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Abstract

We develop techniques to classify D- and F -flat directions for N = 1 su-

persymmetric string vacua of the perturbative heterotic string theory, which

possess an anomalous U(1) gauge group at the tree level. Genus-one cor-

rections generate a Fayet-Iliopoulos term for the D-term of U(1)A, which is

canceled by non-zero vacuum expectation values (VEVs) of certain massless

multiplets in such a way that the anomalous U(1) is broken, while maintain-

ing the D- and F -flatness of the effective field theory. A systematic analysis

of flat directions is given for non-zero VEVs of non-Abelian singlets, and the

techniques are illustrated for a specific model. The approach sets the stage

to classify the D- and F -flat directions for a large class of perturbative string

vacua. This classification is a prerequisite to address systematically the phe-

nomenological consequences of these models.
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I. INTRODUCTION

As a part of a broader program to address phenomenological implications of string models
one is faced with a myriad of challenges, among others the degeneracy of string vacua,
origin of supersymmetry breaking, and for some string vacua calculability of the effective
Lagrangian.

Nevertheless, one can take a more modest approach to consider a class of specific super-
string vacua which at the string scale (Mstring) possess N = 1 supersymmetry, the standard
model (SM) gauge group SU(2)L × U(1)Y × SU(3)C , as a part of the full gauge structure,
and a particle content that includes three ordinary families and at least two SM Higgs
doublets; i.e., such superstring vacua possess at least the ingredients of the minimal su-
persymmetric standard model (MSSM). These models may provide candidate vacua with
specific phenomenological predictions, consistent with the MSSM.

Within the perturbative heterotic superstring, classes of such quasi-realistic superstring
models were constructed from orbifold constructions [1] with Wilson lines [2,3], Calabi-Yau
compactifications [4], free-fermionic constructions [5–7], covariant lattices [8] and Gepner-
Kazama-Suzuki models [9]. A set of these models constitutes a starting point to address
their detailed phenomenological analysis. In general they possess the following features:

• Gauge Group Structure. Along with the SM gauge group there is a non-Abelian
hidden sector group and a number of additional U(1)’s, one of them generically anoma-
lous. The hidden sector non-Abelian gauge group may play a role in dynamical super-
symmetry breaking.

The UY is determined as a linear combination of the U(1) factors (or possibly broken
hidden sector non-Abelian factors), subject to the constraint that the massless spec-
trum contains the MSSM particles (three ordinary families and two Higgs doublets),
and the pairing of the exotic SU(3)C triplets, SU(2)L doublets and exotic singlets of
the observable sector 1. These constraints significantly restrict the allowed values of
U(1)Y , often imposing a unique choice of U(1)Y .

• Particle Spectrum. The mass spectrum is calculable. In addition to the three
ordinary families and two SM Higgs doublets, there are generically a large number of
exotic massless states. In particular, there are usually a large number of additional
massless matter multiplets, which transform non-trivially under the U(1)’s and/or the
standard model symmetry, as well as hidden sector states that transform non-trivially
under the U(1)’s and the non-Abelian hidden sector gauge group. In some cases these
models also possess massless states that are non-Abelian multiplets under both the
SM gauge group and the hidden sector non-Abelian gauge group, thus preventing a
clear distinction between the observable and the hidden sector of theory.

1A weaker requirement is that the exotic particles are paired with respect to SU(3)C and the

electric charge quantum number, so that there will be no exactly massless colored or electrically

charged fermions in the theory. For this weaker requirement there can be exotic states that are

chiral under SU(2)L and/or U(1)Y , but can acquire masses at the electroweak breaking scale.
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• Effective Lagrangian. In these models the couplings of the effective Lagrangian are
calculable. In particular, the conformal field theory techniques to calculate the Yukawa
couplings as well as higher order couplings in the superpotential have been developed.
However, in some cases detailed phenomenological analysis requires determination of
terms of very high order (sometimes to all orders) in the superpotential, which is often
beyond calculable reach 2.

To address the phenomenology of this class of models, the strategy is as follows 3:

• Step I. Due to the anomalous U(1) gauge symmetry at genus-one there is an ad-
ditional contribution ∝ M2

string/(192π2)TrQA [14,15] to the corresponding D-term
(Fayet-Iliopoulos term). The contribution of such a term is canceled [14–16] by giving
non-zero vacuum expectation values (VEVs) of O(Mstring) to certain massless multi-
plets in such a way that the anomalous U(1) is broken, while maintaining the D- and
F -flatness of the effective theory. Namely, a “deficiency” in the string construction
that produced the anomalous U(1) is remedied at genus-one, by providing a mechanism
to “restabilize” the vacuum. A comprehensive analysis of the D- and F -flat directions
for this class of models is thus a prerequisite to address fully their phenomenological
consequences.

• Step II. As the next step, the surviving gauge group, the massless particle quantum
numbers and their couplings in the effective Lagrangian at Mstring for the restabilized
string vacua should be analyzed.

• Step III. Finally, the implications of these models for the low energy phenomenology
should be addressed. In this case one faces the problem that the origin of the super-
symmetry breaking in string theory is not well understood, and thus one is lacking pre-
dictive power for the supersymmetry breaking parameters in the effective Lagrangian.
Nevertheless, one may parameterize this ignorance by introducing soft supersymmetry
breaking mass terms, and analyze the low energy consequences as a function of these
parameters.

The purpose of this paper is to describe a systematic approach which enables one to
classify the D- and F -flat directions which restabilize the superstring vacuum (Step I). In

2In general, one cannot classify the non-zero couplings just by using the gauge symmetries of the

effective field theory, because certain gauge-allowed terms are absent due to the string dynamics. In

certain instances such constraints can be obtained by applying selection rules for the corresponding

string amplitudes, as developed for orbifold [10] and blown-up orbifold compactifications [11]. See

also [3].

3Certain low energy phenomenological consequences can be obtained by addressing only parts of

the analysis described below. In particular, taking this limited route, consequences for additional

neutral gauge bosons in this class of models were extensively addressed in [12,13].
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particular, the analysis focuses on D- and F -flat directions with non-zero VEVs for the non-
Abelian singlets, only 4. (For the sake of completeness an analysis of the same issue including
non-Abelian fields as well is needed. However, we postpone this problem for further study.)
While the method discussed in this paper is general, and applies to a general perturbative
heterotic string model with an anomalous U(1), we chose to illustrate the results for a
particular model, namely Model 5 of [7]. This serves as an instructive example, in which
the classification of flat directions is particularly simple.

In a subsequent paper [17], the method is applied to the analysis of the flatness con-
straints for a larger class of models. In later papers we plan to address the phenomenological
consequences of these models in detail (Steps II and III).

This paper is organized as follows. In Section II some of the technical features, in par-
ticular those associated with the anomalous U(1) for the superstring models (based on the
fermionic construction), are discussed. In Sections III and IV the approaches to determine
D-flat directions for the non-anomalous U(1)’s and anomalous U(1)A are discussed, respec-
tively. In Section V F -flatness constraints are analyzed. The summary and conclusions are
given in Section VI.

