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A. PARTICLE MOTION IN MAGNET SYSTEMS

1. TRAJECTORY EQUATIONS IN A FIXED COORDINATE SYSTEM

For guiding particle beams, we need bending and focusing. For charged particles, this
js effectively done with electromagnetic fields which exert on the particles the Lorentz
force
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p= Se(md) = e +VxB) with E in L and By = 310°0 %8 for vac, B=1T (1)

Thus a magnetic field of one Tesla gives the same bending force as an electric field of
300 million Volts per meter for relativistic particles with v ~ c. We therefore consider
transverse magnetic fields only.

Since the relativistic mass is not changed by the magnetic field, we have
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Inserting the radius vector (Fig. 1)
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into eq. (la), we have
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§ = 2(28y - XBy).
Fig. 1: Fixed Cartesian coordinate
system {z, x, S}
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and obtain the exact trajectory equations in the fixed coordinate system {z, x, s}
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* An abridged version of "Basic course on accelerator optics" published in CERN 85-19.




2" = ¥-% {x'Bg - (1 + 2'?)By, + x'2'B,}
S with Y =yT+ 22 + x'7, (3)
x" = - ¥-% {z'Bg - (1 + x'3)B, + x'z'By} s
s

2. MOTION IN A HOMOGENEQUS FIELD B,(x) = CONST,

We insert B, £ B = const, By 2 B = 0 into egs. (3) and have, with 25 = 0:

_ . x" _ 1 _e _
2" =0 H (—]._W_ - 3 = -p-Bz = const. (4)
curvature radius of curvature

The particle moves on a circle with radius p.
This can also be seen by setting the Lorentz force equal to the centrifugal force:

2
esz=-£;— ; %BZ=-%.

Numerical evaluation of p (in m) for a given field B* (in T) and momentum p* (in GeV/c):

1 8" 5% B* (1]
- - ~1 = m = 2
) [m 4] " 10% eV 0.2998 m (5)

0.2998 « 10° %

3. CURVED COORDINATE SYSTEM FOLLOWING A REFERENCE TRAJECTORY (Fig. 2)

We choose, in the horizontal plane z = 0, a reference trajectory (center of beam). In
order to describe particle trajectories in the vicinity of the reference trajectory, we
introduce a right-handed vrectangular
system of coordinate vectors {z, x, s}
that follows this trajectory, with 4
pointing in its direction and z being
orthogonal to the reference plane z 2 0,
Within a small range of s, this system
can be viewed as a cylindrical coordina-
te system {z,r,8} with r =p + x and

$ =%. For p»», the system transforms A
v
into the Cartesian coordinate system ® p
Fig. 1. Fig. 2: Curved coordinate system {z,x,s}

4, FIELD EXPANSION IN THE CURVED COORDINATE SYSTEM, WITH B, = B. = O IN THE SYMMETRY
PLANE z 2 O

We assume, at any given s, the field symmetry

B,(z) = B,(-2) ; By(z) = - By(-z) ; Bg(z) = - Bg(-2).



The field then may be expanded as

-]
B, = I 2% x¥ay (even in z)
i,k=0
[=+]
By =z I 2% x* by, (odd in 2)
i,k=0
o« -
Bg =ze I 22t XK dy (odd in z)
i,k=0

where the coefficients ajx, biks d;, are functions of s.

(6)

The field must obey Maxwell's equations which, in the curved (approximately cylindrical)

coordinate system, demand
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and yield, for the expansion coefficients, the recursion formulae

(k + 1) ay a1 = (27 + 1) bax

by = (k + 1)(ds ka1 ¥+ %dik)

ali = (21 + 1)(dy * %‘di,k-l)

aBy. !
53} = 10; 0; 0}

2(i + 1)(age1c ¥ lai+1,k-1) + (k + 1)(bgke1 ¥ %bik) +dj =0.

)

Using these formulae and writing the field in the symmetry plane z = 0 as

£ 8,(s) = h(s) + k(s)+x * In(s) ex2 + Ings) exe + 0(4)

with h=%8=- L dipote
k = %%B—XZ- quadrupole
m= %%?25 sextupole
= %fgf—:- octupole,

the general field expansion with symmetry plane is, in the curved coordinate system

£, = h+kx + Lot - 5822 ¢ Lnxe - Jah(s - 2m) +an ¢ nixz® + 0(4)

%Bx = kz + mxz + %—nx‘z - %{h(B - 2m) +a" + n}z® + 0(4) (7)
%BS = h'z+a'xz + (ha' +%m')x’z - %—B'z3 + 0(4)

with a=dnt+k and B=h'-hktm.




