
hep-ph/9711476
ACT-17/97

CERN-TH/97-336
CTP-TAMU-47/97

IOA-16/1997
November 1997

Fermion Mass Textures in an M-Inspired Flipped SU(5) Model

Derived from String

J. Ellis a, G.K. Leontaris a,b, S. Lola a and D.V. Nanopoulos c,d,e

aCERN Theory Division, 1211 Geneva 23, Switzerland

bTheoretical Physics Division, Ioannina University, GR-45110 Ioannina, Greece

cCenter for Theoretical Physics, Department of Physics,
Texas A&M University, College Station, TX 77843 4242, USA

dAstroparticle Physics Group, Houston Advanced Research Center (HARC),

The Mitchell Campus, Woodlands, TX 77381, USA

e Academy of Athens, Chair of Theoretical Physics, Division of Natural Sciences,

28 Panepistimiou Ave., Athens GR-10679, Greece.

Abstract

We are inspired by the facts that M theory may reconcile the supersymmetric GUT
scale with that of quantum gravity, and that it provides new avenues for low-energy
supersymmetry breaking, to re-examine a flipped SU(5) model that has been de-
rived from string and may possess an elevation to a fully-fledged M -phenomenological
model. Using a complete analysis of all superpotential terms through the sixth order,
we explore in this model a new flat potential direction that provides a pair of light
Higgs doublets, yields realistic textures for the fermion mass matrices, and is free of
R-violating interactions and dimension-five proton decay operators.
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1. Introduction

String model building is currently in a state of flux. Although quasi-realistic string
models have been constructed [1], particularly in the free-fermion formulation of the weakly-
coupled heterotic string [2], further progress was held back by poor understanding of the
non-perturbative string effects that should determine the correct string vacuum. Moreover,
a major problem for most weakly-coupled string models was the apparent discrepancy
between the string unification scale calculated from first principles and the supersymmetric
grand unification scale inferred from measurements of the Standard Model gauge couplings
at LEP and elsewhere [3]. In fact, this discrepancy and a better understanding of non-
perturbative string effects contributed to the motivation for study of the strong-coupling
limit of string theory, and it is now known that the unification-scale discrepancy may be
removed if the Theory of Everything turns out to be a strong-coupling limit of M theory [4],
corresponding to an eleventh dimension which is much larger than the Planck length [5].
This may enable string models constructed directly in four dimensions [2] to reconcile the
measured gauge couplings and four-dimensional Planck mass. Another issue which is cast
in new light by advances in our understanding of non-perturbative effects in string theory
is that of supersymmetry breaking. Previous upper limits on the rank of the effective four-
dimensional gauge group have been abolished [6], which may open new horizons for gaugino
condensation, and the Scherk-Schwarz mechanism has been revived [7]. Since it seems that
many of the previous weakly-coupled string models may be elevated to consistent vacua of
M theory, it is a good moment to re-investigate them, and explore whether their remaining
phenomenological deficiencies can be overcome.

Among the phenomenological issues to be addressed by effective low-energy models
derived from strings before they can be considered serious candidates for describing the
elementary particle world are the flat directions of the effective potential and the asso-
ciated choice of vacuum expectation values, the absence of light Higgs triplets and the
presence of light electroweak Higgs doublets, the texture of the fermion mass matrices, R
violation and proton decay. In particular, the stability of the proton had become partic-
ularly troublesome with the advent of supersymmetric GUTs, when it was realised that
dimension-five operators of the form QQQL and/or ucucdcec could be generated by the
exchange of coloured GUT states, inducing rapid proton decay [8]. In the string context,
such operators could also be induced by exchanges of heavy string modes. However, it
has recently been shown [9] that there is a class of free-fermion string models in which an
enhanced custodial symmetry forbids the appearance of such dangerous operators to all
orders in perturbation theory, and arguments have been given [9] that these models may
be elevated to M theory.