II. STRINGY SU(3)C × SU(2)L × U(1)Y MODELS

Gauge structures for quasi-realistic four-dimensional heterotic string models follow the
general form,

{SU(3)C × SU(2)L ∈ G}obs × G̃
NA
hid ×

∏
n

U(1)n ×
∏
p

∆̃p , (1)

where G denotes a possible SM GUT or semi-GUT embedding which may include some
particular U(1) factors, and G̃NA

hid contains the non-Abelian hidden sector gauge factors.
Both observable and hidden U(1) are included in

∏
n U(1)n, while

∏
p ∆̃p denotes remaining

local discrete symmetries.
“Cracks in the wall” separating the observable and hidden sectors can appear in two

forms. The first is when massless states appear as non-trivial representations of both the
observable and hidden sector non-Abelian gauge groups (i.e, as “mixed” states). Model 5 of
[7] gives an example of such a mixed state that carries SU(2)L×SU(2)hid charge. In this case
part (or possibly all) of the so-called “hidden sector” is not actually hidden, unless the mixed
states acquire string scale masses. If string scale masses are not acquired, a gauge-mediated
process may be the dominant form of observable sector supersymmetry breaking.

Second, there may be “shadow” sector U(1)’s, whose charges are carried by both observ-
able and hidden sector states. Although states with both shadow and hidden sector charge
are generically present in free fermionic models, acceptable phenomenology requires that
such states have masses m ≥ msusy. Furthermore, traditional supergravity-mediated super-
symmetry breaking suggests that such states should have masses m ≈Mstring. Both types of

4A number of specific examples of such D- and F -flat directions exist in the literature [3,6].

However, a comprehensive approach to this problem is lacking.
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communication between observable and hidden sectors can have profound phenomenological
implications.

The SM hypercharge, Y , may be totally embedded in a (semi-)GUT G or may also have
contributions from various U(1)n. Typically, some of the extra U(1)n in four-dimensional
string models are anomalous. By this we mean those Abelian symmetries have mixed U(1)-
gravitational anomalies and thus have a non-zero charge trace. For example, to date all
known free fermionic four-dimensional SU(3)C ×SU(2)L×U(1)Y models with extra, unem-
bedded, U(1) factors contain this type of anomaly.5

In the initial charge basis, generally more than one U(1)n will appear anomalous. How-
ever, the total anomaly from all U(1)n can be rotated into a single U(1)A, defined by

U(1)A ≡ cA
∑
n

{TrQn}U(1)n, (2)

with cA a normalization coefficient. Following rotation (2), an orthogonal basis {U(1)a} may
be chosen for the non-anomalous components of the original set of U(1)n.

As a result of the charge trace relationships, generally known as the universal Green-
Schwarz (GS) relation,

1

kmk
1/2
A

Tr
Gm

T (R)QA =
1

3k
3/2
A

TrQ3
A =

1

kak
1/2
A

TrQ2
aQA =

1

24k
1/2
A

TrQA ≡ 8π2δGS , (3)

invoked by stringy modular invariance constraints, rotation (2) removes all U(1) triangle
anomalies6 except those involving U(1)A [14]. Here km is the level of the gauge group Gm

and 2T (R) is the index of the representation R. The physical content of eq. (3) is that
the related mixed anomalies are canceled by the pseudoscalar partner of the dilaton, which
couples universally to all gauge groups. A similar set of anomaly-free U(1)a trace relations
indicates that triangle anomalies involving Q2

A cannot occur,

1

kmk
1/2
a

Tr
Gm

T (R)Qa =
1

3k
3/2
a

TrQ3
a =

1

kAk
1/2
a

TrQ2
AQa =

1

24k
1/2
a

TrQa = 0 . (4)

Relations analogous to (3) and (4) involving QaQb, QaQbQc, etc., also hold.
After rotation of all anomalies into a single U(1)A via (2), the standard anomaly cance-

lation mechanism [14] breaks U(1)A. However, this occurs at the expense of generating a
Fayet-Iliopoulos (FI) D-term,

eφM2
P lδGS =

eφM2
P l

192π2k
1/2
A

TrQA , (5)

5Recently, though, an anomaly-free semi-GUT with SU(4)C × SU(2)L × SU(2)× U(1)4 × [E7 ×

SU(2)]hid gauge group containing observable sector chiral reps was found [18]. For a discussion on

anomalous U(1)’s in orbifold compactifications see [19].

6This rotation is not necessarily sufficient to remove all triangle anomalies from the U(1) orthog-

onal to U(1)A for general field theoretic models or strongly coupled strings, since the GS relations

(3) need not hold then.
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where φ is the dilaton. g ≡ eφ/2 is the physical four-dimensional gauge coupling. The FI D-
term is a genus-one string effect (one-loop effect in the effective field theory) and is therefore
calculable in perturbative string theory. It must be canceled by appropriate VEVs of the
scalar components ϕi of supermultiplets Φi carrying the anomalous charge so that7,

DA =
∑
i

Q
(A)
i |ϕi|

2 +
g2M2

P l

192π2
TrQA = 0 . (6)

D-flatness in the non-anomalous directions, along with F -flatness, impose additional con-
straints on the allowed directions of these VEVs,

Da =
∑
i

Q
(a)
i |ϕi|

2 = 0, (7)

Fi =
∂W

∂Φi

= 0; W = 0. (8)

The presence of an anomalous U(1)A can have profound effects on a model including:
(i) Generation of a Fayet-Iliopoulos D-term and gauge rank reduction via induced VEVs
canceling the FI term [3]. (ii) The induced VEVs can eliminate many particles from the
low energy spectrum. (iii) It can play a role in explaining fermion mass hierarchies [20] and
addressing the µ problem [21]. Other possible implications are discussed in [22–25].

The model we use to illustrate our general analysis is model 5 of ref. [7], to which we
refer for more details. The gauge group is

{SU(3)C × SU(2)L}obs × {SU(4)2 × SU(2)2}hid × U(1)A × U(1)6, (9)

and the particle content includes, besides the MSSM multiplets, additional chiral superfields:

6(1, 2, 1, 1) + (3, 1, 1, 1) + (3̄, 1, 1, 1) +

4(1, 2, 1, 2) +

2(1, 1, 4, 1) + 10(1, 1, 4̄, 1) + 8(1, 1, 1, 2) +

5(1, 1, 4, 2) + (1, 1, 4̄, 2) + 8(1, 1, 6, 1) + 3(1, 1, 1, 3) +

42(1, 1, 1, 1) , (10)

where (a, b, c, d) indicates the representation under (SU(3)C , SU(2)L, SU(4)2, SU(2)2). In
Table I we list the 45 (including three generations of e+ and νc) non-Abelian singlets of the
model with their U(1) charges. A prime on a superfield Si indicates the existence of another
superfield S ′i with the same charges. Some fields Sj have a mirror copy S̄j with opposite
U(1) charges, and are indicated with a

√
.

Phenomenological considerations lead to the hypercharge definition [7]

Y =
1

96
(−8Q2 − 3Q3 − 8Q4 −Q5 +Q6), (11)

[normalized to give Y (quark doublet)= 1/6]. In following sections we will examine those
flat directions involving only non-Abelian singlets with Y = 0.

7Our convention for defining DA is that the corresponding D term in the Lagrangian is 1
2kA

g2D2
A,

and similarly for Da.
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III. D-FLAT DIRECTIONS FOR THE NON-ANOMALOUS U(1)’S

Any flat direction must have vanishing D-flat terms for all the non-anomalous U(1)
factors of the gauge group. We consider first the space of such flat directions, leaving aside
for the moment the questions of vanishing anomalous D-term and F -flatness. In the rest
of this section then, flat direction will refer to a direction with zero D-terms for the non-
anomalous U(1)’s.