5. LINEAR TRAJECTORY EQUATIONS IN THE CURVED COORDINATE SYSTEM

The time derivatives of the moving axes of the curved coordinate system are
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where s is the velocity of the particle projection on the reference orbit; Then
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and inserting into the Lorentz equation (la) yields the trajectory equations

S _ve X
z" +.-;—2~Zl = EF{X'BS-(1+E)BX}
. ! (8)
ne S o1+ X Ve g . + X
X"+ §2x p(1 5 TP {z'Bg - (1 p)BZ}
with ¥ =vﬁ1 + %)2 + 2'8+ x'2 and, by differentiation,
: ,
..l
s2 2 y2y8¢
We take here only the linear part of these equations, setting
_S‘.’.g,1+% ;i s5=0
1.1n.4
5 = po(1 0)
e 1 e . e
—p-zz-3+kx H FszkZ H FBS”O
and have the linear trajectory equations in the curved coordinate system:
2"+ kz =
(9)

0
w_o(k-Ly)x = LAP
x" -k pz)X P Po
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6. GENERAL SOLUTION OF TRAJECTORY EQUATIONS IN TERMS OF PRINCIPAL TRAJECTORIES

In the general case where the bending strength 3%§T and the focusing strength k(s)
vary along the reference orbit, eqs. (9) are of Hill's type and describe an oscillatory
motion with variable restoring force:

yll +K(S)-y=%_§.. (ga)

The general solution of this equation can be written as

(s) = C(s) ey * S(s)eyy *0(s)-3E
yis ) Yo 1Yo %, (10)
yi(s) = €' (s) eyg + S'(s) vy + 0'(s) B

where C and S are two independent solutions of the homogeneous equation, with initial con-

ditions
Co So 1 0
= R (10a)

and D(s) is a particular solution of the inhomogeneous equation for %R = 1, with initial

i 0
conditions D, (0)
Dé 0

¢, S, and D are called principal trajectories (Cosinelike, Sinelike and Dispersion).
In matrix notation, the 1inear transformation (10) may be written as

C S y D
y + AP, (10b)
y! . C! gt y' o Po D

or
y c S D y
yl = oLl S D! . _V' (].OC)
ap o o 1 ap
Po 5 Po 0

The determinant of the transformation matrices is independent of s, as seen by differen-
tiation:

(cS* - SC')* = CS* - SC" = - K(cS - SC) = 0.
Since its value is unity at s = Sq, owing to the chosen initial conditions, it stays unity
throughout the system (good for numerical checks!).
The dispersion D(s) may be expressed in terms of C(s) and S(s):

p=s | Lcd ¢ | Lsan (11)
=s [ goan-c g
(o] (o]
S S
pr =5 | dcdt-c ] Lsdr
o] o]
S S
or =5t | Lear-cor ] %—Sdt+%(CS'-SC'),=-KD+%-
o] )

=1
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7. SOLUTION OF TRAJECTORY EQUATIONS IN A MAGNET WITH B(s) = CONST.

We assume that the magnet starts and ends abruptly with constant field within (hard
edged model), The principal trajectories C and S then solve the harmonic oscillator equation

K=k = const for z (vert,)
y'" +Ky =0 with 1 (9a)
K=-(k - 5;) = const for x {(hor,)
With 9 = s VK] they are within the magnet
C S coSQ s sing
= ® ¢ for K >0 focusing
c' st - 5 sing cos o
C S 1 s
= for K = 0 drift space (12)
C! St 0 1
C S cosh¢ 3 sinhe
= @ ¢ for K < 0 defocusing
cr s E-sinh¢ cosh¢

We see that indeed the determinant

Cs' -sC'=1.

For the dispersion, we calculate in the focusing case (K > 0)

S

D= § f _]:.Cd-[ - C J‘ _1.. SdTt = _1.[_1‘_ sincp—l- singp - cosQ{~ -];(COSfP - 1)}]
0 e 0 P e VR’ yﬁ? K
p- A (1 - coso)
D_R. %

Dl

sing .

