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Abstract

A search for decays of the Bc meson was performed using data collected from 1990–1995 with the
OPAL detector on or near the Z0 peak at LEP. The decay channels B+

c → J/ψπ+, B+
c → J/ψa+

1 and
B+

c → J/ψℓ+ν were investigated, where ℓ denotes an electron or a muon. Two candidates are observed
in the mode B+

c → J/ψπ+, with an estimated background of (0.63± 0.20) events. The weighted mean
of the masses of the two candidates is (6.32 ± 0.06) GeV/c2, which is consistent with the predicted
mass of the Bc meson. One candidate event is observed in the mode B+

c → J/ψℓ+ν, with an estimated
background of (0.82±0.19) events. No candidate events are observed in the B+

c → J/ψa+
1 decay mode,

with an estimated background of (1.10 ± 0.22) events. Upper bounds at the 90% confidence level are
set on the production rates for these processes.
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2Dipartimento di Fisica dell’ Università di Bologna and INFN, I-40126 Bologna, Italy
3Physikalisches Institut, Universität Bonn, D-53115 Bonn, Germany
4Department of Physics, University of California, Riverside CA 92521, USA
5Cavendish Laboratory, Cambridge CB3 0HE, UK
6 Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa, Ontario
K1S 5B6, Canada
7Centre for Research in Particle Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
8CERN, European Organisation for Particle Physics, CH-1211 Geneva 23, Switzerland
9Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago IL 60637, USA
10Fakultät für Physik, Albert Ludwigs Universität, D-79104 Freiburg, Germany
11Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
12Indiana University, Department of Physics, Swain Hall West 117, Bloomington IN 47405, USA
13Queen Mary and Westfield College, University of London, London E1 4NS, UK
14Technische Hochschule Aachen, III Physikalisches Institut, Sommerfeldstrasse 26-28, D-52056 Aachen,
Germany
15University College London, London WC1E 6BT, UK
16Department of Physics, Schuster Laboratory, The University, Manchester M13 9PL, UK
17Department of Physics, University of Maryland, College Park, MD 20742, USA
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1 Introduction

The ground-state pseudoscalar mesons containing a b quark have all been observed, by experiments at
CESR, DORIS, LEP and the TEVATRON, except for the beauty-charm meson Bc(b̄c). The Bc meson
can be produced at LEP in hadronic Z0 decays. Using the non-relativistic potential model for heavy
quark bound states, the mass of the Bc meson is predicted to be in the range 6.24 to 6.31 GeV/c2 [1].
The production mechanism for the b̄c bound states differs from that of the Bd, Bu and Bs mesons,
since the soft fragmentation process, involving spontaneous creation of bb̄ or cc̄, is severely suppressed.
The predicted dominant production mechanism shown in figure 1 involves the emission and splitting
to cc̄ of a hard gluon in the process Z0 → bb̄ [2]. Perturbative QCD calculations predict a production
rate of 10−5 to 10−4 Bc per hadronic Z0 decay, with a momentum spectrum that is considerably softer
than that of the lighter B hadrons [3] (see figure 2). The decay of the Bc meson is governed by the
weak interaction; strong decay into a lower mass beauty meson and a charmed hadron is forbidden
by energy conservation. There is a large spread in the predictions for the Bc lifetime, although it is
generally agreed that it is shorter than the lifetime of the light B mesons. Theoretical calculations
predict a significant branching ratio into modes involving the J/ψ meson [4].

In this article we report on a search for Bc decays in a data sample of 4.2×106 hadronic Z0 decays
collected with the OPAL detector at LEP. A previous article by the OPAL collaboration [5] reported
on a study of J/ψ meson production in hadronic Z0 decays, and the reconstruction of exclusive decays
of B hadrons into modes containing a J/ψ meson. This analysis included a candidate for the decay 1

B+
c → J/ψπ+. The analysis of the Bc decays is extended to include searches for the decay modes

B+
c → J/ψa+

1 and B+
c → J/ψℓ+ν, as well as B+

c → J/ψπ+, where ℓ denotes an electron or a muon.