A powerful and convenient way of analyzing the moduli space of flat directions in a given
model makes use of the correspondence between the holomorphic gauge-invariant monomials
built out of the chiral fields and the D-flat directions [26–29]. In the absence of a superpoten-
tial [and of an anomalous U(1), see next section], the set of all such monomials describes the
variety of classical supersymmetric vacua of the model. When the superpotential does not
vanish, the moduli space is described by imposing F -flatness constraints on the holomorphic
monomials.

We restrict our discussion to those flat directions exciting only chiral superfields Φi (with
scalar components ϕi) not charged under any of the non-Abelian gauge groups of a given

model. Those fields generically carry non-zero U(1)a charges, [Q(a)
i for the field Φi], where

we reserve the index a = A for the anomalous U(1) and the rest, (a = 1, ...,m) to the non-
anomalous U(1)’s (that is, we work in the rotated basis). The space of all field directions
with zero D-terms for a = 1, ...,m is described by the set of holomorphic U(1)a gauge-
invariant monomials in the Φi’s. Such monomials are not necessarily invariant under the
anomalous U(1) symmetry, so that they will generically carry a non-zero U(1)A charge.

It may be useful at this point to spell out in more detail how this correspondence works in
this simple U(1) case and show explicitly how the flat directions are parameterized in terms
of field VEVs. Let N be the number of chiral non-Abelian singlets and let us normalize all
U(1) charges so that they are integers. The m D-flatness constraints are

Da =
∑
i

Q
(a)
i |ϕi|

2 = 0, (a = 1, ...,m). (12)

Consider now a generic holomorphic invariant monomial (HIM) of the form

P ≡ Π′iΦi = ΠiΦ
ni
i , (13)

where the prime indicates that the index i can take the same value several times (ni ≥ 0).
The requirement of U(1)a gauge invariance of P reads∑

i

′
Q

(a)
i =

∑
i

niQ
(a)
i = 0. (14)

It is immediately obvious that the choice of VEVs

|ϕi|
2 = ni|ψ|

2, (15)

satisfies Da = 0 automatically for arbitrary |ψ|. If the monomial P is actually built as the
product of two other HIM’s
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P = N1N2 =
[
ΠiΦ

n
(1)
i
i

] [
ΠjΦ

n
(2)
j

j

]
, (16)

the VEVs can be chosen as

|ϕi|
2 = n

(1)
i |ψ1|

2 + n
(2)
i |ψ2|

2, (17)

with both |ψ1| and |ψ2| as arbitrary parameters (giving a multidimensional flat direction).
It is clear then how HIM’s correspond to D-flat directions. The converse is also true. Given
a solution to the m eqs. (12), suppose no subset of the fields with non-zero VEVs satisfy
the same system of equations (if there are, then we analyze each subset in turn). This
assumption implies that the field VEVs are related to each other by a relation of the form
|ϕj|2 = rj |ψ|2 with rj ≥ 0 and ∑

j

Q
(a)
j rj = 0. (18)

Each Q
(a)
j is an integer number by our choice of normalization. Taking r1 as an integer and

having assumed that the solution to the D-flat constraints cannot be split in sub-solutions,
a theorem of elementary algebra [30] tells that the rj’s must be rational. Rescaling them as
integers, we can then construct the holomorphic invariant monomial

P = ΠjΦ
rj
j (19)

associated with the particular solution of the D-flat constraints.
If the original solution P could be decomposed in subsets of solutions, then the corre-

sponding monomial would be a product of simpler invariant monomials, associated as above
with each separate subsolution. Flat directions which cannot be decomposed in such a way
would be one-dimensional (they will depend on a single arbitrary VEV ψ). As a general rule,
the (complex) dimension of a flat direction P will be equal to the number of different fields

excited minus the number of D constraints, as given by Rank[Q
(a)
i ]|P , where Q

(a)
i denotes the

full N ×m charge matrix and |P means that only the rows corresponding to fields present
in P are selected to compute the rank. This rank is the number of U(1)’s which are broken
along the flat direction P . In other words, the initial number of degrees of freedom, as given
by the number of different fields in P , equals the dimension of the flat direction plus the
number of Goldstone bosons:

[# different fields in P ] = dim P + [# broken U(1)′s]. (20)

We next discuss the dimension of the space of D-flat directions. The starting field space
is an N-dimensional complex space. Any one-dimensional HIM (or equivalently, any one-
dimensional solution of the D-flat constraints)

P = ΠiΦ
ri
i , (ri ≥ 0) (21)

can be associated with a vector in this N-dimensional field space proportional to

vP = (r1, ..., ri, ..., rN), (22)
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with a constant of proportionality equal to the free VEV |ψ|2. It is then clear that any
flat direction can be expressed as a linear combination of such elementary vectors8 and one
can construct a basis of that space by finding a collection {vα} of linearly independent one-
dimensional flat directions. That basis, which has a finite number d of elements (d ≤ N),
will be most useful for the description of the space of flat directions.

In general, the dimension of that space is equal to the dimension N of the original field
space minus the number of independent constraints imposed by the m Da = 0 conditions
(these are real conditions but m phases are fixed by gauge fixing). This would give in
principle d = N − m for the dimension of the moduli space of flat directions. If not all
Da = 0 conditions on the Φi are independent [the number of independent conditions is the

rank of the N ×m charge matrix Q
(a)
i ] the dimension of the moduli space can be larger. In

general,

d ≡ dimM≤ N − Rank
[
Q

(a)
i

]
. (23)

In some cases the inequality is not saturated. This can only happen if under some U(1) (or
linear combination of them) all the non-Abelian singlet fields have Qi ≥ 0 or Qi ≤ 0. There
is no way of constructing an HIM that includes those fields with non-zero charges under that
particular U(1) so that they will never enter in any flat-direction9. Such fields may as well
be removed from the list of N fields for the purpose of discussing the space of flat directions.
After such fields have been removed, one ends up with N∗ ≤ N fields and

d ≡ dimM = N∗ −Rank
[
Q

(a)
i

]∗
, (24)

and Rank
[
Q

(a)
i

]∗
(≤ Rank

[
Q

(a)
i

]
) is the rank of the N∗ × m∗ charge matrix of the N∗

remaining fields [which have non-zero charges under m∗ ≤ m U(1)’s].
Once this basis ({Mα} HIM’s with α = 1, ..., d) has been constructed, any flat direction

P can be expressed in terms of the Mα’s as10

P n = ΠαM
nα
α (25)

8Not every linear combination of these elementary vectors will correspond to a flat direction

though, because of the constraint ri ≥ 0, which renders the problem non-trivial. In a linear

combination of these vectors, v =
∑
κ aκvPκ , negative coefficients aκ are allowed provided the

vector v also has ri ≡
∑
κ aκriκ ≥ 0 (see example at the end of this section).

9As TrU(1)(a) = 0 over all the fields in the model, this class of fields exists only when we restrict

our attention to a particular sector of the model. Such fields can enter in flat directions that excite

fields outside that sector.

10Pn by itself is exactly the same flat direction as P ; the power is only important when relating

P to other HIM’s.
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where n and nα are integers, with n ≥ 1 but nα can take both signs11. Such a basis contains
in a compact form all the information required about the classical moduli space.