1
evK

Similarly, in the defocusing case (K < 0)

1 1 . 1 . 1
D== Sinh® » ~=—w sinh9 - cosho . {coshe - 1)]
T VIRT VIKT T
1
= - (1 - cosh®
PVIK] )

1 .
D! = sinho .
/K]




Thus, composed, for the dispersion, with

K =k in z
and

1, .
- (k - 6;) in x

DD

( -
or

- 31%3-(1 - cosh o)

1 .
——=—— sinho
PVIK|

for K <

for K > 0 focusing

0 defocusing

(12a)

The overall transformation matrices M

with s = 2 and o = Y¥[K|, of course.

8. MAGNET TYPES

a) Synchrotron magnet (%tﬁO; k # 0)

This, in principle, is the most g
sweak focusing

responding
(Fig. 3).

e N

" strength %% and the quadrupole strength k super1mpo

X and M, of the magnet are obtained from egs. (12)
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Fig} 3: Synchrotron magnet cross section
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It is not much applied anymore in practice (little f]exibi]ity!); Its poles are hyperbo-
lic, and it may be considered as a section of a quadrupole that is traversed by the beam
at a distance d off-center, We have

kKex = e 'y = €s x) = 1
* p ax 4] Z() p(x)
K+ d 1 d = 1

p ok

for the characteristic distance d.

Note that, in our formulation, the entry and exit faces of the hard-edged magnet are
perpendicular to the beam since we have assumed that the field is constant between s = 0
and s = £ in the curved coordinate system, independent of x and z,

b) Quadrupole magnet (% = 0; k £0)

The beam passes through the center
of the quadrupole, and there is no
bending of the reference orbit,

The poles are hyperbolae (Fig. 4) given by N S
Xez = %-rg.
In terms of the field gradient Y x
<9
_ aB, _ aBy
9° 3x ° 3z
& = ~gzx = const
the quadruple strength is S N
* [T/m]
= 0.2998 L LT/ml
k= 0.2998 %% Teevie]

At a given radius r, the modulus
of the field strength is constant:

Fig. 4: Quadrupole field configuration

8] = vB2 +B2 = V(gx)? + (g2)* = g~ .

The transformation matrices are, for k > 0, from eqs. (12) with ¢ =2 Vik|

cosh ¢ %sinh(P 0 cos® %sincp 0
My = %sinhw cosh® 0 7 My = -%sin@ cos® 0 J. (13)
0 0 1 0 0 1

For k > 0, there is hor. defocusing and vert. focusing;
for k <0, " " hor. focusing " vert, defocusing,




¢) Drift_space (% =0; k =0)

The magnet is non-existent, and we have

1 & 0
M = My = o 1 o0} (14)
o 0 1

d) Sector magnet (%— £0; k=0)
A homogeneous field bending magnet with cross section as e.g. in Fig. 5. In top view, the
magnet 1is sector-shaped due to the orthogonal beam entry and exit (Fig.6}.

Fig. 5: Homogeneous field bending magnet Fig. 6: Sector magnet

The transformation matrices are, from eqs; (12), with ¢ = %-:

cos P psin® p(l - cos®) 1 2 0
My = - %-sin¢ cos¢ sing 3 My = 0 1 0 (15)
0 0 1 0 0 1

In the vertical, the sector magnet acts like a drift space, and in the horizontal like a
focusing quadrupole of strength P7°

9, EDGE _FOCUSING

In practice, there are cases where the magnet face is not designed orthogonal to the
beam. The magnet transformation, then, needs correction;
Let us assume that, at the magnet end, we superimpose a hard-edged "magnetic wedge" of
angle & (Fig. 7).
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Fig. 7: "Magnetic wedge"




Then, a = % =

Thus the thin magnetic wedge of Fig. 7, in the horizontal plane, acts as a thin defocusing
lens of integrated strength % tand , and in the vertical plane as a focusing lens of same
strength,

10. MAGNETS WITH EDGE FOCUSING

a) Symmetric zero gradient focusing magnet

Fig. 8 : Homogeneous field magnet with nonorthogonal entry and exit (sector
magnet with superimposed "magnetic wedges"),

At each end of the sector magnet (Fig. 6) we superimpose a magnetic wedge of angle § S %
(Fig. 7), making the magnet faces more parallel (Fig. 8). The horizontal transformation is
then obtained by the matrix multiplications