e-

e+
Z0

b
–

b

g

c

c
–

Bc
+

Figure 1: Feynman Diagram for the predicted production process Z0 → bb̄ → BcX

2 The OPAL Detector

The OPAL detector is described in detail elsewhere [6]. Here we briefly describe the components
which are relevant to this analysis. The OPAL coordinate system is defined with the z-axis following
the electron beam direction, the x-axis pointing towards the center of the LEP ring and the y-axis
pointing upwards, forming a right-handed coordinate system. The polar angle θ is defined relative to
the z-axis, and r and φ are the standard cylindrical polar coordinates. Charged particle tracking is

1Throughout this article charge conjugate modes are implied.
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performed by the central detector system that is located in a solenoidal magnetic field of 0.435 T. The
central tracking system consists of a two layer silicon microvertex detector, installed before the 1991
run [7], a high precision vertex drift chamber, a large volume jet chamber and a set of planar drift
z-chambers measuring track coordinates along z. The momentum resolution of the central detector in
the x-y plane is (δpxy/pxy)

2 = (2%)2 + (0.15% · pxy)
2, where pxy is in GeV/c. Particle identification is

provided by the measurement of specific ionization, dE/dx, in the jet chamber. The dE/dx resolution
for tracks with the maximum of 159 samplings in the jet chamber is 3.5% [8]. The central detector
is surrounded by a lead glass electromagnetic calorimeter with a pre-sampler. The magnet yoke is
instrumented with layers of streamer tubes that serve as a hadron calorimeter and provide additional
information for muon identification. Four layers of planar drift chambers surrounding the detector
provide tracking for muons.

3 Data Sample and Event Selection

The data used in this study were collected between 1990 and 1995 using the OPAL detector at LEP. The
sample corresponds to approximately 4.2 × 106 hadronic Z0 decays. The selection of hadronic events
has been described elsewhere [9]. The selection efficiency for the multihadronic events is (98.1±0.5)%,
with a background of less than 0.1%.

For this analysis we impose the following additional requirements on charged tracks: the number
of hits in the central detector used for the reconstruction of a track must be greater than 40 (this
restricts the acceptance to | cos θ| < 0.94); the distance of closest approach to the beam axis in the x-y
plane must be less than 0.5 cm; the transverse momentum with respect to the beam direction must
exceed 0.25 GeV/c; and the total momentum of the track must exceed 0.5 GeV/c. To obtain accurate
polar angle measurements, a barrel (| cos θ| < 0.72) track is required to match with a z-chamber track
segment containing at least 3 hits; forward going tracks are constrained to the point where they leave
the chamber.

A track is identified as a pion if the dE/dx probability for the pion hypothesis, that is the prob-
ability that the specific ionization energy loss in the jet chamber (dE/dx) is compatible with that
expected for a pion, exceeds 2.5% if the measured dE/dx is lower than the expected dE/dx for a pion,
and 0.1% if it is higher. For the purpose of background rejection, tracks are identified as kaons if the
dE/dx probability for the kaon hypothesis is greater than 5%.

Leptons are identified by imposing the following selection criteria. We require the track momentum
p > 2.0 GeV/c, and | cos θ| < 0.9. For electron identification we use a neural network algorithm [10]
which uses twelve variables containing information from the central tracking system, the electromag-
netic calorimeter and its pre-sampler. The overall efficiency for the identification of electrons from B
hadron decays is (77 ± 5)%. The error in the electron identification efficiency was determined by com-
paring the efficiencies in Monte Carlo and data for a pure sample of electrons from photon conversions.
For muon identification, two sets of selection criteria are used. For muon candidates combined to form
J/ψ candidates in the B+

c → J/ψπ+ and B+
c → J/ψa+

1 modes we employ a “normal” muon selection.
In this selection we require a φ-θ match between the extrapolated muon candidate track and a track
segment reconstructed in the muon chamber [11]. In addition, we require that the candidate muon
track be the best match to the muon segment. When no match to a muon segment is found, we search
for a match with a track segment in the hadron calorimeter [12]. The efficiency for this “normal” muon
identification is (85 ± 4)%. The errors for the muon identification were determined by comparing the
efficiency between Monte Carlo and data for a pure sample of muons from muon pair events. For any
muon candidates combined to form Bc candidates in the decay B+

c → J/ψℓ+ν, where J/ψ → ℓ+ℓ−, we
employ a “strong” muon identification [13]. In this selection we use only tracks matched with track
segments in the muon detector, reject tracks identified as kaons using dE/dx information, and apply
an isolation cut by requiring that there be less than 20 track segments in the muon detector within
0.3 radians of the track. The efficiency for this “strong” muon identification used in the Bc → J/ψℓν
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mode is (76 ± 4)%.
Events are organised into jets of particles which are constructed using charged tracks and neutral

clusters that are not associated to any charged track [14]. To form jets we use the scaled invariant
mass jet-finding algorithm of JADE with a jet resolution parameter ycut = 0.04.