We will present now such a basis for our model. In principle, this basis is not uniquely
determined and different choices can be made which are more or less convenient for different
purposes. One simple procedure to generate the basis is to make an automated search of
HIM’s, retaining only those which are independent, until the number of them saturates the
dimension of the moduli space. An alternative and more systematic way of generating the
basis is to form first a basis of invariants for the first U(1) group. These invariants are then
combined to form an invariant basis for the second U(1) factor and so on. This procedure
is simple because the construction of invariants of a single U(1) is trivial. However, the
elements of the final basis generated in this way are usually more complicated. In table II,
we report two different bases for our example model (for flat directions built out of Y = 0
singlet fields only). An element like 〈8, 12〉 stands for the HIM

M6 = Φ8Φ2
1. (26)

Basis A is constructed in such a way as to minimize the number (and power) of the fields
entering the basis elements. Basis B will be suitable for some future discussions. Of course,
all the results concerning flat directions are independent of which particular basis is used.

In our model, after selecting Y = 0 singlet fields only, we have 20 fields plus 10 copies, and
Rank

[
Q

(a)
i

]
= 6− 1 (6 initial non-anomalous U(1)’s minus hypercharge, as the hypercharge

D-term vanishes trivially for Y = 0 fields). The dimension of the D-flat space is then
d = 25. In the table, we show only those elements involving the 20 different fields, so that
we have only 15 elements. The 10 remaining elements not shown are obtained trivially by
appropriate substitution of some fields by their copies.

To clarify the meaning of eq. (25), we give an example of a flat direction which is not
contained in the bases of Table II and requires some negative nα:

P ≡ 〈22, 8, 5̄〉 =
M13M9M4

M11M2
=
〈15, 8, 3̄〉〈22, 18, 3〉〈5, 5̄〉

〈18, 15, 5〉〈3, 3̄〉
, (27)

or, in terms of the vectors of the form (22):

vP = v13 + v9 + v4 − v11 − v2. (28)

Although knowledge of the basis of D-flat directions is very convenient, it proves useful
to have, in addition, a list of all one-dimensional flat directions. The number of them can be
much larger than the dimension d of the moduli space but is finite. In particular, from (20), it
is clear that there is an upper limit on the number of different fields that can appear in a one-
dimensional flat direction. Using such a superbasis, every flat direction can be factorized
in terms of one-dimensional elements in an expression similar to (25) but with nα ≥ 0.
This simplifies considerably the analysis of the moduli space as only trivial multiplications

11An equivalent description of eq. (25) is that the vector vP associated with the direction P can

always be expressed as a linear combination of the basis vectors vα.

10



of one-dimensional HIM’s are involved and positivity constraints on the VEV-squares are
automatically satisfied. For example, one is usually interested in finding if particular flat
directions exist with non-zero VEVs for some given fields while keeping zero VEVs for
some other fields. In principle, the use of the d-dimensional basis is sufficient to answer such
questions, but it can become cumbersome in practice (especially for large dimensional bases,
as is usually the case). In contrast, by simple inspection of the superbasis one is able to
determine whether such directions do exist. The usefulness of such a list will become clear
in the next sections, especially for the discussion of F -flatness. In Table III we present such
a superbasis for our model example. Only the 73 directions involving non-primed fields are
shown as the rest are obtained trivially from these.

IV. ANOMALOUS U(1)

In the presence of an anomalous U(1) one should further require the vanishing of the
corresponding D-term, which now includes a Fayet-Iliopoulos term:

DA(P ) =
∑
i

QA
i |ϕi|

2 + ξ, (29)

with

ξ =
g2M2

P l

192π2
TrQA 6= 0. (30)

For the analysis of the flat directions in the presence of an anomalous U(1) it is useful
to find subsets of chiral fields for which the anomalous U(1) is a linear combination of the
non-anomalous U(1)’s, say

QA
j = Qj ≡

m∑
a=1

αaQ
(a)
j , (31)

where the αa can be chosen for convenience. Obviously, such a relation cannot hold for all
the chiral fields in the model. We will choose the αa trying to maximize the number of fields
for which Q equals the anomalous charge QA. It is remarkable that in all the models we have
studied, a definition exists which matches the anomalous charges of a very large number of
fields. This observation helps considerably in the analysis and search of flat directions.

Defining the quantities

Q̂j = QA
j −Qj , (32)

we can classify all the chiral fields in three different types, depending on the sign of Q̂j :

Φ+
j , if Q̂j > 0,

Φ0
j , if Q̂j = 0,

Φ−j , if Q̂j < 0. (33)

11



We can extend the definition of Q̂ from the fields to the flat directions. If the flat direction
P is defined by (25), then

Q̂(P n) = nQ̂(P ) =
∑
α

nαQ̂(Mα) (34)

and

Q̂(Mα = ΠiΦ
ni
i ) =

∑
i

niQ̂i. (35)

By invariance of P under the non-anomalous U(1)’s, Q̂(P ) turns out to be precisely the
anomalous charge of P .

The sign of the Fayet-Iliopoulos term ξ determines which fields can actually form a flat
direction. The statement is:

If ξ > 0 (< 0), any flat direction must contain at least one of the fields Φ−j (Φ+
j ).

The proof goes as follows: First, if the flat direction is of the form

P 0 = Π′iΦ
0
i , (36)

one has

DA(P 0) =
∑
i

QA
i |ϕ

0
i |

2 + ξ =
∑
i

m∑
a=1

αaQ
(a)
i |ϕ

0
i |

2 + ξ =
m∑
a=1

αaDa(P
0) + ξ = ξ 6= 0. (37)

For a flat direction of the form

P± = (Π′iΦ
0
i )(Π

′
jΦ
±
j ), (38)

one has instead

DA(P±) =
∑
i

m∑
a=1

αaQ
(a)
i |ϕ

0
i |

2 + ξ +
∑
j

QA
j |ϕ

±
j |

2 = ξ +
∑
j

Q̂j |ϕ
±
j |

2. (39)

If ξ > 0, the only possible way of canceling the ξ term is by having negative Q̂j ’s. A

similar consideration applies for ξ < 0, which requires some positive Q̂j . To cancel the
Fayet-Iliopoulos term, some free VEV in the flat direction P (corresponding to some field
with the right sign of Q̂) is fixed in terms of ξ and the dimensionality of P drops by one.
The final dimension of P would satisfy eq. (20) if the anomalous U(1) is counted among the
broken U(1)’s.

If in some model all the fields which are singlets under the non-Abelian group factors
have the wrong value of the Q̂j charges to form a flat direction out of them, the cancelation
of the Fayet-Iliopoulos term is necessarily accompanied by the spontaneous breaking of some
of the non-Abelian gauge group factors: some non-zero VEV for fields charged under the
non-Abelian groups are required.

In table I we also show the values of Q̂j for our example model, with Q defined as

Qj = −
1

3
Q

(6)
j . (40)

12



We see that the only fields with non-zero Q̂ are S1 (Q̂ = 32), S1 (Q̂ = −32) and S
(
19
′)

(Q̂ = −32). Then, any flat direction involving only Y = 0 singlets must necessarily have a
non-zero S1 VEV [in this model the trace of the anomalous U(1) is negative].