Since the problems of the unification scale and proton stability may be on the way
to resolution with such elevations of ‘traditional’ string models, we now explore some of
their other phenomenological aspects in more detail, focussing in particular on predictions
for fermion masses and mixing angles. There has been considerable work on the fermion
mass problem during the last few years. In order to understand the observed hierarchies
and mixings in the most predictive way, model builders have proposed specific textures of
mass matrices at the unification scale with a minimal number of parameters. Inspired by
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string model building, several groups have attempted to use simple family U(1) or discrete
symmetries to obtain the required textures. However, despite valiant efforts [10, 11, 12], a
fully realistic pattern of fermion masses and mixing has never been derived from a string
model, which is the objective of this paper.

We work in the context of three-generation superstring models derived in the free-
fermionic formulation [2], which have the advantages of working directly in four dimensions
and yielding easily unified models that reduce to the minimal supersymmetric extension of
the Standard Model. The class of models that we favour is based on string-derived versions
of flipped SU(5) [13] 1. Using a certain three-generation string basis in the free-fermion
formulation, it is easy to produce variant models with similar group structures but different
phenomenological characteristics, by making slight modifications of the string basis. This
gives us hope that minor ‘defects’ of an otherwise successful model can be cured.

Indeed, we exhibit in this paper an explicit string-derived model with a variant pattern
of scalar vacuum expectation values that ensures heavy Higgs triplets, provides two light
Higgs doublets, yields a qualitatively successful pattern of fermion masses and mixing, and
has neither R-violating interactions nor proton decay operators to the order studied, which
includes all sixth-order terms in the effective superpotential.

2. A Free-Fermion Model and its Spectrum

From among the relatively rich variaty of free-fermion models [13, 14, 15, 16, 17, 18] we
choose to work in the context of the SU(5)× U(1) model [13]. This model is defined by a
set of basis vectors defining boundary conditions on the world-sheet fermions [2] that span
a finite additive group, and the physical states in the Hilbert space of a given sector are
obtained by acting on the vacuum with bosonic and fermionic operators and then applying
generalized GSO projections that ensure consistency with the string constraints. The con-
struction of the flipped SU(5) model can be seen in two stages. First, a set of five vectors
(1, S, b1,2,3) is introduced which define an SO(10)×SO(6)×E8 gauge group with N=1 su-
persymmetry. Next, adding the vectors b4,5, α[13] 2, the number of generations is reduced
to three and the observable-sector gauge group obtained is SU(5)× U(1) accompanied by
additional four U(1) factors and a hidden-sector SU(4)× SO(10) gauge symmetry.

The massless spectrum generated by the above basis, consists of the supergravity and
gauge multiplets, the latter arising from the Neveu-Schwarz sector, and the seventy chiral
superfields listed below with their non-Abelian group representation contents and their
U(1) charges. A generic feature shared with all such k = 1 constructions is that there are
no adjoint or higher-dimensional representations [19, 20]. In this model, all states in the
observable sector belong to the 1,5,10 of SU(5) and their conjugates. This is why higher-
level constructions are needed to obtain traditional GUT theories, such as SU(5) or SO(10),

1This class of models corresponds geometrically to Z2×Z2 orbifold compactification at the maximally-
symmetric point in the Narain moduli space, and their three-generation nature is directly related to the
Z2 × Z2 orbifold structure.

2These correspond to Wilson lines in the orbifold formulation.
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which need adjoint Higgs representations to break down to the Standard Model 3. On the
other hand, flipped SU(5) is one of the few GUTs which only require Higgs representations
smaller than the adjoint, since 10 and 10 representations suffice to break the symmetry
down to SU(3)× SU(2)×U(1). We recall also that the observable quarks and leptons are
in the 10, 5̄, 1, but with assignments and electric charges ‘flipped’ relative to conventional
SU(5).

Field Content of the Flipped SU(5) String Model
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Table 1: The chiral superfields are listed with their quantum numbers [13]. The Fi, f̄i, `
c
i ,

as well as the hi, hij fields and the singlets are given in terms of their SU(5)×U(1)′×U(1)4

quantum numbers. Conjugate fields have opposite U(1)′ × U(1)4 quantum numbers. The
fields ∆i and Ti are tabulated in terms of their U(1)′ × SO(10)× SO(6)× U(1)4 quantum
numbers.

