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1 Introduction

In recent years, considerable attention has been paid to polarized deep inelastic scattering

experiments, to the interpretation of the corresponding data in the framework of pertur-

bative QCD, and to the phenomenological extraction of non-perturbative spin-dependent

parton distributions [1, 2, 3].

The intense activity around these issues have come not only from the interesting

developments and discussions that have arisen in each of them, but also from the fact that,

combined, they are the most appropriate tools to unveil the spin structure of nucleons, a

subject that is still being debated.

In fact, an increasing amount of high-precision totally inclusive data, collected by dif-

ferent collaborations over the last few years [4-18], combined with the recent computation

of the complete perturbative QCD corrections up to next-to-leading order of the inclusive

cross sections [19, 20], have lead to several QCD analyses and also extractions of polarized

parton distributions [15,20-23]. However, many of the results obtained in those analyses,

and particularly in the derivation of parton distributions, depend strongly on non-trivial

assumptions, which seem to be unavoidable until additional data are available.

One of the sources foreseen for additional data that can be included in those analyses

is the so-called semi-inclusive spin-dependent asymmetries. These asymmetries are par-

ticularly sensitive to specific combinations of partons of different flavours and nature, and

have been proposed and used to study the valence-quark distributions in the proton [13].

Even though this kind of data have been available for some time [5, 13], it had limited

statistics and up to now only Q2-independent analyses have been performed on it.

More recently, a large amount of more accurate semi-inclusive data have been pro-

duced, and also the appropriate perturbative tools for their analysis have been developed.

The new SMC data [25], which cover the same kinematical range as given by the inclu-

sive measurements, superseded previous presentations with reduced uncertainties. From

a more theoretical point of view, the complete NLO QCD corrections to spin-dependent
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semi-inclusive asymmetries have recently been computed in a consistent factorization

scheme [26, 27]. There, NLO effects have been estimated, in particular for some observ-

ables originally proposed to disentangle valence-quark contributions, and the effects of

different kinematical cuts have been analysed.

In this way, the new data not only allow a more comprehensive analysis of polarized

deep inelastic scattering, but also provide a precise test ground for the recently proposed

framework for the computation of higher-order corrections in semi-inclusive processes.

Consequently, in this paper we first evaluate the effect of including the available semi-

inclusive data in global LO and NLO QCD analyses, sum rules estimates, and parton

distribution functions. In this task, we pay special attention to the release of different

constraints usually assumed to be valid, such as flavour symmetry relations in the es-

timates of the first moments of the distributions. Then, we analyse the constraining

power of the semi-inclusive data on the parton distributions, and finally we make definite

predictions for the forthcoming experiments [28, 29].

2 Definitions

In order to fix notation and conventions, we summarize in this section the expressions

for the LO and NLO inclusive and semi-inclusive spin-dependent asymmetries. These

asymmetries are written in terms of polarized parton distributions, fragmentation and

fracture functions, with the corresponding coefficient functions, defined within a definite

factorization prescription.

For the totally inclusive case, the spin-dependent asymmetries are given by [1]:

AN1 (x,Q2) '
gN1 (x,Q2)

FN
1 (x,Q2)

=
gN1 (x,Q2)

FN
2 (x,Q2)/{2x[1 +RN(x,Q2)]}

, (1)

where the inclusive spin-dependent nucleon structure function gN1 (x,Q2) can be decom-

posed into convolutions between parton densities ∆qi(x,Q
2), ∆g(x,Q2), and coefficient

functions ∆Ci(x):

gN1 (x,Q2) =
1

2

∑
q,q̄

e2
q

{
∆q(x,Q2) +

αs(Q
2)

2π
[∆Cq ⊗∆q + ∆Cg ⊗∆g]

}
, (2)
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where the convolution product is defined by

∆Cf ⊗∆f(x,Q2) ≡

∫ 1

x

dz

z
∆Cf(z)∆f

(x
z
,Q2

)
. (3)