In Table II we list also the Q̂ values for the basis elements. If all the Q̂’s were zero,
QA would be a linear combination of the other U(1)’s in the sector considered. If all Q̂’s
for the elements of the basis are either zero or have the wrong sign to cancel ξ, one cannot
conclude that no flat direction exists with the appropriate sign of Q̂: starting with a Q̂ = 0
direction that contains two fields with opposite Q̂, the bad-sign field could be divided out
using the wrong sign Q̂ basis element. Either by manipulating the elements of the basis
or by direct inspection of the full list of one-dimensional flat directions it is easy to find
all possible one-dimensional (before canceling ξ) directions with the correct Q̂ to cancel the
Fayet-Iliopoulos term. In our example model, from Table III one finds a total of five such
directions:

P1 ≡ R6 = 〈8, 12〉,

P2 ≡ R22 = 〈14, 6̄, 3, 12〉,

P3 ≡ R23 = 〈18, 5, 3, 12〉,

P4 ≡ R42 = 〈14, 5, 4̄, 3, 12〉,

P5 ≡ R43 = 〈18, 6̄, 4, 3, 12〉. (41)

To these, one should add those similar monomials obtained by replacing some field by its
copy ( S6 → S

′
6, S14 → S ′14, S18 → S ′18, S5 → S ′5, S8 → S ′8). In general models, the number

of different Pα’s can be large and even exceed the dimension of the moduli space. To describe
the set of all Pα’s it is enough to find a subset of independent ones. Combinations of the
Pα’s in that subset will generate all the Pα’s. A convenient basis for all the D-flat directions
can be arranged that contains this basis for the Pα’s as a sub-basis and is completed by
other, independent, elements with zero or the wrong sign of Q̂. Such a basis for our model
is presented as basis B in Table II.

The defining properties of the Pα directions are as follows: first, they are one-dimensional
(and thus cannot be factorized in simpler HIM’s), and second, they have Q̂ of the correct
sign. These two properties determine the following important result:

Every D-flat direction can be written in the form

P n = PαN (42)

with N some HIM (not necessarily of Q̂ > 0) and Pα one of the five special HIM’s listed in
(41) (or some version of them involving copies of the fields).

V. F -FLATNESS

When the superpotential W is non-vanishing, the effective potential will receive F -term
contributions that can lift some of the D-flat directions we have discussed so far. The
conditions to maintain zero potential along a given D-flat direction are

Fi ≡ ∂W/∂Φi = 0 ; W = 0 , (43)
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for all Φi in the theory.
Consider a D-flat direction

P = Π′iΦi, (44)

[with Q̂(P ) 6= 0 of sign opposite to that of TrQA]. There are two types of superpotential
terms that can lift this generic flat direction. First, there can be terms of the form

WA ∼ (Π′i∈PΦi)
n
, (45)

where Π′i∈PΦi is a gauge invariant holomorphic monomial formed by a subset of the chiral
fields that enter in P . These terms will generate a non-zero potential along the flat direction
P (barring a cancelation of different contributions to ∂WB/∂Φi). A flat direction will be
called type-A if such terms are allowed by the gauge symmetries. Note that P itself is not
gauge invariant under the anomalous U(1), and so terms WA ∼ P n are forbidden by gauge
symmetry. This is in contrast with the situation in the absence of an anomalous U(1), in
which case the HIM’s associated with any flat direction are truly gauge invariant and thus
all flat directions are type-A.

Other terms that can lift the generic flat direction P are of the form

WB ∼ Ψ (Π′i∈PΦi) , (46)

with Ψ /∈ P . This term would contribute to the potential the dangerous piece |∂WB/∂Ψ|2

which would lift P (again barring cancelations). This exhausts all possible superpotential
terms giving a non-zero potential along P . As we are examining in this paper the flat
directions formed out of non-Abelian singlets only, we can restrict our attention to the
superpotential for these fields (gauge invariance requires that Ψ in WB is also a non-Abelian
singlet). We will say a flat direction is type-B if only terms of the type WB are allowed by
the gauge symmetries. The condition W = 0 could be violated only by WA terms.

Ideally, one would like to find all directions which are F -flat to all orders of the nonre-
normalizable superpotential. If the D-flat direction is type-A, that would require that some
non-gauge symmetry (e.g., some string selection rule derived using conformal field theory)
conspires to forbid the infinite number of terms of WA type. If, on the other hand, the
flat direction is type-B, only a finite number of WB terms can exist, and knowledge of the
superpotential up to some finite order in the nonrenormalizable terms is all that is required
to prove F -flatness to all orders.

We will restrict our analysis to type-B flat directions (in doing so, we may of course leave
out some true flat directions, but proving so is a difficult task). A given D-flat direction P
will be type-B if no gauge invariant [including U(1)A] holomorphic monomial can be built
out of the fields in P . Equivalently, for a type-B D-flat direction P , one cannot write

P n = NN ′ (n ≥ 1), (47)

with N a fully invariant (Q̂ = 0) holomorphic monomial.
The classification of D-flat directions we made in the previous section will prove most

useful for finding all type-B flat directions, as we will show now in the case of our particular
model. Recall that any D-flat direction can be written as

14



P n = Pα
(′)N, (48)

where the Pα’s are listed in (41). There are several cases to consider depending on the
anomalous charge of N .

• N = 1. This gives just the list of Pα D-flat directions. These are type-B directions12

because they are one-dimensional, and so cannot be factorized as in (47).

• N = Π′iΦi has Q̂ = 0. Then, N is gauge invariant under all U(1)’s, and the superpo-
tential may contain terms of the form

WA ∼ Nn. (49)

Thus, P would be type-A.

• N = Π′iΦi has Q̂ < 0. To have Q̂(P ) > 0 in (48) it is necessary that |Q̂(N)| <Q̂(Pα).
As both Q̂’s can be taken to be integers, the superpotential could contain terms of the
form

WA ∼ (Pm
α N

p)n (50)

with mQ̂(Pα) + pQ̂(N) = 0. This proves P is type-A.

• N = Π′iΦi has Q̂ > 0. Then, using the results of the previous section, we can write
again

N = PβN
′ (51)

and we should next analyze N ′.

By getting back to the starting point in this way we have proved that all type-B D-flat
directions must be generated by combining the Pα’s alone.

We turn then to the analysis of all possible flat directions built out of the Pα’s in our
model. Some combinations of Pα’s will not be type-B, and we will not consider them further.
For the type-B combinations it is simple to find all possible WB type terms and the superbasis
is very useful for this purpose. For a given type-B direction P , any possible WB term is
built of the few elements in the superbasis which involve at most one field not contained in
P . Usually, it is enough to consider one-dimensional Q̂ = 0 invariants, as multidimensional
invariants will generally contain at least two fields (or the same field Ψ to a power larger
than one) that do not appear in the type-B flat direction, and thus do not spoil F -flatness.
By checking whether these terms appear in the superpotential (or are forbidden by stringy

12One way to check this is to compute Rank[QAi , Q
(a)
i ]|Pα . If this rank equals the number of

different fields in Pα no gauge-invariant monomial can be built out of the fields in Pα. However,

the existence of an invariant is not guaranteed if the rank is smaller.
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arguments) we can determine whether the type-B D-flat direction is also F -flat to all orders.
We then need to know the superpotential to some given order. In ref. [7], W was calculated
up to 4th order terms. The non-Abelian singlet part reads13:

W2 = 0, (52)

W3 = S4(S6S
′
5 + S

′
6S5) + S4(S5S

′
6 + S ′5S6) + S18(S5S

′
15 + S ′5S15)

+ S14(S15S
′
6 + S ′15S6) + S23(S6S

′
8 + S ′6S8) + S3(S15S

′
8 + S ′15S8) (53)

+ S22(S5S
′
8 + S

′
5S8),

W4 = S1S
′
8S20S

′
19. (54)

The different Yukawa couplings, of order g, are not indicated explicitly, nor is the O(M−1
P l )

coefficient of W4. With this information we now examine all possible combinations of the
Pα’s:

• P1 = 〈8, 12〉 and primed versions of it. This is type-B, and the only WB term allowed
by gauge symmetries is the mass term

WB ∼ S1S1. (55)

Mass terms do not appear in (52), and we conclude that P1 is not only D-flat but also
F -flat to all orders in the nonrenormalizable terms in the superpotential (the same
applies to P ′1 = 〈8′, 12〉 and products of both).