As can be seen explicitly above, the matter and Higgs fields in this string model carry
additional charges under surplus U(1) symmetries [13], there are a number of neutral singlet
fields, and a hidden-sector matter fields which transform non-trivially under the SU(4) ×
SO(10) gauge symmetry, as sextets under SU(4), namely ∆1,2,3,4,5, and as decuplets under
SO(10), namely T1,2,3,4,5. There are also fourplets of the SU(4) hidden symmetry which
possess fractional charges, however, as we discuss later, these are confined and will not
concern us here.

3Important progress has recently been made in higher-level string constructions of SU(5) and SO(10)
models [21], which may eventually lead to more realistic versions. Intrinsically M -theoretical compactifi-
cations might also be useful in this respect.
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We recall that the flavour assignments of the light Standard Model particles in this
model are as follows:

f̄1 : ū, τ, f̄2 : c̄, e/µ, f̄5 : t̄, µ/e

F2 : Q2, s̄, F3 : Q1, d̄, F4 : Q3, b̄

`c1 : τ̄ , `c2 : ē, `c5 : µ̄ (1)

up to mixing effects which we discuss later.

3. An Interesting Flat Direction of the Effective Potential

Any string model such as that reviewed above has a degenerate potential with many flat
directions along which combinations of scalar fields may acquire large vacuum expectation
values. The detailed phenomenological properties of the model depend on the choices of
these moduli of the vacuum, which are subject to flatness conditions associated with both
the D and the F terms in the effective potential, but cannot be fixed unambiguously with
the string technology currently available. A new feature of this paper is a different choice
of flat direction from those considered previously [10, 22]. We choose non-zero vacuum
expectation values for the following singlet and hidden-sector fields:

Φ31, Φ̄31,Φ23, Φ̄23, φ2, φ̄3,4, φ
−, φ̄+, φ45, φ̄45,∆2,3,5, T2,4,5 (2)

The vacuum expectation values of the hidden-sector fields must satisfy additional con-
straints

T 2
3,4,5 = Ti · T4 = 0, ∆2

3,5 = 0, T 2
2 + ∆2

2 = 0 (3)

which are imposed by the flatness conditions. As we discuss below, an acceptable scenario
for supersymmetry breaking may still be possible, despite this breaking of the hidden-sector
gauge group, at least within the context of M-theory.

We now discuss in more detail the F -flatness conditions. We have verified that a pattern
of vacuum expectation values of the form (2) is compatible with flatness up to sixth order
non-renormalizable terms in the superpotential. Here and later in the paper, we make a
computerized search of all possible superpotential terms up to this order, discarding all
terms that are disallowed by gauge symmetries and string selection rules [23, 24]. We do
not calculate explicitly the remaining terms, but assume that they appear with generic
coefficients of order unity. For the vacuum expectation values of interest, the relevant
F -flatness conditions are:

∂W

∂Φ12
: eiγΦ23Φ31 +

1

2
φ2

2 ≈ 0 (4)

∂W

∂T4

:
1
√

2
φ2T5 + T4(Φ23 +

1

2
eiδ1Φ̄31φ

2
2) ≈ 0 (5)
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∂W

∂T5
:

1
√

2
φ2T4 + T5(Φ31 +

1

2
eiδ2Φ̄23φ

2
2) ≈ 0 (6)

∂W

∂Φ̄12

: eiwΦ̄23Φ̄31 +
1

2
(φ̄2

3 + φ̄2
4) + (F1F̄5)

2 ≈ 0 (7)

∂W

∂φ2
: T2 · T4∆2 ·∆5 ≈ 0 (8)

∂W

∂∆4
:

1
√

2
∆5φ̄3 + ∆4Φ̄23 + 2eip1Φ31(φ̄

2
3 + φ̄2

4) ≈ 0 (9)

∂W

∂∆5

:
1
√

2
∆4φ̄3 + ∆5φ̄31 + 2eip2Φ23(φ̄

2
3 + φ̄2

4) ≈ 0 (10)

∂W

∂T2
: T2(Φ31 + 2eip3φ2

2Φ̄23) + φ2∆2∆5T4 ≈ 0 (11)

∂W

∂∆2

: ∆2(Φ31 + 2eip4φ2
2Φ̄23) + φ2T2T4∆5 ≈ 0 (12)

∂W

∂Φ3
: φ45φ̄45 + φiφ̄i ≈ 0, i = 4,± (13)

where δi, w, pi are phases that are in principle calculable, that we leave indefinite. The
approximate equality means that these conditions are valid up to a certain order. One
should bear in mind that they will be further modified when higher-order corrections are
taken into account.