It is customary to define the coefficient functions in either the usual MS scheme or in other

schemes with different factorization properties [30]. In the MS scheme, used throughout

the present analysis, the coefficients are given by:

∆Cq(x) = CF

[
(1 + x2)

(
ln(1− x)

1− x

)
+

−
3

2

1

(1− x)+

−
1 + x2

1− x
lnx+ 2 + x−

(
9

2
+
π2

3

)
δ(1− x)

]
∆Cg(x) =

1

2

[
(2x− 1)

(
ln

1− x

x
− 1

)
+ 2(1− x)

]
. (4)

A more detailed discussion about these, including their Mellin moments in different fac-

torization schemes, can be found in Ref. [21].

Analogously, for the semi-inclusive asymmetries, the full NLO expression can be writ-

ten as:

AN h
1 (x,Q2)

∣∣
Z
'

∫
Z
dz gN h

1 (x, z,Q2)∫
Z
dz FN h

1 (x, z,Q2)
, (5)

where the superscript h denotes the hadron detected in the final state, and the variable z

is given by the ratio between the hadron energy and that of the spectators in the target

(z = Eh/[EN (1 − x)], with the energies given in the γ∗p CM frame). The region Z,

over which z is integrated, is determined by kinematical cuts applied when measuring the

asymmetries. These are applied in order to suppress target fragmentation contributions

and are often given in terms of lower limit in the variable zh = P · h/P · q.

The semi-inclusive spin-dependent structure function gN h
1 (x, z,Q2) can again be de-

composed into convolutions between parton densities ∆qi(x,Q
2), ∆g(x,Q2), unpolarized

fragmentation functions Dh/j(z,Q
2), coefficient functions ∆Cij, and polarized fracture

functions ∆Mh
i (x, z,Q2), the latter being given by the contribution to the target frag-

mentation region [26] as
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gN h
1 (x, z,Q2) =

∑
q,q

e2
q

{
∆qi(x,Q

2)Dh/i(z,Q
2) +

αs(Q
2)

2π
[∆qi ⊗∆Cij ⊗Dh/j

+ ∆qi ⊗∆Cig ⊗Dh/g + ∆g ⊗∆Cgj ⊗Dh/j ] (6)

+ ∆Mh
qi

(x, z,Q2) +
αs(Q

2)

2π
[∆Mh

qi
⊗∆Ci + ∆Mh

g ⊗∆Cg]

}
.

A complete computation of this kind of observable and the full expressions for the cor-

responding coefficient functions in different factorization schemes can be found in Ref.

[26]. An analogous expression can be written for the unpolarized semi-inclusive structure

function [31].

In order to be consistent with the factorization prescription chosen for the inclusive

asymmetries in Eq. (3), the following counterterms for the semi-inclusive expressions have

to be used

∆f̃Fq (u, ρ) = 4(u− 1) δ(1− ρ)

∆f̃MI
q (u, ρ) = 4(u− 1) δ(ρ− a)

∆f̃MH
q (u) = 4(u− 1)

∆f̃Fg (u, ρ) = 0

∆f̃MI
g (u, ρ) = 0

∆f̃MH
g (u, ρ) = 0 (7)

in the expressions of Ref. [26].

3 Hadronization and Input Distributions

The expressions for the semi-inclusive asymmetries given in the last section clearly show

that the analysis of these asymmetries requires not only some knowledge of the unpo-

larized structure function FN
1 (x,Q2), as in the totally inclusive case, but also of details

about the hadronization processes. These details come mainly through the unpolarized

fragmentation functions Dh/i(z,Q
2), which are present in both semi-inclusive structure

functions gN h
1 (x,Q2) and FN h

1 (x,Q2), and also from fracture functions [27].
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Charged pion and kaon fragmentation functions have been measured in different ex-

periments, and the corresponding LO and NLO parametrizations have also been obtained

[32, 33]. In our computations we use those of Ref. [33] and a parametrization of semi-

inclusive EMC data [34] in order to distinguish between favoured and unfavoured distribu-

tions. The assumption of SU(3) symmetry for the sea distributions introduces negligible

corrections for the charged asymmetries, but very large ones for the difference asym-

metries. Although the main contributions to charged-particle fragmentation come from

pions, we also include those related to kaons for completeness.