• P2 = 〈14, 6̄, 3, 12〉, etc. are also type-B, with lifting terms

W
(2)
B ∼ S1S1 + S3S3 + S6S6 + primed copies

W
(3)
B ∼ S15S14S6 + S23S14S3 + p.c. (56)

We see that S ′15S14S6 does appear in (53) and lifts P2. However, the directions P ′2
(′) =

〈14′, 6̄(′), 3, 12〉 remain flat to all orders (but P2P
′
2 and P ′′′2 = 〈14, 6̄′, 3, 12〉 are also

lifted).

• P3 = 〈18, 5, 3, 12〉 is type-B with (omitting mass terms)

W
(3)
B ∼ S18S15S5 + S22S18S3 + p.c. (57)

Comparing with (53), we find that S18S
′
15S5 lifts P3 but P ′3

(′) = 〈18′, 5(′), 3, 12〉 are flat
to all orders (while P3P

′
3 and P ′′′3 = 〈18, 5′, 3, 12〉 are also lifted).

• P4 = 〈14, 4̄, 5, 3, 12〉 and all its primed versions are type-B but are lifted by

W ∼ S4(S5S
′
6 + S ′5S6). (58)

13Those terms in Table III which have Q̂ = 0 but do not appear in W are examples of terms

forbidden by conformal selection rules.
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• P5 = 〈18, 6̄, 4, 3, 12〉 and all its primed versions are type-B but are lifted by

W ∼ S4(S6S
′
5 + S

′
6S5). (59)

• P1P2 = 〈14, 8, 6̄, 3, 14〉 is type-B. Besides those terms already present for P1 and P2

separately, there are no additional contributions to WB. Then, only the combinations
with P ′2

(′) remain flat to all orders.

• P1P3: same as above.

• P2P3 = 〈18, 14, 6̄, 5, 32, 14〉 is a particularly interesting type-B flat direction. The
dangerous WB terms are just those discussed for P2 and P3. One way to satisfy the
F -flatness constraint is to choose adequately the primed copies appearing in the flat
direction. For example, P ′2P

′
3 = 〈18′, 14′, 6̄, 5, 32, 14〉 remains flat to all orders (because

P ′2 and P ′3 have zero F -terms and there are no mixed terms to worry about). Another
interesting possibility is that there is a non-trivial cancelation among different F -terms
leaving some direction flat. This happens for P2P3 = 〈18, 14, 6̄, 5, 32, 14〉. The term in
the potential (with Ψ = S ′15) that would lift this flat direction is

VF = |ϕ14ϕ6 + ϕ18ϕ5|
2 . (60)

The D-term constraints would give the relations

|ϕ1|2 = 2x2, |ϕ6̄|
2 = |ψ|2,

|ϕ3|2 = x2, |ϕ14|2 = |ψ|2,
|ϕ5|2 = x2 − |ψ|2, |ϕ18|2 = x2 − |ψ|2,

(61)

with

x2 = −
ξ

64
, (62)

and |ψ|2 arbitrary (except for the constraint |ψ|2 < x2). It is trivial to see that with a
convenient choice of the sign of the VEVs in (60) and fixing |ψ|2 = x2/2, one obtains
VF = 0 and thus F -flatness to all orders. The same mechanism leaves P ′′′2 P

′′′
3 flat but

cannot work for P2P
′′′
3 or P ′′′2 P3.

• P1P2P3 = 〈18, 14, 8, 6̄, 5, 32, 16〉 is type-B. The WB terms are those of P1, P2 and P3.
One possibility to obtain F -flatness is to choose conveniently the primed copies and,
for example, P1P

′
2P
′
3 = 〈18′, 14′, 8, 6̄, 5, 32, 16〉 remains F -flat.

As in the previous example, there is also the possibility of a cancelation among different
F -terms. In general, P1P2P3 would be lifted by the same potential terms in (60), but
some particular choice of VEVs leaves VF = 0. More precisely, solving the D-term
constraints gives
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|ϕ1|2 = 2x2, |ϕ8|2 = x2 − |ψ1|2,
|ϕ3|2 = |ψ1|2, |ϕ14|2 = |ψ2|2,
|ϕ5|2 = |ψ1|2 − |ψ2|2, |ϕ18|2 = |ψ1|2 − |ψ2|2.
|ϕ6̄|

2 = |ψ2|2,

(63)

The choice |ψ1|2 = 2|ψ2|2 will give VF = 0 when the VEVs have the proper signs. In
this case, we are left with a one-dimensional direction (parameterized by, say, |ψ2|2)
F -flat to all orders. The particular point |ψ2|2 = x2/2 gives |ϕ8|2 = 0 and corresponds
to the flat direction P2P3 discussed before.

• P4(ΠiPα). The structure of the superpotential terms that lift P4 is such that this
type of D-flat directions is always lifted (a cancelation of different F -terms as in the
examples above cannot be enforced). Moreover, some of the possible combinations,
like P4P5, are type-A as they contain the invariant 〈6, 6̄〉.

• P5(ΠiPα). Same as above.

A list of type-B flat directions which remain flat to all orders is presented in Table IV.
The second column gives the dimensionality (a zero entry means that all field VEVs are
determined in terms of the Fayet-Iliopoulos term) and the second gives the number of non-
anomalous U(1)’s broken along the corresponding direction. Those directions which are flat
after imposing F -term constraints are indicated by |F . All type-B flat directions are trivially
built out of the zero-dimensional ones in Table IV by addition of the primed copies of some
fields. Some examples are already shown in that Table. Addition of a primed field to a given
direction has the effect of increasing its dimensionality by one while the number of broken
U(1)’s is the same. For example, the addition of S ′8 to P1 results in the direction P1P

′
1 and,

as is shown in Table IV, the above rule is verified.
We can summarize our results by noting that all of the above flat directions are particular

cases of the type-B flat direction

P1P
′
1P
′
2P
′′′
2 P

′
3P
′′′
3 |F . (64)

This direction is five-dimensional and all other type-B flat directions can be viewed as
particular sub-spaces of it, generated by setting some of the VEVs in (64) to zero or imposing
some extra relation among them.

In other words, the moduli space of type-B flat directions is a subspace of the twelve-
dimensional field space

{S1, S3, S5, S
′
5, S6, S

′
6, S8, S

′
8, S14, S

′
14, S18, S

′
18} (65)

obtained by imposing the constraints from D-flatness (4 independent non-anomalous con-
straints plus the anomalous one) and F -flatness (the 2 conditions ϕ14ϕ6 + ϕ18ϕ5 = 0 and
ϕ14ϕ

′
6

+ ϕ18ϕ
′
5 = 0).
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have developed techniques to classify systematically the D- and F -flat
directions for perturbative heterotic superstring vacua with N = 1 supersymmetry and an
anomalous U(1) in the gauge group. At genus-one the superstring theory generates a Fayet-
Iliopoulos D-term ξ ∝ M2

string/(192π2)TrQA [14,15]. The presence of this term triggers
non-zero vacuum expectation values (VEVs) for certain massless multiplets in such a way
that the anomalous U(1) is broken while maintaining the D- and F -flatness of the effective
theory. Thus, the superstring vacuum is restabilized [14–16] and supersymmetry remains
unbroken.