1 0 cos® Psine)/fl 0 cos® psin® 1 0
ltans 1 -lsinw cos® ltanG 1 ltanscosw-lsincp tan§ sing+cose ltan& 1
P P [¢ p P 4
. cos(¢ -8 R
cos¢+tandsing psine '——éagg-L psSing
B! 1 1 1. 1sin(e-26) cos(?-8)
o{coss sin(s - (p)+c056 cos(s - p)tans} COS(Scos(cs @) -5 PTTET: o053
1 0 o(1 - cos ¢) p(1-cose) p(l-cos®)
and = . .
1 ; sin(@ - 8) +siné
atané 1 sing tand (1-coso)+sing 058
For the vertical
1 0 1 [} 1 0 1 2 1 0
1 1 B S _% 1
-Etmw 1 0 1 Etma 1 -ptmw 1 ptwé ptan 1
1- ¢tan§ [}
-Ltans(2-9tans)  1-gtans
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Summarizing the result, with <p=%-, for the symmetric zero gradient focusing magnet, we have

cos(¢-3) .
2553 psing p(1-cos9) 1-¢tand 2 0
1 sin(¢-26) cos(p-8) sin{g-8)+sind | .1
M, =| -5 —cos?s IR =553 3 My = -ptanG(Z-CPtanG) 1-otané O
0 0 1 0 0 1

(16)

b) Rectangular magnet (special case of e., with §= %)

When @ « 1, magnet faces are often made parallel for technical reasons (e.g. lamina-
ted magnets!). Then, with 6=5§

1 psing p(1-cos9) cos¢ psing 0
My = {0 1 2tan% and, for 9«1 M, = -El)-sincp cos¢ 0
0 0 1 0 0 1

l-cos¢ _ _sing (17)

sin® 1+coso

s ¢ _
since ’can2

Thus,in a rectangular magnet, the horizontal weak focusing of the sector magnet is exact-
1y compensated by the edge focusing and is transferred into the vertical by the same
amount.

11, PIECEWISE SOLUTION USING MATRIX FORMALISM

For a beam transport or accelerator system composed of magnets and drift spaces, we
obtain the over-all transformation matrix by multiplying the matrices corresponding to
each element in the correct order. We proceed by multiplying from the left, lines by co-

Tumns.,
Example: (0) (1) (2)
| | I
| :
=
7
M M, \
0—>1 —>2
C2 2 2 Cl Sl Dl
Moz = Mi=>2"Mo—y = C; Sh D3 Cy Sy Dy
0

C,0* SpC0 €Sy S8 Cali+ S;0f + D,
= fcic, + 50 CiS,+ S8} CiD,+ 53D} +0; ).
0 0 1
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12, THIN LENS QUADRUPOLE DOUBLET

Whenever the length of a guadrupole is small as compared to its focal length, i.e.
forr L« TF%E_ or 22]k| « 1, it may be represented by a thin lens positioned at its cen-
ter. From the quadrupole transformation eq. (13) it is seen that, with constant strength
k& = % and the length & approaching zero, the matrices assume the simple form

1 0 0
1

MX,Z = —? 1 0 .
0 0 1

As the simplest example of "strong focusing" or "alternating gradient focusing”, we write
down the transformation of a quadrupole doublet in thin lens approximation:

Q1 Q2
ﬂ | N
[ —r—5]
1 1
focal strength: - -
I fi f2
1 0 1 ) 1 0 1-+ g
_ = 1 (18)
M=1_1 1 0 1 s 1 L 2
f, fi fx f,
1 1 1 L
_— 2 e e - ——
where * f, . Tif
With f, = -f, = f, for example, we have %; = J% in x and z, and the doublet is equally

focusing in both planes. This is because all trajectories entering parallel to the axis
will have a Tlarger amplitude in the focusing lens than in the defocusing lens and will
therefore be bent more strongly toward the axis than away from it,

B, BEAM MOTION IN MAGNET SYSTEMS

13, TRAJECTORIES IN TERMS OF AMPLITUDE AND PHASE FUNCTIONS

There is another quite powerful way of formulating the solution of Hill's equation
y'+ Ky =0 (9a)

by writing the trajectory in quasi-harmonic form
y(s) = Ve VB(s) cos(d(s) - &;) (19)

where the amplitude y¢TB(s) and phase ¢(s) of this "betatron oscillation" vary as function
of s (nonlinearly). B is called the "amplitude function", &(s) the (closely related) "pha-
se function", and € a constant called the "emittance" of the trajectory.
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By differentiation, we have with

= . = .1 . -l +of
M =0-8, o= -3B ;Y=g (20)

y = Ve VB cosao

y' = Ve (B cosae - /B o' sinae} = Vo (<% cosad + VB o' sinAd}

2vVB VB
a'vB - a7-rB'
y" = _/g{____g__@ coshd + B' o1 sinne + ( B g +¢YBo")sinAd + /Bo'2cosAd}
B 2 /B 2
2 1
y' = _ Ve o +% +B0'2}cosad + (B' o' + Bo")sinke = - —\/—;—KBCOSND .
VB B /B