Unpolarized parton densities enter the analysis directly in the normalization of the

inclusive asymmetries, and also convoluted with fragmentation functions in the semi-

inclusive ones. At variance with the inclusive case, where the unpolarized observables

F2 and R used to obtain F1 can be taken directly from the data, in the semi-inclusive

case, these have to be computed using the parton distributions. Consequently, and in

order to be consistent, throughout the present analysis all the unpolarized observables

are constructed using the parton distributions of Ref. [35] in their LO and NLO (MS)

versions, according to the order of the fit, and with the appropriate QCD coefficients. In

particular, this means that R is equal to zero at LO and is given by the corresponding

perturbative expression at NLO. We also use GRV parton distributions in order to check

the positivity constraints on polarized distributions, and the ΛQCD values obtained in

that analysis.

Polarized and unpolarized fracture functions [36, 31, 26] describe the details of hadro-

nization processes coming mainly from target fragmentation region. Although their in-

clusion is crucial in order to consistently factorize collinear divergences, once this process

is through, their actual contribution to the cross sections can be be suppressed by impos-

ing the appropriate kinematical cuts [27]. Consequently, we restrict our analysis to single

asymmetries for zh > 0.2, leaving for the moment the discussion of difference asymmetries,

and neglecting fracture function contributions. Eventually, high-precision semi-inclusive

experiments will allow accurate extractions of these distributions.
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4 Initial Parton Distributions

Over the last couple of years, several NLO QCD global fits to data on totally inclusive

polarized asymmetries have been presented [15,20-23]. The approaches implemented in

each of these analyses generally differ not only according to the set of data available when

they were performed, but also to the functional dependence, initial scale, and factorization

prescription chosen for the input parton distributions, in analogy to what happens in spin-

independent analyses.

However, at variance with what is found in the latter case, spin-dependent data allow

equally good fits, i.e. with similar values of χ2/d.o.f., but with parton distributions rather

different in shape and normalization, even within the measured region. These differences

are moderated for valence-quarks distributions, but rather large for sea quarks and gluons.

A suggestive example of this, is given by the differences between the gluon normalizations

of the most recent analyses [23, 18], even though both have been performed in the same

AB factorization scheme and with almost the same data. In general, the fitting procedure

prefers one set or another depending very strongly on the functional form of the initial

parton distributions, and some additional constraints imposed over the distributions, such

as positivity, flavour symmetry, or even more arbitrary assumptions, which may be freely

chosen (with no significant consequence in the value of χ2/d.o.f.).

Consequently, although most of the analyses show some common global features, such

as a non-negative and not very large polarized gluon density, regarding the extraction of

polarized parton distributions, we are far from the accuracy attained in the unpolarized

case; then, more inclusive data and new measurements will be necessary. In the mean

time, in order to design useful experiments and make predictions for these new observables,

we need parton distributions covering the wide range of possibilities allowed by present

data.

These are the main reasons for which, in the present analysis, rather than adopting

some or other stringent constraint on the normalization of the valence, sea quarks, or

gluon densities, then singling out the set that presents the lowest χ2 (given those and
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other less apparent assumptions), we adopt a more flexible scheme for the valence and sea

sectors, we put greater emphasis on the measured region, and we explore different gluon

possibilities. It should be noticed that the usual constraints over the normalizations can

in turn introduce a significant dependence on the functional behaviour assumed for the

unmeasured region, and fix the values for the sum-rule estimates.

At variance with other parametrizations, we also include in our study the NLO analysis

of semi-inclusive data, which is in principle specially sensitive to the valence sector and

allows a further constraint on them. It is worth stressing that in this case it is not enough

to deal with only quark-singlet and nonsinglet distributions as in the inclusive case [23].