We see from the above that if we demand ∆2 · ∆5 6= 0, which is needed in order to
obtain non-zero (2,3) mixing in the VCKM matrix, as we discuss later, we are forced to
impose the condition T2 · T4 = 0. Suppressing constants of order unity and various phases,
the above equations may be satisfied if the following relations hold between the different
non-zero vacuum expectation values:

φ2
2 ∼ Φ31Φ̄23 + · · · (14)

1 + · · · ∼ |(Φ31Φ̄31 − 1)(Φ23Φ̄23 − 1)| (15)

φ̄2
3 + φ̄2

4 ∼ Φ̄23Φ̄31 + · · · (16)

φ̄2
3 + · · · ∼ Φ̄23Φ̄31(1− Φ31Φ̄31)(1− Φ23Φ̄23) (17)

φ45φ̄45 ∼ φiφ̄i + · · · (18)

where the dots stand for higher-order corrections to the F -flatness conditions. Some such
corrections may be crucial in ensuring that all the singlet fields may have non-zero vacuum
expectation values in the perturbative regime, i.e., 〈φi〉 ≤ MString/10. In particular, we
assume that (18) is valid only when such corrections are taken into account, which can be
easily satisfied when at least one of the singlet fields φ45, φ̄45 develops a relatively small
vev. It can be easily checked that the above set (2) of vacuum expectation values (vevs)
satisfies also the D-flatness conditions.
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An additional constraint on the vacuum expectation values of the hidden fields above
is that they should be consistent with the confinement of fractionally-charged states [25].
We have verified that there is a pattern of values for the ∆i vevs which preserves unbroken
an SO(4) subgroup of the hidden-sector SU(4). Moreover, the residual unbroken gauge
group is asymptotically free, so that all fractionally-charged states are confined, though at
a lower energy scale than in previous versions of flipped SU(5).

We also note that the hidden-sector SO(10) breaks down to SO(7), which may still be
sufficient to seed supersymmetry breaking by gaugino condensation. We note, however, that
this may not be necessary when the model is elevated to M theory. In this case, the rank
of the gauge group may be enhanced, providing other gauge subgroups that might lead to
gaugino condensation. Moreover, it has been suggested that the Scherk-Schwarz mechanism
may operate in M theory [7], either supplementing or replacing gaugino condensation in a
realistic scenario for supersymmetry breaking.

4. Light Higgs Doublets

We now discuss the appearance of light Higgs doublets and the large masses required for
dangerous colored particles that share common SU(5) representations with the standard
model matter. Taking the latter issue first, and working to sixth order in the superpotential,
as above, we find the following mass terms

W → Φ31h3h̄1 + Φ̄31h1h̄3 + Φ23h3h̄2 + Φ̄23h2h̄3 + φ45h̄3h45 + φ̄45h3h̄45

+ F1F1(h1 + h2φ
2
i + h45Φ31φ45)

+ F̄5F̄5(h̄2 + h̄45φ̄45Φ23 + h̄1φ
2
i + ∆2

1,4h̄3 + T 2
1 h̄1) (19)

With our choice of vacuum expectation values, it can be easily checked that all extra
colour-triplet pairs become massive.

Turning now to the more delicate issue of the survival of light Higgs doubles, we note
that the mass matrix for the Higgs fiveplets h1,2,3, h45 which may include the doublets
required in the Standard Model takes the following form to fifth order:

mh =


0 Φ12 Φ̄31 T 2

5 φ̄45

Φ̄12 0 Φ23 ∆2
4φ̄45

Φ31 Φ̄23 0 φ̄45

∆2
5 T 2

4 φ45 φ45 0

 , (20)

With our choice (2) of singlet vacuum expectation values: 〈Φ12, Φ̄12〉 = 0 and with the
supplementary conditions 〈∆2

i 〉 = 0 and 〈T 2
i 〉 = 0, there are two massless combinations

[26, 27] h ∼ cos θh1 + · · ·, and h̄ ∼ h̄45 + · · ·.