Thus 0=R"e +BO" = (Ba')"
We set Be' = const =1 R i;e.

o =L . M =0 - 8 = flds (21)

B ’ ° 5 B
%?- = d¢ 1is the local phase advance of the betatron oscillation.
From y", we then also have
|
o+ 1 g o Z KB or
1 1+.];[3'2

@' +y-KB=0 or EB"+|<r5---—B“—'—=o (22)
as a differential equation for the amplitude function B(s).
Introducing the "envelope"

E(s) = vE VB(s) (23)

we have by differentiation

E= VevB %B
B! Ve
E|= e D o —
Ve ors 5
Bl
a'\/I?-a—JE 2
E“=-|/E:1-—————g— =.._/§.0(q'+g'_).
B8 VB B

Thus we obtain the “"envelope equation”

" e? Ve . L a? 1
E+KE-E—3=-7E‘.(a +F-KB+—)=O (24)




- 14 -

14, CALCULATION OF AMPLITUDE FUNCTION FROM TWO ORTHOGONAL TRAJECTORIES

In a general magnet system, the amplitude function B(s) is not uniquely given, but
depends on two parameters, e.g. By and ag = - %-Bé at the entrance of the system., It be-
comes unique only in a periodic system, for instance in an accelerator ring when, among
all possible solutions, the periodic beta is selected. B(s) can be calculated by solving
eqs. (22) or (24) with initial conditions By, ag, but this is never done in practice since
there is a much simpler way. By choosing two orthogonal trajectories

% VevBcos(e - 9g) y, VevBsin(e - 9,)
y! -—=(sinAd + acosid) y! —=- (cosA® - asinad)
‘ vE : VB

with any value ¢, and given values Bgs @ and transforming them through the system by ma-
trix multiplication, B(s) is obtained as

eB = y3 +y: = E° (25)

15, AMPLITUDE FUNCTION AND PHASE PLANE ELLIPSE

It is the particular value of the amplitude function that it is closely related to
an ellipse in the {y,y'} phase plane and is thus able to describe the motion of a beam,
j.e. a family of trajectories instead of individual trajectories only,

Writing
y vevBcos(e - o)
- (26)
Ve .
' -YE (sin(® - &,) + acos(d - &,))
y g e - o) e °

this is the parametic representation of an ellipse in the {y,y'} phase plane; if the phase
parameter ¢, varies by 2w, the point {y,y'} moves once around the ellipse which is cente-
red about the origin {0,0} (reference trajectory).

yl
Special pair of orthogonal trajectories: --F§—~1

o, = @ o, =0 + 2 ‘ —

2 €y

Yerau*E T
o —Fr |
A\ [FEY [ [ | A
= ; - -
y' -0,@_ y! l/_?:__
1 VB 2 VB’ Fzrre
(27)
r—-ym;fﬁﬁ——

Beam ellipse in terms of amplitude function 8. -
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Let us assume that into a magnet system a particle beam is injected which, at the
entrance, is given by a family of initial conditions or a cluster of points in the {y,y'}
phase plane, centered about the reference trajectory {0,0}. We may then, by choosing Bos
a, and €, tailor an ellipse that closely surrounds this cluster and thus represents the
nedge" of the beam. By then following this ellipse through the system, it tells us the
properties of the beam at each point; Thereby (see Fig; 11) the area of the ellipse

T e VEVB » %%%= meE

stays constant, which means that the particle density in phase plane stays constant
(Liouville's theorem) or, in other words, the product of beam width (or height) times the
angular spread on axis stays constant,

The beta function is the ratio of beam width over the on-axis anguiar spread;

In a periodic system, for instance in an accelerator ring, a phase plane ellipse
corresponding to the periodic amplitude function is the 1ine on which a particle with the
corresponding betatron amplitude will migrate and reappear in successive revo]utions; If
this particle has the maximum betatron amplitude in the beam, it will mark the "edge" of
the beam, and the quantity E = ve VB will be the beam width (or height) at that place, as
given by betatron oscillations; Therefore, E(s) is called the beam envelope.

From the parametric ellipse representation eq; (26) we can obtain the coordinate re-
presentation of the ellipse

Y.yz+2a.yy|+[5.y|2=€ (28)

which is seen to be valid by inserting eqs; (26) into it.