In order to construct the semi-inclusive observables each flavour distribution has to be

individualized. As we are primarily interested in the measured region, we adopt a rather

simple parametric form for the input spin-dependent valence quark densities:

x∆qV (x,Q2
0) = NqV

xαq (1− x)βq(1 + γq x)

B(αq + 1, βq + 1) + γq B(αq + 2, βq + 1)
, (8)

where the parameters αq and γq are obtained from the fitting procedure, and βq is exter-

nally fixed by the positivity constraint with respect to GRV unpolarized parton distribu-

tions at large x. (βu = 3.00(3.33) and βd = 3.95(4.26) at LO(NLO)). The initial scale Q2
0

is chosen to be 0.5 GeV2, which is sufficiently low as to induce through the evolution a

more complex and appropriate x-dependence at higher scales. We have also tried different

choices for the initial scale, finding very similar results for quarks but significant changes

in the gluon density. This reflects a large uncertainty on the gluon distribution, not only

regarding the x-dependence, but also on its first moment.

In order to trace and parametrize the departure from the SU(2) and SU(3) flavour

symmetries, we define the normalization coefficients NqV in terms of the F andD constants

and two additional parameters. In this respect, it is customary to relate the first moment

of the input parton densities to the F and D constants through relations like 1

δu+ δu− δd− δd = F +D (9)

δu+ δu+ δd+ δd− 2(δs+ δs) = 3F −D. (10)

1The δ notation means that the first moment of the polarized distribution has been taken.
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Imposing additional symmetry relations such as δu = δd Eq. (9) becomes

δuV − δdV = F +D (11)

and making δu = δd = δs Eq. (10) turns into

δuV + δdV = 3F −D. (12)

Equations (11) and (12) completely fix the valence quark normalizations. These rela-

tions, although they are sensible approximations, may not be true, and their enforcement

strongly depends on the unmeasured low-x behaviour of the densities. In order to relax

these restrictions we propose:

δuV − δdV = (F +D)(1 + εBj) (13)

and

δuV + δdV + 4(δu− δs) = (3F −D)(1 + εSU(3)). (14)

The parameters εBj and εSU(3) account quantitatively for eventual departures from flavour

symmetry considerations (including also some uncertainties on the low-x behaviour).

They also measure the degree of fulfilment of the Bjorken [37] and Ellis-Jaffe sum rules

[38].

For the light quarks (for simplicity ∆u = ∆d is assumed throughout this paper) the

proposed input density is given by:

x∆q(x,Q2
0) = Nq

xαq(1− x)βq

B(αq + 1, βq + 1)
, (15)

where αq, βq, and Nq are only constrained by positivity. The same functional dependence

and considerations are used for gluons, since using more parameters seems to be useless,

taking into account the uncertainties on them. For strange quarks we adopt:

∆s(x,Q2
0) = Ns ∆q(x,Q2

0), (16)

finding pointless the addition of more parameters.
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5 Results

In the following we report the results obtained from several global fits performed with

different sets of data and also varying the constraints imposed over the parton densities

and the order of perturbation.

Throughout the present analysis, we consider as totally inclusive data for proton tar-

gets the results presented in refs. [5, 8, 11, 16], for deuteron targets those in [15, 8, 11],

and for neutron targets those in [14, 17, 18]. In order to avoid possible higher-twist con-

tributions, we have taken into account only measurements with Q2 > 1 GeV2 given a total

of 133 data points. As semi-inclusive data we take those recently presented by SMC [25],

48 data points, which then lead to combined global fits with 181 data points. Correlations

between totally-inclusive and semi-inclusive SMC data sets have been taken into account,

and increase the total χ2.