Going on to sixth order, we find the following superpotential terms that might a priori
mix Higgs doublets and leptons:

W → F̄5F
2
2 f̄2h̄45 + F2∆2∆5f̄5h̄45 + F1T1T4Φ2,4f̄5h̄45

+ F1φ̄1φ45Φ31f̄1h̄2 + F1φ45(Φ̄12φ̄1 + φ2Φ4)f̄1h̄3 + F1φ̄2Φ4Φ̄12f̄1h̄45 (21)
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However, these are not in fact dangerous. The first two terms do not contribute to the
Higgs mass matrix because we choose 〈F2〉 = 0. Moreover, the choice (2) also implies
that 〈Φi〉 = 〈φ̄1,2〉 = 0, so the Higgs mass matrix (20) remains intact through sixth order.
A complete dicussion of the light Higgs multiplets would need an enumeration of many
higher-order terms in the superpotential, which would take us beyond the scope of this
paper.

To the order studied, h̄ (which contains a component of h̄45) remains light and hence
is available to give a mass to the top quark through the coupling F4f̄5h̄45. Similarly, h is
available to give a mass to the bottom quark, also via a trilinear coupling, whose magnitude
depends on a Higgs mixing angle θ, which is as yet undetermined. This model therefore
predicts a heavy top quark, but allows the bottom to be significantly lighter, without
requiring a large ratio of Higgs vacuum expectation values.

5. Fermion Mass Matrices and Mixing

A deeper treatment of fermion mass matrices requires the consideration of higher-order
non-renormalizable terms which fill in entries that vanish at lower order [13]. Due to the
additional U(1) symmetries in this type of model, and string selection rules [23], only
a few Yukawa couplings are available at any given order. A complete discussion would
require going to very high order, and would need, for consistency, to discuss flat directions
and the choice of vacuum expectation values to comparable order. As before, we restrict
our attention to terms of at most sixth order, which are sufficient to discuss interesting
qualitative features of the fermion mass matrices.

To this order, for 〈h2〉 � 〈h1〉, the down-quark mass matrix takes the form

MD =

 0 ∆2∆3Φ̄23 ∆5∆3φ̄3

∆2∆3Φ̄23 (φ̄2
3 + φ̄2

4) ∆2∆5φ̄4

∆5∆3φ̄3 ∆2∆5φ̄4 1

λb(MGUT )〈h1〉 (22)

where at the unification scale λb(MGUT ) =
√

2g. The zero entry should be understood
as being of higher than sixth order, and each of the non-zero higher-order entries should
be understood as having numerical factor of order unity, with possible phases. We notice
that these entries have the right orders of magnitude to reproduce the correct hierarchy
of the down quark masses. In the approximation ∆2∆5φ̄4 < ∆2∆3Φ̄23 ∼ ∆2∆3, we find a
bottom-quark Yukawa coupling of magnitude g

√
2 to the h1 component of the h field, so

that mb ∼ g
√

2sinθ〈h〉, which may be much smaller than mt, and the (1,2) mixing element
is given by

V d
12 =

√
md

ms

=
∆2∆3Φ̄23

φ̄2
3 + φ̄2

4

(23)

The up-quark mass matrix in the particular flat direction we study takes the form

MU =

 0 0 ∆3∆5φ̄3

0 φ̄4 ∆2∆5φ̄4

0 ∆2∆5 1

 λt(MGUT )〈h̄45〉, (24)
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with the same remarks as above concerning the meaning of the zero entries and the presence
of unspecified numerical coefficients of order unity in the non-zero entries. Since mu 6= 0
only to higher order, we see that mu < md is a natural possibility. It is striking that
the above string-derived Ansatz for the quark mass matrices belongs to one [28, 29] of
the few cases [30] based on the appearance of texture zeros which describe correctly the
low-energy quark masses and mixings using only a minimal set of parameters at the GUT
scale. We should point out that the above matrices are defined at the unification scale. To
compare with the experimentally measured fermion masses, one has to take into account
the renormalisation group effects.