16. CALCULATION OF AMPLITUDE FUNCTION FROM PRINCIPAL TRAJECTORIES

By inserting the inverse trajectory transformation

Yo S! -5 y
y(‘) -C! c y'

into the ellipse equation (28), we have at point sg
Yo¥o * 2a0¥o¥§ * Bo¥o®
= yolS'y = Sy')? + 2a0(S'y - Sy")(-Cly * Cy') + Bo(-C'y + Cy')?

= (C'2Bg-2C'S g+ S 2yg)y? + 2(-CC By + (S1C+SC Jag - SS'yg)yy" * (C2Bg - 2CSa +S2Yp)y'2 .
— _
~
Y R A 2a <oyt 8 - y'®

o=
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l1+a2

Thus B, o= --%B' and vy =
the linear 3x3 transformation

can be calculated from the principal trajectories C, S by

£ c2 - 2CS S2 Bo
o = |-cc CS'+SC? - Ss! oy |. (29)
Y Cr2 -2c's! Se Yo

In a drift space with

beta is a quadratic function of s, o a linear function and vy is constant:

B =By - 20455 + Yps?
a =045~ YoS (29a)
Y = Yo = const.

17. PRINCIPAL TRAGECTORIES IN TERMS OF AMPLITUDE AND PHASE FUNCTIONS

By subjecting the trajectory representation egs. (26) to the initial conditions
eqs. (10a), the principal trajectories may be written, with A¢ = ¢ - &,

c s VB (cosns + g sinae) V/Bg VB sinse
= VBo
= o (30)
1 . Bo X
cr s! s ({0 -0 g)cosad + (1 +any)sinad}  —=(cosab - asinie)
N VB

This form of the transformation matrix is very useful in practical accelerator work.

In a periodic system, e.g. an accelerator ring, we have for the periodic amplitude
function in the matrix for one period or revolution

B = B, ; a= o

Then, in a symetry point of an accelerator where o = -~%B' = 0, the revolution matrix
assumes the very simple form

c S cos B sinp
cr s - %sinu cos M

where p = 2mv is the phase advance per revolution and v (often called Q-value) the number
of betatron oscillations per turn.
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When Eq. (30) is applied to a periodic structure g = Bg, @ = &g and the result can be
expressed as,

c S 1 0O\cos A+ fa B sin A¢

c s 01 -y -a
=1 cos Ap + J sin Ad .

It is quickly verified that J2 = -1, so that the expression I cos A¢ + J sin A¢ has
the properties of a complex number and De Moivre's formula can be applied. This makes it
easy to express the transfer matrix for an arbitrarily large number of cycles.

c s\" n
o = (I cos A¢ + J sin Ap) = I cos (nA¢) + J sin (nad) . (31)

The beam will be stable if all terms in Eq. (31) remain bounded as n > =, i.e. if Ad
is real or |cos A¢| < 1. By referring back to Eq. (30) with B = Bg and « = ap this condi-
tion can be expressed in terms of the matrix elements as,

1 cC S
Stability if, |§ Trace (C' S )‘ <1 (32)

18. PERIODIC DISPERSION IN AN ACCELERATOR RING

Particles with a relative momentum deviation %% # 0 are less or more strongly bent
than the reference particle and therefore move about a closed orbit that deviates from the
reference orbit. A general formula for this of f-momentum closed orbit may be derived with
the tools at hand; We demand that the dispersion trajectory closes upon itself after one
revolution of length L. Using eq; (11) and the notations

stb stb ¢
[ ey car=§ [ty S(xdr = §

S
and writing

C(stL) = C ; S(s*L) =S ; etc.

then
c sy [o) . s§ - c§ L
¢ s/ o s-§ - c'§ D!
or
(C-1)p+ S D' = cf - s§
C' D+ (S*-1)D' = c'f - s-§
yielding

n

((s*-1)(c-1) - 5C'30 = (s*-1)(cf - s) - s(c'§ - s'C)

or, with 5'C-SC'=1 {2 - (C+S')}D ; + S# - C§~
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Now from eq. (30)
- (C+S') = 2 - traceM = 2 - 2cosp = 2(1-cos2nv) = 4sin®ny

where p is the phase advance per revolution and v the betatron number,
Thus

s+L s+L 1 s+l 1
in2 -
4 sin?myeD(s) = g e )S(r)dr + S(s+L) £ 505 C(t)dt - C(s+.) £ 50) S{t)dt
with /R
C(T) =-—J1£El(cosA¢ + afs) sinad) ; S(t) = VB(s)VB(1) sinad
VB(s)
where Ad=9(1) - &(s),
C{s+L) = cos2mv + a(s) sin2mv s S(s+L) = B(s) sin2mv
according to eq. (30). Using the relation
sinAd + sin(2mv - AP) = 2 sinmv cos(Ad - V)
we finally have
o(s) = ~BGL S —l—ﬁ) cos(d(1) - &(s) - mv)dt (33)
Zsinmy s P(T)