Parameter NLO (MS) LO
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

χ2
T 153.95 152.69 152.87 158.77 157.64 159.92
χ2
I 101.90 100.47 100.84 107.56 106.37 108.73

χ2
SI 44.62 45.64 45.24 44.70 44.56 44.13

εBj −0.019 −0.021 −0.023 −0.037 −0.045 −0.035
εSU(3) −0.10 −0.10 − 0.10 −0.10 −0.10 −0.098
αu 0.896 0.888 0.895 0.762 0.787 0.75
γu 6.68 6.92 6.73 7.71 7.04 8.17
αd 0.69 0.71 0.688 0.61 0.62 0.56
γd 11.18 11.53 12.22 6.24 7.67 9.73
Nq −0.054 −0.051 −0.045 −0.053 −0.049 −0.043
αq 0.70 0.70 0.70 1.0 1.0 1.0
Ng 0.80 0.40 0.10 0.85 0.48 0.10
αg 1.08 2.80 2.00 1.41 2.29 2.00
βg 6.00 9.10 6.00 10.59 13.52 12.71

Table 1: Combined global fits.

In Table 1 we show the results for three different NLO (MS) and LO global fits for

combined inclusive and semi-inclusive data in which the gluon density first moments Ng
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are constrained to three different regions:

Set 1 δg > 0.8

Set 2 0.1 > δg > 0.8

Set 3 δg < 0.1,

defined at the initial scale. The breaking parameter εBj is left free whereas, εSU(3) is

constrained to allow only moderate violations of the polarized sum rules. Since this last

parameter is not well determined by the data, we allow it to vary between −0.1 and 0.1 as

a compromise between data and theoretical expectations; when left free it varies between

−5% and −40% without modifying significantly the χ2 value. Therefore it is not possible

yet to determine accurately the nonsinglet axial current a8 from the existing data.

The table does not include the values for the βq and Ns parameters; the first one

was found to be constrained by positivity to 7.80 and 6.10, at NLO and LO respectively.

Regarding Ns, although the strange-sea normalization is allowed to vary with respect to

the one of the light quarks, the fits favour almost the same value, so we fix it to be equal

to 1.

The first row in Table 1 shows the best χ2 values obtained in each of the three allowed

regions for the gluon normalization, both in NLO and in LO, taking into account both sets

of data (181 data points). The following two rows discriminate between the contributions

to the total χ2 coming from the inclusive and semi-inclusive data sets, respectively (133

and 48 points). Clearly, the semi-inclusive data set is in very good agreement with the

inclusive one, and allows fits of remarkable quality in the three gluon regions.

In the combined fits there is a preference for sets with a moderate gluon polarization,

which is reflected in the saturation of the constraints imposed on the gluon normalization

in the case of sets 1 and 3. However, the differences in χ2 values obtained in each of the

regions are so subtle that the uncertainty in the value for the first moment of the polarized

gluon density is significantly large, and even a slightly negatively polarized distribution

for gluons can not be ruled out yet.
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In Fig. 1 we compare the inclusive asymmetries coming from Set 2 (NLO and LO,

respectively) with the data. The lines interpolate the fit estimates at the mean x and Q2

values quoted by the different experimental collaborations. As can be seen, the differences

between NLO and LO fits are significant only in the region of large x, where data have

larger error bars. The estimates coming from the remaining sets of parton distributions

are not shown, as they lead to almost identical asymmetries. It is apparent from Fig. 1

that the neutron asymmetry is dominated by the new E-154 data, whereas a combination

between E143 and SMC fixes the proton behaviour.

In Fig. 2 we show the same but for the semi-inclusive data. Notice that the large

error bars of these data reduce its weight in the global fit and that the main difference in

the χ2 between LO and NLO fits comes from the totally inclusive data. Also in Fig. 2

we show the result of a fit using only the semi-inclusive data as described below.

In Tables 2 and 3 we show sum rules and first moments estimates for the three sets

at different scales. For the Bjorken sum rule ΓBj , the departure from the theoretical

expectation is significantly small, as given by the small values found for the parameter

εBj .

