane. In that case,
one solution has the p̄ going down and the other solution has the p̄ going up at the decay
vertex point in the vertical plane y − z. All variables are stable for the two solutions,
except φ and zv. The φ values for the two solutions are related by φ1 + φ2 ∼ 0, and z
by zv1 − zv2 ∼ 70 cm. For these events, both solutions are used and each is weighted by
0.5 in the final xF , pt, and cosθ analysis. The resolutions on these variables, estimated
by Monte-Carlo calculations, are σxF = 0.008, σpt = 0.009 GeV and σcosθ = 0.1.

Figure 5 shows the invariant mass distribution of the p̄π+ system. It has a well-shaped
peak, centered at the Λ

◦
mass value. A Monte-Carlo calculation shows that the acceptance

in the mass range between the Λ
◦

mass and 1.6 GeV is larger than the acceptance at the
Λ
◦

mass with the same trigger conditions. Therefore, the mass peak can not be due to
an acceptance effect of our very small aperture spectrometers.

Table 2 gives a summary of the event samples at each step of the analysis. “Chamber
points found” means events with no point in chamber 1, two points each in chamber 2 and
3, and one point in chamber 4. Reconstructed events are events which are successfully fit
with the Λ

◦
decay hypothesis. There is a final fiducial cut made in the chambers.

Figure 6 shows the y-coordinate distributions of the p̄ and π+ in chambers 2,3 and 4 for
the UP and DOWN spectrometers, respectively. The Monte Carlo predictions, discussed
is Sect. 3.2, are seen to be in excellent agreement with the data.

Figure 7 shows the xF and pt distributions of the final sample of events. They display
the ranges covered in these two variables and illustrate the extreme xF -values of the data
sample. Again, there is excellent agreement between the Monte Carlo predictions and the
data. Since the events reported here are in a rather limited region of phase space, for all
predictions shown in Figs. 6 and 7, the Monte Carlo events are generated according to
the parametrization of the measured cross sections of the R608[6] experiment.

Not surprisingly, there is a strong correlation between xF and pt due to the small
aperture of the Roman pot spectrometers. This is shown in Fig. 8, which are scatter plots
of the two variables in the UP and DOWN spectrometers, respectively.

6



3.2 Geometric Acceptance

The geometrical acceptance for Λ
◦
’s is calculated using a Monte-Carlo simulation of the

UA8 spectrometer, for Λ
◦

coming from the crossing region and decaying near the end of
the first quadrupole Q1.

The simulation takes into account the parameters which define the two incident beams:
the bunch length, the angular divergences (∼ 0.18 mrad in the horizontal and vertical
planes) and the momentum spread (0.1%). The decay particle trajectories inside the
quadrupoles are calculated using first order matrix transport equations. Multiple scatter-
ing is simulated in the pot windows, chambers and scintillators. The digitization of the
chamber information takes into account double hit production, non-linear drift speed and
non-uniform TDC bin sizes. The efficiency of each chamber was measured independently
and introduced in the calculation. A fiducial region is defined in each chamber where the
efficiency is close to 100%. The shape of the pipe boundary inside the quadrupole Q2
limits the acceptance of the proton and is carefully simulated (see Fig. 2).

Monte Carlo events which satisfy the trigger logic conditions are processed with the
same analysis package used to process the real data. The multiple scattering calculation
has been checked using an elastic data sample. The momentum resolution of elastic p̄’s
measured with chambers 2,3,4 is well reproduced by the Monte-Carlo. More generally, the
momentum resolution of p̄’s measured by chambers 2,3,4 is well described between 150 and
315 GeV by the relation σpȳ = (α2p4 + β2p2)1/2, where α2 = 0.74× 10−7 cm2GeV−2 and
β2 = 0.20×10−2 cm2. ȳ is the mean coordinate of the particle trajectory inside quadrupole
Q2 – the momentum resolution depends on the y-coordinate, due to the quadrupole field
shape. For elastic events, ȳ and σp values are equal to 4.8 cm and 6.6 GeV, respectively.

The measured pt is approximately given by xF · p̄B · (y/d), where y is the coordinate of
the p̄ in chamber 2 and d is the distance of this chamber from the crossing region. Due to
the very small aperture of the spectrometer which accepts decay protons in a ∆y interval
of only 0.4 cm, the acceptance is restricted to the very small ∆pt range. For each value of
xF , the acceptance peaks at a value of pt which depends linearly on xF . The acceptance
grows with increasing xF , up to a value about 0.004.

The angular spread of the beams and the beam momentum resolution smear out
measured values of xF and pt, with σxF ∼ 6× 10−4 and σpt ∼ 0.05 GeV. Therefore, the
acceptance in 0.1 bins of xF is nearly independent of the beam parameters.

3.3 Corrections

In order to arrive at the absolute cross sections for React. 2, we calculate additional cor-
rections, whose effects are not included in the Monte-Carlo simulations described above.
All these corrections with their estimated errors are listed in Table 3.