A Monte Carlo simulation is used to determine the reconstruction and selection efficiencies for the
various decay modes and for estimating the background level. The process Z0 → bb̄ → BcX (figure 1)
and subsequent Bc meson decays are simulated using the JETSET 7.4 program [15]. Figure 2 shows
the prediction of reference [2] for the Bc momentum spectrum along with the JETSET 7.4 simulation
of the Bc spectrum. In addition to simulating Bc production as described in reference [2], JETSET 7.4
includes contributions from the production of excited states of b̄c bound states. The two momentum
distributions are similar. Also shown is the distribution for light b hadrons given by the Peterson
et al. fragmentation function [16] with its parameter tuned to produce the measured mean energy
fraction (〈xE〉 = EB/Ebeam), indicating that the Bc spectrum is predicted to be considerably softer
than that for the light b hadrons. The measured mean energy fraction (〈xE〉) for the light b hadrons
is 〈xE〉 = 0.695 ± 0.006 ± 0.008 [17], while for the generated Bc meson we find 〈xE〉 = 0.54. Samples
of 2000 events were simulated for each of the following decay modes: B+

c → J/ψπ+, B+
c → J/ψa+

1 ,
where a+

1 → ρ0π+ and ρ0 → π+π−, and the semileptonic mode B+
c → J/ψℓ+ν, where ℓ denotes an

electron or a muon. In each event the J/ψ decays to ℓ+ℓ−.
A simulated event sample of 4 × 106 five-flavor hadronic Z0 decays, nearly equal in size to the

data sample, was used for studying the background processes. A sample of 80,000 hadronic Z0 decays
containing the process B → J/ψX, where a J/ψ → ℓ+ℓ− decay is present in each event, was used to
increase the statistical significance of the background study. In addition two samples of 4000 events
containing the processes Z0 → J/ψqq̄ and Z0 → J/ψcc̄ were produced in order to study background
due to prompt J/ψ production from gluon fragmentation and c quark fragmentation, respectively.
The JETSET 7.4 parton shower Monte Carlo generator is used for the simulation of the hadronic Z0

decays. For the fragmentation of heavy quarks into charmed and light b-flavored hadrons, we use the
Peterson fragmentation function. JETSET 7.4 parameters and branching ratios were tuned to match
experimental results [18] [19]. All simulated events are passed through the full simulation of the OPAL
detector [20]. JETSET does not include radiative decay of J/ψ into lepton pairs. The presence of
unreconstructed final state radiation (FSR) in the decay J/ψ → ℓ+ℓ−γ produces a tail toward lower
masses in the invariant mass distribution. The effect of FSR on the J/ψ mass distribution is included
in Monte Carlo events at reconstruction level. The photon energy is calculated using first order
perturbative QED [21]. An error is calculated to account for the higher order terms [22]. Excepting
the FSR correction for Monte Carlo simulated events, data and Monte Carlo simulated samples are
analysed using the same reconstruction program.

4 Search for Bc decays

We search for the decay modes B+
c → J/ψπ+, B+

c → J/ψa+
1 , where a+

1 → ρ0π+ and ρ0 → π+π−, and
the semileptonic mode B+

c → J/ψℓ+ν. The analysis involves the reconstruction of J/ψ candidates
in the leptonic mode J/ψ → ℓ+ℓ−, which are then combined with other tracks to form J/ψπ+,
J/ψπ+π−π+, and J/ψℓ+ combinations. The J/ψℓ+ combination is a partial reconstruction of the
mode B+

c → J/ψℓ+ν. Candidates are formed from charged tracks which are assigned to the same jet.