Fit Q2 Γp1 Γn1 ΓBj δΣ δg δuV δdV δq

Set 1 1 0.123 −0.059 0.183 0.194 1.12 0.876 −0.356 −0.054
4 0.127 −0.062 0.189 0.190 1.69 0.875 −0.355 −0.054
10 0.129 −0.063 0.192 0.190 2.02 0.874 −0.355 −0.054

Set 2 1 0.124 −0.057 0.182 0.212 0.59 0.875 −0.354 −0.051
4 0.129 −0.060 0.189 0.207 0.91 0.874 −0.354 −0.052
10 0.130 −0.061 0.191 0.206 1.11 0.873 −0.354 −0.052

Set 3 1 0.128 −0.054 0.182 0.247 0.19 0.874 −0.353 −0.046
4 0.132 −0.056 0.189 0.242 0.34 0.873 −0.352 −0.046
10 0.135 −0.057 0.191 0.240 0.43 0.872 −0.352 −0.046

Table 2: Sum rules from NLO combined fits.

As usual in the MS scheme, the first moment of the singlet distribution, δΣ, is found

to be considerably smaller than the naive prediction, and is correlated to the gluon polar-

ization. Notice that the valence-quark normalizations are quite stable and give the same
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result, independently of the singlet sector and that in the case of the polarized sea we

show the first moment corresponding to u and d quarks, being negligible the differences

with the one of s quarks.

Fit Q2 Γp1 Γn1 ΓBj δΣ δg δuV δdV δq

Set 1 10 0.138 −0.064 0.202 0.202 2.13 0.866 −0.344 −0.053
Set 2 10 0.140 −0.060 0.200 0.227 1.27 0.861 −0.340 −0.049
Set 3 10 0.145 −0.057 0.202 0.264 0.39 0.867 −0.346 −0.043

Table 3: Sum rules from LO combined fits.

NLO (MS) LO
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Γp1(0− 0.003) −0.006 −0.002 0.001 −0.004 −0.0005 0.003
Γn1 (0− 0.014) −0.027 −0.023 −0.019 −0.026 −0.020 −0.017
ΓBj (0− 0.014) 0.026 0.025 0.026 0.027 0.026 0.027

Table 4: Sum rule extrapolations through the unmeasured region computed

at Q2 = 10 GeV2.

The first moments of the polarized structure functions, Γp1 and Γn1 , are in agreement

with the values estimated by the experimental collaborations even though the asymptotic

behaviour of our distributions (g1 goes to very large negatives values at small x) is quite

different from the Regge expectation assumed in most of the analyses (g1 ≈ constant).

Of course, this behaviour is fixed by the available data at larger x and therefore depends

ultimately on the shape assumed for the input parton distributions [23]. This extrapola-

tion is still the largest source of error for the experimental determination of the sum rules

[16]. As an example, we show in Table 4, the contributions of the different sets to the

unmeasured regions of the SMC and E154 proton and neutron experiments, respectively.

Notice the large differences between each extrapolated contribution. In the case of proton

target, the extrapolations may even show opposite signs for different sets and large dif-

ferences when switching from NLO to LO, due to the fact that NLO gluons -convoluted
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with a negative coefficient- contribute directly to the structure function and to differences

in the value of F1 used at each order to reconstruct g1 from the asymmetries.

The impact of the semi-inclusive data in the total fit has been estimated performing

also fits using only inclusive data. In these fits we have found that the quark parameters

change less than 2%, whereas the changes are a somewhat larger for the gluon distribution.

However, the uncertainties already pointed out about the gluon density dominate over any

potential influence of the semi-inclusive data set. The reasons for this very small impact

are, basically, the fact that semi-inclusive data has not reached yet the precision and

statistical significance of the inclusive one, and also that the data sets are not completely

independent. This can be seen either in the correlations between inclusive and semi-

inclusive asymmetries [25], and also in the fact that parametrizations obtained using only

inclusive data give a very good description of the semi-inclusive asymmetries.

Additionally, it is possible to use the semi-inclusive data in QCD global fits but without

employing the inclusive data sets directly, for the comparison of the corresponding results.

As in this case, not all the parameters can be unambiguously fixed by the semi-inclusive

data alone, we have fixed the ones corresponding to the gluon and sea densities to the

values obtained in Set 2, and then adjusted only the valence-quark distributions, with the

results shown in Table 5.