We finally discuss the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix. From the
particular form of our mass matrices, we deduce that the (1−2) Cabibbo angle is essentially
obtained from the down quark mass matrix. Ignoring for simplicity the (1 − 3) mixing,
we find that V CKM

12 ∼ V d
12 approximately [10]. Specifically, after diagonalization of the

quark mass matrices, one finds the following form of the CKM matrix to first order in
perturbation theory and up to order-unity coefficients

V CKM ≈

 1 ∆2∆3Φ̄23/(φ̄
2
3 + φ̄2

4) ∆3∆5φ̄3

−∆2∆3Φ̄23/(φ̄
2
3 + φ̄2

4) 1 ∆2∆5φ̄4

−∆3∆5φ̄3 −∆2∆5φ̄4 1

 , (25)

where the vacuum expectation values of the fields are normalised with respect to the heavy
mass scale of the theory, which should presumably be identified with some M-theory scale
∼ 1016 GeV [4].

Charged Leptons in this model are accommodated in the f̄1, f̄2, f̄5 and `c1, `
c
2, `

c
5

representations in the light spectrum shown above. The remaining representations f4, f̄3,
¯̀c
4, `

c
3 are expected to gain masses from terms

(f4f̄3 + ¯̀c
4`
c
3)
(
T3 · T5(φ2Φ̄23 + φ̄2Φ̄31)

)
(26)

Trilinear superpotential couplings yield

f̄1`
c
1h1 + (f̄2`

c
2 + f̄5`

c
5)h2 (27)

where one should expect as before higher-order corrections involving products of the singlet
and hidden-sector fields φi, φ

± and φ̄i, φ̄
±, etc.. In order to obtain the known hierarchy of

lepton masses, we see that a sensible choice is to accommodate the τ as `c1, f̄1, while choosing
〈h1〉 � 〈h2〉 for the Higgs vacuum expectation values. Indeed, as can be seen directly from
the superpotential, now bottom and τ couplings are exactly the same at the unification
scale [31], which agrees with the measured values after renormalisation effects are taken
into account.

It is not clear yet what combinations of f̄2,5 and `c2,5 should be interpreted as first- and
second-generation leptons, because there are higher-order terms mixing these latter fields
with some heavy states. We plan to return to these in a later publication, together with
the complicated issue of neutrino masses.
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6. R Violation

The types of terms discussed may not exhaust the pattern of superpotential couplings
in a string-derived model, since there may, in particular, be terms that violate R parity.
These might a priori cause serious phenomenological problems, because there are stringent
upper bounds on several individual couplings, and especially on the simultaneous presence
of some flavour-changing products of couplings [32].

In our case, no renormalizable R-violating contributions are allowed, because they are
not invariant under the GUT group, in contrast to conventional SU(5). The flipped SU(5)
transformation properties of the R-violating couplings are:

LLĒ → 5̄× 5̄× 1

LQD̄ → 5̄× 10× 10

ŪD̄D̄ → 5̄× 10× 10 (28)

This could be regarded as another potential phenomenological asset of flipped SU(5), in
the absence of any confirmed R-violation in Nature.

However, effective terms that break R-parity may be generated by non-renormalizable
higher-order terms [33, 34], and in all the cases (28) we need simply to add a field that
transforms as a 10 of SU(5) in order to obtain an SU(5)-invariant combination. If and
when this field gets a vacuum expectation value, effective operators may be generated.
The only candidate for such a field is F1, but we must check in each case whether the
transformations of the fields match under the U(1) of the flipped SU(5), as well as the
other U(1) factors, and also check the string selection rules.