The analysis developed in this paper focuses on classification of the D- and F -flat di-
rections involving the non-Abelian singlets only; the results are illustrated with the explicit
construction of flat directions for a particular string model, i.e., Model 5 of [7], which is
based on the free fermionic construction.

The analysis was set up along the following stages:

I. D-flatness

• Non-anomalous U(1)’s. First, the D-flat directions associated with the non-
anomalous U(1)’s are determined, by making use of the one-to-one correspondence of
the D-flat directions with the holomorphic gauge-invariant monomials (HIM) of chiral
superfields, constructed from the non-Abelian singlets 14. We determined the moduli

space of all such flat directions. Its dimension is d ≡ dimM = N∗ − Rank
[
Q

(a)
i

]∗
,

where N∗ is the number of SM singlet fields that enter HIM’s, and Rank
[
Q

(a)
i

]∗
is the

rank of the N∗×m∗ charge matrix of the N∗ fields, which have non-zero charges under
m∗ non-anomalous U(1)(a) factors. (The latter matrix is the one associated with m∗

D(a)-flatness conditions for N∗ fields).

The construction of all flat directions from a basis of d independent HIM’s that char-
acterizes the moduli space requires both multiplication and division of the elements
of the basis, making it cumbersome to scan the whole moduli space. This difficulty
is avoided if one considers another useful set, referred to as a superbasis, which is the
set of all one-dimensional HIM’s (see Table III for the chosen model). Every D-flat
direction can then be obtained as a product of elements in this superbasis, so that
positivity of the VEV squares is automatic and the contents of the moduli space are
more clearly displayed. Such a set can be obtained by an automated computer search.

• Anomalous U(1). The flatness of the D-term associated with the anomalous U(1)
requires that the Fayet-Iliopoulos term ξ is balanced against the contribution to DA

from the non-Abelian singlets ϕi, such that DA =
∑
iQ

A
i |ϕi|

2 + ξ = 0. We classify the

14The fact that each chiral superfield enters the HIM’s with a positive power is equivalent to

ensuring that a particular D-flat direction involves VEVs of the fields whose absolute value-squared

is positive.
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HIM’s according to the sign of their contribution to the DA-term, that is, according
to their anomalous charge. They fall into three classes: their anomalous charge has a
sign (i) equal to −sign ξ, (ii) zero, (iii) equal to +sign ξ. To ensure the DA-flatness
constraint, the (super)basis should necessarily contain one or more HIM’s belonging
to class (i). If this is not the case then the DA-flatness constraint cannot be satisfied,
i.e., there is a “no-go theorem” for the restabilization of the string vacuum via VEVs
of the non-Abelian singlets15. In this case, the procedure necessarily requires non-zero
VEVs for fields that transform under the non-Abelian gauge factors, further reducing
the rank of the gauge group.

DA-flat directions must therefore contain elements of the the superbasis that belong
to class (i). However, they can be multiplied by the elements of the basis in class (ii)
and/or class(iii), as long as the resulting HIM also belongs to class (i).

II. F-flatness

F -flatness requires ∂W/∂Φi = 0, W = 0 for all massless chiral superfields Φi of the
model. The D-flat directions can be lifted due to the following two types of terms in the
superpotential:

• WA-Superpotential. Those are terms in the superpotential that include only the
non-Abelian singlets which acquire non-zero VEVs along some direction (while en-
suring the D-flatness of the effective theory). Products of elements of the superbasis
which belong to class (ii) (their contribution to DA is zero) are not forbidden by gauge
invariance, and thus they may appear in WA. In certain cases one may be able to show
that a stringy (world-sheet) symmetry ensures that a particular HIM element (with
zero contribution to DA) and all its positive powers are absent. However, in general
conformal field theory techniques may not be powerful enough to determine the ab-
sence of all such terms. We therefore took a “conservative” approach that all such HIM
elements could appear in WA at some order and could thus lift the (type-A) D-flat
direction (barring cancelation among different terms of that type). Consequently, we
remove the elements in the superbasis that belong to class (ii). (It is of course possible
that there are additional flat directions that are missed by our conservative approach).
One can also show (see Section V) that elements of the superbasis belonging to class
(iii) should also be removed, because they can generate terms in class (ii) when they
are multiplied with appropriate powers of the superbasis elements in class (i). There-
fore, the remaining elements in the superbasis, which ensure type-A F -flatness to all
orders, consist of the subset belonging to class (i) only.

• WB-Superpotential. Those are the terms in the superpotential which contain one
power of a non-Abelian singlet field Ψi with zero VEV, while all the other fields have

15Whether or not this is the case can be discerned already at the level of the elementary fields,

without the need of computing the superbasis, as is discussed in section IV.
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non-zero VEVs along the given direction. Such terms, if present, can lift (type-B)
F -flat directions (i.e. those directions for which no WA terms are possible). Gauge
invariance constrains the number of allowed terms in WB to a finite number. By doing
a string calculation, one can then check explicitly whether these terms are absent thus
ensuring the type-B F -flatness conditions 16.

Combining class (i) elements of the superbasis and checking the superpotential, one
can generate all type-B directions which are D- and F -flat to all orders.

In conclusion, we developed techniques that set the stage to classify systematically theD-
and F -flat directions involving nonabelian singlet fields only for a large class of perturbative
string vacua with an anomalous U(1). In a subsequent paper [17], these techniques are
applied to a class of models based on the free fermionic construction, which possess three
ordinary families and the standard model gauge group in the observable sector.
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NA Vector- QA Q1 Q2 Q3 Q4 Q5 Q6 QY Q̂

Singlet like
+/−

S1

√
28 0 0 0 0 12 12 0 32

S2

√
8 0 4 16 0 -8 -24 -1 0

S3

√
8 0 0 -16 4 -8 -24 0 0

S4

√
0 4 0 0 0 0 0 0 0

S5
(′) √(′) 0 2 4 0 -2 -16 0 0 0

S6
(′) √(′) 0 2 -4 0 2 16 0 0 0
S7 20 0 -2 8 2 12 -60 -1 0
S8

(′) 8 0 0 0 0 -24 -24 0 0
S9 4 -4 -2 -24 -2 -4 -12 1 0
S10 4 4 -2 -24 -2 -4 -12 1 0
S11

(′) 4 0 2 8 -6 -4 -12 0 0
S12 4 0 2 -24 2 28 -12 0 0
S13 0 2 0 -16 -2 -32 0 1 0
S14

(′) 0 2 -4 16 -2 0 0 0 0
S15

(′) 0 0 0 -16 4 16 0 0 0
S16

(′) 0 0 4 16 0 16 0 -1 0
S17 0 -2 0 -16 -2 -32 0 1 0
S18

(′) 0 -2 -4 16 -2 0 0 0 0
S19

(′) -24 0 2 -8 -2 0 -24 0 -32
S20 -12 0 -2 8 2 12 36 0 0
S21

(′) -8 0 -4 0 -4 -8 24 1 0
S22 -8 2 4 0 -2 8 24 0 0
S23 -8 -2 4 0 -2 8 24 0 0
S24

(′) -4 0 2 24 2 4 12 -1 0
S25

(′) -4 0 -2 -8 -6 4 12 1 0

Table I: List of non-Abelian singlet fields in the model with their charges under the U(1)
gauge groups, hypercharge as defined in eq.(11) and Q̂ = QA+Q6/3. A prime in parentheses
indicates that there is an extra copy of the field with exactly the same U(1) charges. A

√

in the second column indicates that there is an extra copy of the field with exactly opposite
U(1) charges.
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BASIS A Q̂ BASIS B Q̂