Parameter NLO (MS) LO

χ2
SI 40.25 39.45
εBj −0.129 −0.131
εSU(3) 0.088 0.076
αu 0.386 0.376
γu 31.69 22.81
αd 0.638 0.565
γd −1.075 −3.363
δu∗V 0.86 0.86
δd∗V −0.23 −0.23

Table 5: Semi-Inclusive Valence Fits

(∗ Moments taken at Q2 = 10 GeV2).

13



In these fits, the χ2 values with respect to the semi-inclusive data, χ2
SI , are reduced

in some units; however, the total χ2 computed with the obtained distributions increases

dramatically to unacceptable values (χ2
T > 290), with the largest contributions to it

coming from the E-154 neutron data, mainly due to differences in the ∆dV distributions

obtained from total and SI fits, as can be seen in Fig. 3, where the parton densities given

by the different fits are shown at the common value of Q2 = 10 GeV2.

In the semi-inclusive case, the ∆dV distribution is mainly constrained by the deuteron

asymmetry, at variance from the inclusive case, where is determined by the more accurate

E-154 neutron data. As can be seen in Fig. 2, the difference between the result for the

deuteron asymmetry coming either from the combined fit or the semi-inclusive one is ap-

parent, even though the ∆dV distributions are quite different, showing the low sensitivity

of deuteron observables to this density. These obtained ∆dV ’s are of course in agreement

when the large errors coming from the data (specially the SI set) are taken into account in

the corresponding distributions and the same occurs with the first moment, whose central

values is found to be smaller than the one obtained in the total analysis mainly due to

the change of sign of the SI-distribution at large x.

Ongoing semi-inclusive measurements using 3He targets can be quite useful in the de-

termination of valence-quark distributions from semi-inclusive data alone, and also as fur-

ther constraints in global fits. In Fig. 4 we show predictions for semi-inclusive production

of charged hadrons and π0 for 3He targets using the combined fit, the one obtained with

only semi-inclusive data, and also the prediction coming from the GRSV [21] polarized

parton distributions. These asymmetries are particularly sensitive to ∆dV , which is the

main reason for the large differences between the predictions of different sets, specially the

one for the production of positively charged hadrons, as can be expected from very simple

arguments based on the values of the corresponding fragmentation functions. The lines

interpolate the x and Q2 values quoted in the HERMES totally inclusive measurements,

and the same cut zh > 0.2 has been imposed in order to suppress both target fragmenta-

tion effects and final-state mass corrections (proportional to 4M2
h/z

2/W 2), which can be

significant for low centre-of-mass energy experiments.
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6 Conclusions

Performing a LO and NLO global analysis to both inclusive and semi-inclusive polarized

deep inelastic data, we have found that the present semi-inclusive data can be consistently

included in global analyses. These global fits show features similar to those coming from

totally inclusive data, i.e. a poorly constrained gluon distribution and better determined

valence densities, with the semi-inclusive data introducing very small modifications in the

valence densities.

The presented LO and NLO polarized parton distributions explore different gluon

scenarios and are therefore very well suited to study the sensitivity of different observables

to the polarized gluon distribution 2.

Present semi-inclusive data alone fail to define a ∆dV distribution consistent with those

extracted from inclusive data; consequently, the corresponding sets cannot reproduce the

inclusive asymmetries for neutron targets. However, ongoing semi-inclusive experiments

using 3He targets [17], or more accurate measurements on proton and deuteron targets

[29], can reverse this situation and provide an enhanced perspective of the spin structure

of the nucleon.
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Figure 1: Inclusive asymmetry data against the expectations from Set 2 at NLO (solid
lines) and at LO (dashed lines).
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Figure 2: The same as Fig. 1, but for semi-inclusive asymmetries, and the expectation
from the semi-inclusive set (dots).
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Figure 4: Semi-inclusive asymmetries for 3He targets (NLO only).
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