Between bending magnets, the dispersion looks just like an on-energy particle trajectory,
receiving an additional kick only in each bending magnet,

19. MOMENTUM COMPACTION

In an accelerator, the relative variation of closed orbit length with relative mo-
mentum deviation is called the "momentum compaction factor a"

-pd
L

Qo
'Ul_

With the differential trajectory length
i
do 5 ds
the circumferential length of the trajectory x(s) is
L+AL =§ (1+Z3)ds.

Since the particle with momentum deviation —E moves around the closed orbit —E *D(s), the
momentum compaction factor is Po

-1(D
o = T3 ds (34)
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20. STRONG FOCUSING HIGH ENERGY ACCELERATOR; SIMPLIFIED MODEL

Practically all very high energy accelerator rings are now being built in a similar
fashion. They may somewhat differ in the arrangement of straight sections, but in the arcs
they all have a periodic sequence of quadrupole magnets of alternating polarity
(FODO-channel), and between them the bending magnets that cover of the order of, say, 80 %
of the length. Since the straight sections are short as compared to the arcs, the optical
properties of the ring are essentially given by the parameters chosen for the regular arc
cell. The regular cell may be represented by a very simple model, making use of the fol-
lowing observations:

- The radius of curvature of the bending magnets is large as compared to the focal Tength
of the gquadrupoles; the weak focusing of the magnets may therefore be ignored, and it is
irrelevant whether they are of the sector or the rectangular magnet type.

- For a given bending angle, the linear optic does not depend on the length of the bending
magnets, which may therefore be assumed to extend from one quadrupole to the next,

- The F- and D-quadrupoles are usually of similar strength, For simplicity, the strengths
are here assumed to be equal, and the quadrupoles are treated by the thinlens approximation.

The simplified regular half cell is shown in Fig. 9. It is given by only 3 parame-

ters:
L half cell length = bending magnet length
% strength of bending magnet
+ %- strength of half quadrupole, integrated

1 L l

-—fD 3F.
(half quad,) (half quad,)

v
B
v
s D
’ I 1
-]té -é' (bending magnet) -F

Fig. 9 : Optical functions in the simplified half cell model, schematic.
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We calculate the optical properties in terms of these parameters, with T =% :

sector magnet

coSsT OS'InT (1-51‘#‘?’ fsin¥
1 1 Y, . .
c S 1 0 -—sm‘r cosT ) -?(l-é)smﬂ' 1+s1n'\1'>
11
o s \L 1 sine - .
f
L L
-— 1+>
f2 f
\ J

rectangu]ar mag.

r

where siny = ‘—;-sin't

Equating this to the matrix representation eq. (30)

v)1/2 ~A1/2
C S 3}1 cosd {Br‘i} singd
= B ~\1/2 (35)
C, S' av -1/2 B
-4BB *5ind® =} coso
i
! !
yields CS' = cos®¥ = cos?d ; SC' = -sin?¥ = .sin?¢
. s = P i L
sing = sinYt = £ sint~ ¢ (36)

i.e. the betatron phase advance per half cell is given by sind =% *

Further /2
St _ 1+sinel B B ffltsing) _ o 1+sing
C 1- sind g8 1- sing cosd
s Vo % » ] . 1/2 ] . (37)
_S . f2 In. - gfl-sing) _ o 1-sind
¢ BB B (1 + sind cosd
For the dispersion we have with T= %
o(1 - cosT) p(l-cosT)
: 2] 142
0 1 0 { sinT (1 cosT) +sinT 3T
1
D' = 1 2 L
- T -— + —_—
f o(1-cosT) p(l cos p(1 2f)
2tan% =(1- cosr)+2tan5
L
and, Tlooking for the periodic solution with D' D
D L L 12 D
D 1 f 2 P
. = 3 1+2 A1+ 2 Dy =0
° 0 f2 f o( Zf) o