Working as before to sixth order in the superpotential, we find in our flat direction the
following candidate field combinations that are invariant under the gauge symmetries of
the theory:

ŪD̄D̄ operators :

Ū1D̄2D̄3F1φ45Φ31

LQD̄ operators :

L1Q2D̄2F1φ45Φ̄23, L2Q2D̄2F1φ45Φ̄23

L1Q3D̄3F1φ45Φ31, L2Q3D̄3F1φ45Φ31

L3Q2D̄3F1φ45Φ31, L3Q3D̄2F1φ45Φ31

LLĒ operators :

L1L2Ē1F1φ45Φ̄23, L1L2Ē2F1φ45Φ̄23

L1L3Ē3F1φ45Φ31, L2L3Ē3F1φ45Φ31
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However, it turns out, by inspection, that none of these satisfies all of the string selection
rules!

At the present level of understanding, we cannot exclude the possibility that R-violating
couplings may appear at higher orders, and the upper limits on some couplings and com-
binations are so severe that it would be necessary for many higher-order terms to vanish
before any model could be considered safe. Nevertheless, we consider the vanishing to this
order a very positive point for this particular string model.

7. Dimensional-Five Proton-Decay Operators

In this model, fourth-order superpotential terms provide no dimension-five proton-decay
operators. The following are the potentially-dangerous dimension-five operators generated
by fifth-order non-renormalizable terms [35, 36]:

F4F4F3f̄3Φ31, F2F2F3f̄3Φ̄23, F1F1F3f̄3Φ31 (29)

F3f̄3f̄1`
c
1Φ31, F3f̄3f̄5`

c
5Φ̄23, F3f̄3f̄2`

c
2Φ̄23 (30)

F3f̄2f̄2`
c
3Φ31, F3f̄1f̄1`

c
3Φ31, F3f5f̄5`

c
3Φ̄23 (31)

However, with our choice of vacuum expectation values (2), none of these terms are danger-
ous, because they do not involve particles in the light Standard Model part of the spectrum.
At sixth order, the following potentially-dangerous operators appear:

F4F3F3φ+f̄5Φ̄23, F4F3F3f̄5φ̄−Φ31 (32)

However, the singlet fields φ+ and φ̄− do not acquire vacuum expectation values (2), so
these also pose no problems.

In contrast to the string model described in [9], currently we do not see any symmetry
reason why dimension-five proton-decay operators should be absent in this model to all
orders. If they do appear at some higher order, this may signal that the current model
requires some adjustment, but this should be regarded as an open question for the time
being.

8. Conclusions

We have discussed in this paper a new variant of a flipped SU(5) model derived from
string [13] which has many positive features. It exploits an appealing flat direction that
accommodates a pair of light Higgs doublets. These provide up- and down-quark mass
matrices that can reproduce the observed hierarchy of quark masses and VCKM matrix
elements, since they have one of the patterns of flavour texture zeros that had been proposed
previously on purely phenomenological grounds. The mass matrices of charged leptons and
neutrinos remain open issues, to which we hope to return in a forthcoming paper. One
very positive feature of this model is the absence of R-violating interactions to the order
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studied. This is in part due to the representation content of flipped SU(5), but is also due
in part to string selection rules that forbid certain couplings apparently permitted by the
gauge symmetries. Another positive feature of the model is the absence of dimension-five
proton-decay operators, which is essentially due to details of the vacuum we have chosen
and the corresponding light-particle spectrum.

Outstanding problems that should be addressed in future work include the discussion
of lepton and neutrino masses mentioned above, and the extension of all the analysis of
superpotential terms to higher orders, using systematically all the string selection rules as
well as the gauge symmetries of the model. In the longer run, we should also like to explore
the elevation of this model to an intrinsicM-theory compactification. Here we have assumed
that this is possible, and only used the inspiration of M-theory to motivate the absence of
intermediate-scale degrees of freedom, which are no longer needed to reconcile the bottom-
up and top-down calculations of the unification scale, and to motivate tolerance of a model
with symmetry breaking in the hidden sector, on the grounds that M theory may provide
other mechanisms for supersymmetry breaking. Knowledge of M-theory compactifications
is accumulating, but none of those exhibited explicitly so far has as many attractive features
as the model discussed here. Perhaps this or a related model may play a useful rôle in
focussing M-phenomenology?
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