The hit patterns in the chambers have been carefully simulated in the Monte-Carlo
calculations, taking into account double hit production, the multiplicity trigger logic re-
quirement and efficiencies. However, the Monte Carlo does not take into account any
extra hits in the chambers. Since Λ

◦
candidates which contain at least one extra point
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in a chamber are rejected during the analysis, this effect was corrected for statistically.
The fraction of events lost was estimated using a sample of events taken without these
requirements.

A sample of such rejected data events which contain three points in chamber 2, two
points in chamber 3 and one point in chamber 4 were studied in order to get an upper
estimate (3.4%) of Λ

◦
events lost. Other rejected patterns with an extra point in chambers

3 or 4 are much less frequent and the corresponding corrections can be neglected.
The relative positions of chambers 3 and 4 with respect to chamber 2 are determined

to within ±50µ, using the momentum distribution of the elastic antiproton and also the
Λ
◦

mass distribution. Assuming a ±1 mm shift in the nominal value of the y position of
chamber 2 in the Monte Carlo, we found a systematic variation in the number of accepted
events by ±15%. The systematic error introduced on the acceptance calculation due to
x misalignment of the chambers relative to nominal beam axis is estimated to be ±3.5%

Monte-Carlo calculations were done with a nominal vacuum pipe. If the dimension
of the pipe is reduced by 1 mm, the acceptance value changes by ∼ 15%. That change
corresponds to the maximum possible deviation from the nominal value tolerated during
the design and installation inside the quadrupoles.

As noted above, the χ2 distribution (see Fig. 4) has a small tail at large χ2 values.
The χ2 distribution can be understood if systematic uncertainties in the transverse (x)
chamber positions are taken into account. A correction factor of 0.94 is included in Table 3
to take into account the presence of background events in the final sample.

The loss of events due to particle interactions in the windows of the pots, scintillators
and chambers have also been estimated. Other corrections are for the decay probabil-
ity of the π+ and the unseen decay mode of the Λ

◦
. We also multiply the resulting

cross section by a factor of 2 to compensate for the unseen Λ◦ particles produced in the
opposite hemisphere, thus permitting a direct comparison with previous measurements
of Λ◦-production in pp interactions. The uncertainty in the luminosity measurement is
obtained by comparing two different monitors.

Multiplication of all these correction factors gives us an overall correction of 4.04
which is applied to the data. The systematical uncertainty on the absolute cross sections
is estimated to be ∼ ±20%.

4 Physics Analysis

4.1 Cross Section

Table 4 shows the invariant cross sections in four bins of xF , for the UP and DOWN
spectrometers separately. In each case, the first error is statistical and the second error is
the systematic uncertainty. Together with the results of this experiment, Fig. 9 shows the
previous measurements made at the CERN-ISR by the R603[1] and R608[6] experiments.
Although, there are systematic differences seen between the R603 and R608 data sets for
xF > 0.8, our present results are compatable with the (second generation) R608 points
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over the entire xF -range shown. No significant increase of the invariant cross section is
seen in the center-of-mass energy range, 52–630 GeV.

4.2 Lund Monte-Carlo calculations

The invariant cross sections for React. 2 are compared in Fig. 9 with Lund Monte-Carlo
calculations for pp̄ interactions at 630 GeV. The default values of the programs (PYTHIA
5.6 and JETSET 7.3)[14] were used throughout these calculations. The comparison shows
that the Lund Monte Carlo values of the invariant cross section are 2-3 times larger than
the measured ones. This discrepancy is most likely due to our limited knowledge of the
baryon fragmentation function[15] used in PYTHIA.

4.3 Λ
◦

Polarization

The Λ
◦

polarization, P, has been obtained from the cosθ
′
distribution, where θ

′
is the angle

of the emitted p̄ in the Λ
◦

rest frame, with respect to the final (precessed) polarization
vector. Because the precession angle is small (a mean value of 6◦) θ

′
does not differ very

much from θ, the measured θ defined in Sect. 3.1. The raw distribution is modified to
take into account the acceptance correction factor and is fitted according to the formula
dN/dcosθ

′
= K(1 + αPcosθ

′
) where α = −0.642 is the Λ

◦
decay parameter and cosθ

′
is

in the range, -0.8 to 0.8. Outside this range, cosθ
′

is not reliably calculated due to the
unavoidable uncertainty in the chamber positioning along x. The measured P values are
0.00 ± 0.15 and 0.17 ± 0.20, in the UP and DOWN spectrometers, respectively. These
results are consistent with previous measurements done at the ISR[2, 6] in the same xF
and pt ranges, as shown in Fig. 10.

5 Conclusions

We have reported a measurement of the inclusive Λ
◦

invariant cross section in the xF
range, 0.6-1.0. The observed Λ

◦
’s are emitted forward at a very small angle with respect

to the outgoing p̄ beam (∼ 2 mrad) and decay inside a quadrupole in a 2m length region
which starts 19m from the interaction region. They are clearly identified using a χ2

minimization procedure.
The cross sections are found to be indistinguishable from previous measurements in

the fragmentation region made at the ISR in the c.m. energy range, 52-62 GeV. The
polarization of the Λ

◦
’s is found to be consistent with zero, as it was for Λ◦’s in the same

xF and pt region, produced in pp interactions at the lower ISR energies.
Finally, we have shown that PYTHIA Monte Carlo predictions for Λ

◦
production at

large xF are a factor of 2 to 3 larger than our measurements. Our results can be used to
“tune” PYTHIA to give more reliable baryon predictions in the fragmentation region.
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Trigger Requirement Rate (Hz)
Scintillators (Raw) 400.
Hit pattern Logic 1.
Scintillator Logic 0.1
Multiplicity Logic 0.05

Table 1: Λ
◦

trigger rate suppression. See text for a description of the three trigger
components.