1 0 0 1 1
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wa, 1822 |3
(1-f)D+ 5B =D
[ L
—— = =) =
9(1 2f) 0
-~ sz _v
D - _p_ =D
s _f2 1y _f2 1 p D 1+;Si"°
D=_1+__. = — + =51 o —= 8
P ( 2 f) P (1 2 sine) [ sin®¢p (38)
#
Y o_f2 18, _f2 1.,
D = oo 2y =11 -2
5 (1 5 f) 5 (1 5 sing)

Interpreting these results, we see from eq. (35) that periodic solutions B, D only exist
for sing <1, i.e. f >2. B and B are shown in Fig. 10 as functions of the half cell pha-
se advance ¢ for a given half cell length &, and also 6 and B.

The phase advance with the smallest value of 6, for given £, requires the least beam aper-
ture; we obtain it by differentiating

with respect to ¢:

B_1l+sind
2 singcosd

!
cos@ssindcosd - (1 + sind)(cos®d - sin29) = 0

38.17°
3.33 %.

= 0,618 ®
min(B)

sin2p(2 +sine) =1 sing =

] B

In practice, full cell phase advances are chosen between, say, 45° and 90°.

Knowing the amplitudes of B and D in the thin

g8 T
quadrupoles of the half cell, we also know, from the * ‘
strength ef the quadrupole, their siope at the qua- 12 } 1
drupole entrance and can thus calculate, as a func- 1 ﬁ
tion of o= %3 their shape within the half cell, 10| t i
using eq. (29a) for £ and eq. (12a) for D. We shall ﬁ \ /
not do this explicitely here, but just give the re- 8 la
. ) ]
sult: i \ /
6 \\ y
s \
B(o) = f 1-5i021 4 o5ingeo+ 2tan?(l+sing)+o®} 1A
cosd Y .
B 4 \ P \\ -}'B
(o) = -=B' = -§{1+2§i£:‘i1_+_5_".£2). .o} \\\_\\ :
2 f cos2¢ ) g \\ SO %%
f2 1 . 1., 1., <1y Jeb]
B(o) = — {1-—sin<1>+s1n<1>(1--s1n¢)-0+—s1n2<1>-02} = gfq e .
p 2 2 2 0 -
. ] S0 20° a0° | teoe! | igge!
D'(o) = ={1 - =sind+ sindeo}
P2 (39)

Fig. 10: Normalized B's and D's as
functions of ¢
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For the momentum compaction factor in a machine built of these half cells, we have from
eq. (34)

1.,.D 2mp .1 1,5, ¥ f2
= = - d s — ¢ (D +D) = —
R A I AL T (40)

where R is the mean radius of the machine including straight sections,

Another optical quantity of great practical interest is the "chromaticity" of our
model machine, i.e. the variation of betatron tunev with relative momentum deviation &= %E

0
_dv_ n dd
£- s " ds (41)

where n is the number of half cells in the machine, & is the chromaticity of the arcs on-
ly; the straight sections will give an additional chromaticity contribution,

==

: L 1
= - . = i -8) =k %+ .
sing = 3 H f0(1 ) q

By differentiation

cosddd = - Xdé = - sind dé
fO

do _ IS W SN U-SE
HE"ta"‘I’"gf(B B) 2(szq krsp.q)
which suggest the general formulation

§=-.d1.1?9 kBds . (42)

21, "NECKTIE" STABILITY DIAGRAM

We now allow the focusing and defocusing thin quadrupoles in the half cell to have
different strengths and then, with

have from eq. (18) the transformation matrix

cC s 1-F 3
¢S -%(F-D+FD) 1+0

and from eq. (35)

]
- C'S = sin2¢ = F - D + FD.
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For stable beam motion, we require

0 s sin?¢y <1 0sF-D+FD g1

0ssinf,s1 0SD-F+FD 51

which yields for the limits of the stable region

"

14 F

n
—
-

singy sing,

0/Y F L 3 sing,

sindy

These 1imits are shown in Fig. 11, The stable re-
gion indeed has the shape of a necktie.

We see that
F«l ; D« 1l requires FsD
Fal " ~%<n<1
Dl " ~l<F<1
2
F=0 " 0<F,D<1,

1/7¥y D=1
A D:-F_.
0 1+F
] 11
B [ ‘b. //
EEANNE. N
4 N
/
1 N K
A
A
/] N -
= ( A
-
NE Ay
%
V/S,/
v Al
/I
A

Fig. 11: Necktie stability diagram.