M1 = 〈1, 1̄〉 0 P1 = 〈8, 12〉 64
M2 = 〈3, 3̄〉 0 P2 = 〈14, 6̄, 3, 12〉 64
M3 = 〈4, 4̄〉 0 P3 = 〈18, 5, 3, 12〉 64
M4 = 〈5, 5̄〉 0 P4 = 〈14, 5, 4̄, 3, 12〉 64
M5 = 〈6, 6̄〉 0 P5 = 〈18, 6̄, 4, 3, 12〉 64
M6 = 〈8, 12〉 64 N1 = 〈1, 1̄〉 0
M7 = 〈20, 11, 3〉 0 N2 = 〈3, 3̄〉 0
M8 = 〈23, 14, 3〉 0 N3 = 〈5, 5̄〉 0
M9 = 〈22, 18, 3〉 0 N4 = 〈6, 6̄〉 0
M10 = 〈6̄, 5̄, 4〉 0 N5 = 〈20, 11, 3〉 0
M11 = 〈18, 15, 5〉 0 N6 = 〈23, 14, 3〉 0
M12 = 〈23, 8, 6〉 0 N7 = 〈22, 18, 3〉 0
M13 = 〈15, 3̄, 8〉 0 N8 = 〈18, 15, 5〉 0
M14 = 〈20, 19, 1̄〉 -64 N9 = 〈20, 19, 1̄〉 -64
M15 = 〈20, 18, 12, 8, 5〉 0 N10 = 〈20, 18, 12, 8, 5〉 0

Table II: Two different bases of the moduli space of non-anomalous D-flat directions of
the model. Each element corresponds to a holomorphic monomial which is gauge invariant
under the non-anomalous U(1)’s. The anomalous charge is given by Q̂.
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SUPERBASIS Q̂ R25 = 〈23, 5̄, 4, 1̄2〉 -64 R50 = 〈22, 14, 6̄, 5̄, 3〉 0
R1 = 〈1, 1̄〉 0 R26 = 〈22, 6, 4̄, 1̄2〉 -64 R51 = 〈23, 18, 6, 5, 3〉 0
R2 = 〈3, 3̄〉 0 R27 = 〈202, 12, 11, 1̄4〉 -128 R52 = 〈20, 182, 12, 52, 3〉 0
R3 = 〈4, 4̄〉 0 R28 = 〈20, 15, 11, 1̄2〉 -64 R53 = 〈202, 192, 18, 5, 3〉 -64
R4 = 〈5, 5̄〉 0 R29 = 〈23, 15, 14, 1̄2〉 -64 R54 = 〈20, 142, 12, 6̄2, 3〉 0
R5 = 〈6, 6̄〉 0 R30 = 〈22, 18, 15, 1̄2〉 -64 R55 = 〈202, 192, 14, 6̄, 3〉 -64
R6 = 〈8, 12〉 64 R31 = 〈22, 14, 4̄, 3〉 0 R56 = 〈22, 15, 14, 8, 4̄〉 0
R7 = 〈15, 3̄, 1̄2〉 -64 R32 = 〈23, 18, 4, 3〉 0 R57 = 〈23, 18, 15, 8, 4〉 0
R8 = 〈22, 5̄, 1̄2〉 -64 R33 = 〈15, 14, 5, 4̄〉 0 R58 = 〈20, 18, 12, 8, 5〉 0
R9 = 〈23, 6̄, 1̄2〉 -64 R34 = 〈18, 15, 6̄, 4〉 0 R59 = 〈20, 14, 12, 8, 6̄〉 0
R10 = 〈20, 19, 1̄〉 -64 R35 = 〈20, 12, 82, 3̄〉 0 R60 = 〈23, 20, 14, 12, 82〉 0
R11 = 〈20, 11, 3〉 0 R36 = 〈23, 8, 5̄, 4〉 0 R61 = 〈22, 20, 18, 12, 82〉 0
R12 = 〈23, 14, 3〉 0 R37 = 〈22, 8, 6, 4̄〉 0 R62 = 〈20, 14, 12, 5, 4̄, 1̄2〉 -64
R13 = 〈22, 18, 3〉 0 R38 = 〈202, 12, 11, 82〉 0 R63 = 〈20, 18, 12, 6̄, 4, 1̄2〉 -64
R14 = 〈6̄, 5̄, 4〉 0 R39 = 〈20, 15, 11, 8〉 0 R64 = 〈22, 20, 14, 12, 4̄, 1̄4〉 -128
R15 = 〈6, 5, 4̄〉 0 R40 = 〈23, 15, 14, 8〉 0 R65 = 〈23, 20, 18, 12, 4, 1̄4〉 -128
R16 = 〈18, 15, 5〉 0 R41 = 〈22, 18, 15, 8〉 0 R66 = 〈20, 142, 12, 52, 4̄2, 3〉 0
R17 = 〈15, 14, 6̄〉 0 R42 = 〈14, 5, 4̄, 3, 12〉 64 R67 = 〈202, 192, 14, 5, 4̄, 3〉 -64
R18 = 〈15, 8, 3̄〉 0 R43 = 〈18, 6̄, 4, 3, 12〉 64 R68 = 〈20, 182, 12, 6̄2, 42, 3〉 0
R19 = 〈22, 8, 5̄〉 0 R44 = 〈22, 15, 14, 4̄, 1̄2〉 -64 R69 = 〈202, 192, 18, 6̄, 4, 3〉 -64
R20 = 〈202, 192, 8〉 -64 R45 = 〈23, 18, 15, 4, 1̄2〉 -64 R70 = 〈20, 14, 12, 8, 5, 4̄〉 0
R21 = 〈23, 8, 6〉 0 R46 = 〈20, 18, 12, 5, 1̄2〉 -64 R71 = 〈20, 18, 12, 8, 6̄, 4〉 0
R23 = 〈14, 6̄, 3, 12〉 64 R47 = 〈20, 14, 12, 6̄, 1̄2〉 -64 R72 = 〈22, 20, 14, 12, 82, 4̄〉 0
R22 = 〈18, 5, 3, 12〉 64 R48 = 〈23, 20, 14, 12, 1̄4〉 -128 R73 = 〈23, 20, 18, 12, 82, 4〉 0
R24 = 〈20, 12, 3̄, 1̄4〉 -128 R49 = 〈22, 20, 18, 12, 1̄4〉 -128 −−−−−−−− -

Table III: Complete list of one-dimensional non-anomalous D-flat directions of the model
with their corresponding anomalous charges.

FLAT DIRECTION Dim. # U(1)’s

P1
(′) = 〈8(′), 12〉 0 1

P ′2
(′) =〈14′, 6̄(′), 3, 12〉 0 3

P ′3
(′) = 〈18′, 5(′), 3, 12〉 0 3

P2P3|F , P ′′′2 P
′′′
3 ≡ 〈18, 14, 6̄′, 5′, 32, 14〉|F 0 4

P1P
′
1 1 1

P ′2P
′′
2 , P ′3P

′′
3 1 3

P1
(′)P ′2

(′), P1
(′)P ′3

(′) 1 3
P ′2

(′)P ′3
(′) 1 4

P1
(′)P2P3|F , P1

(′)P ′′′2 P
′′′
3 |F 1 4

Table IV: List of type-B D-flat directions which are F -flat to all orders for the model
discussed. The dimension of the direction, after cancelation of the Fayet-Iliopoulos term,
is indicated in the second column. The third column gives the number of non-anomalous
U(1)’s broken along the flat direction.
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