UP DOWN
Event Category Spectrometer Spectrometer
Raw Triggers 40072 35890
Chamber points found 10319 7481
Reconstructed Λ

◦
5614 2348

After fiducial Cut 1548 995

Table 2: Λ
◦

event sample. See text for a discussion of the reconstruction steps. The
unequal numbers of events in UP and DOWN spectrometers is due to different distances
of the chambers in the two spectrometers from the beam axis.
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Correction Factor
Background in χ2 dist. 0.940±0.010
Chamber 1 Veto 1.190±0.054
Extra point in chamber 2 1.034±0.005
Pipe 1.075±0.075
Nuclear Interactions 1.041±0.007
Decay of π+ 1.002
Unseen decay mode Λ

◦
→ nπ0 1.558

Unseen Hemisphere 2.000
x-coordinate 1.000±0.035
y-coordinate 1.000±0.150
Luminosity measurement error 1.000±0.081
FINAL CORRECTION 4.042±0.812

Table 3: Cross Section Corrections

xF < xF > < pt
2 > Events E∗d3σ/dp3

bin (GeV2) (mb GeV−2)

UP Spectrometer
0.6-0.7 0.67 0.18 73 0.552±0.107±0.107
0.7-0.8 0.76 0.19 396 0.599±0.055±0.116
0.8-0.9 0.85 0.30 653 0.344±0.023±0.066
0.9-1.0 0.935 0.36 423 0.128±0.079±0.025

DOWN Spectrometer
0.6-0.7 0.67 0.20 43 0.510±0.105±0.099
0.7-0.8 0.76 0.26 240 0.464±0.041±0.090
0.8-0.9 0.85 0.33 443 0.295±0.019±0.057
0.9-1.0 0.94 0.40 269 0.100±0.068±0.019

Table 4: Invariant cross sections for Λ
◦

in React. 2, multiplied by a factor of 2 to allow
comparison with 2-arm inclusive Λ◦ cross section in React. 1.
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Figure 1: General layout of the two UA8 spectrometers installed in the outgoing p̄-arm
with a typical Λ

◦
event, shown decaying in the vertical plane, in the UP spectrometer

(drawn with different vertical and horizontal scales). The horizontal axis is the longitudi-
nal z-axis. The vertical axis is the y-coordinate. Q1 and Q2 are each pairs of quadrupole
magnets, The four chamber packs (solid vertical lines) each consist of six wire planes as
described in Ref. [10], are positioned before and after each magnet at the longitudinal
positions shown. Scintillation counters (dashed vertical lines) are installed next to each
chamber pack.
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Figure 2: The UA8 spectrometer aperture viewed from the interaction region. The shaded
rectangles indicate the sensitive regions of the first wire chambers at a distance z = 13 m
from the interaction region center. The curved line indicates the walls of the beam pipe
inside the quadrupole magnets.
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Figure 3: Block diagram of the Λ
◦

trigger. See text and Ref. [10] for a detailed explanation.
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Figure 4: χ2 distributions of the MINUIT fit for events in the UP and DOWN spectrom-
eters, respectively.
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Figure 5: Invariant mass of p̄π+ systems measured in the UP and DOWN spectrometers,
respectively.
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Figure 6: Distributions of the (vertical) y-coordinate of the Λ
◦

decay products in all
chambers for the UP and DOWN spectrometers, respectively. Histograms are data and
solid curves are Monte Carlo calculations. Shifts seen between UP and DOWN spec-
trometers are due to different distances from the beam axis for the chambers in the two
spectrometers.
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Figure 7: xF and pt distributions of the Λ
◦

sample in UP and DOWN spectrometers,
respectively. The histograms are data and the solid curves are Monte Carlo calculations,
as explained in the text.
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Figure 8: xF vs. pt for the Λ
◦

sample in the UP and DOWN spectrometers, respectively.
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Figure 9: Measured invariant Λ
◦

cross section in four bins of xF versus p2
t compared

with previous measurements from the R603 [1] and R608[6] experiments at the ISR. The
cross sections are multiplied by a factor of 2, so that they can be directly compared with
the 2-arm total Λ◦ cross section in pp interactions. The bands for each bin of xF show
the PYTHIA Monte-Carlo calculated values discussed in the text. The hatched regions
represent ±1σ regions for the Lund predictions at 630 GeV.
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Figure 10: Measured Λ polarization together with previous measurements from R603 [2]
and R608[6] shown versus pt. The result from our experiment is averaged over UP and
DOWN spectrometers. The mean x̄F values are shown for each set of data.
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