4.1 Reconstruction of J/ψ Decays

The J/ψ meson decays are reconstructed in the leptonic modes J/ψ → µ+µ− and J/ψ → e+e−. A
pair of opposite sign electron or muon candidates in the same jet, with an invariant mass consistent
with the J/ψ mass, is considered a J/ψ candidate. Muon candidates combined to form J/ψ candidates
in the B+

c → J/ψπ+ and B+
c → J/ψa+

1 modes must satisfy the “normal” muon identification. Muon
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candidates combined to form J/ψ candidates in the B+
c → J/ψℓ+ν mode must satisfy the criteria of the

“strong” muon identification. J/ψ candidates are required to have an invariant mass within the range
2.9 to 3.3 GeV/c2 for the µ+µ− channel, and within the range 2.8 to 3.3 GeV/c2 for the e+e− channel.
The J/ψ → e+e− candidate range is extended to lower masses in order to include the tail in the
J/ψ → e+e− invariant mass distribution due to electron bremsstrahlung radiation in the detector and
J/ψ radiative decays. Figure 3 shows the lepton pair invariant mass distributions for leptons selected
with the “normal” lepton selection in the range 2.5 to 3.5 GeV/c2, where the J/ψ peak is clearly
visible in both e+e− and µ+µ− modes. The peak position and width are consistent with the J/ψ mass
and the expected resolution of the OPAL detector. We find a total of 354 J/ψ → e+e− candidates and
551 J/ψ → µ+µ− candidates using the normal muon selection. We find 391 J/ψ → µ+µ− candidates
using the “strong” muon selection.

4.2 Selection of Bc Candidates

The dominant background to the sample of Bc candidates is from random combinations of J/ψ’s
produced in b hadron decays with other tracks from b hadron decays or from fragmentation. Given
the fact that at best a few events are expected in each channel, it is crucial that the combinatorial
background be reduced to below the level of the expected signals. The selection criteria were developed
by studying Monte Carlo simulated events containing the signal processes, and the simulated sample
of five-flavor Z0 events (described above). In general, significant background suppression can be
achieved by taking advantage of the hard momentum spectrum and the long lifetime of the b hadrons.
However, the soft momentum spectrum of the Bc weakens the discrimination power of any momentum
cut. Furthermore, since there is large uncertainty in the predictions of the Bc lifetime, no decay length
cut is used. The criteria are summarised below:

a. In all decay modes J/ψ candidates are kinematically constrained to the nominal J/ψ mass in
order to improve the Bc mass resolution.

b. For the exclusive modes, J/ψπ+ and J/ψa+
1 , we require that the dE/dx measurement for each

pion candidate be “consistent” with the expected value for a pion (as described in section 3).

c. In the semileptonic mode, B+
c → J/ψℓ+ν, there is a large background at lower masses involving

fake J/ψ or J/ψ combined with fake leptons or leptons from cascade decays. This background
is reduced by using the “strong” muon identification for all muon candidates and requiring the
ℓ+ lepton track momentum p > 4.0 GeV/c.

d. For J/ψπ+π−π+ combinations, we require that the three-pion combination be consistent with
resulting from the decay a+

1 → ρ0π+, where ρ0 → π+π−. The invariant mass of the three
pion combination must be consistent with the a1 mass, (1.0 < M(π+π−π+) < 1.6) GeV/c2,
and the invariant mass of at least one of the two π+π− pairs must be in the ρ0 mass range,
(0.65 < M(π+π−) < 0.90) GeV/c2.

e. All tracks from the Bc must be consistent with originating from the same decay vertex. For each
Bc candidate we determine the decay vertex from the intersection of the tracks, including the
tracks forming the J/ψ candidate, in the x-y plane. We require the χ2 probability of the vertex
fit to exceed 1%.

f. Since the combinatorial backgrounds are largest at low momenta, we impose a minimum momen-
tum cut on the Bc candidates. For the J/ψℓ+ν mode, where the full momentum of the candidate
is not reconstructed, we require the momentum of the J/ψℓ+ combination to exceed 30% of the
beam energy. For J/ψπ+ combinations we require the momentum of the Bc candidate to exceed
55% of the beam energy. For the B+

c → J/ψa+
1 candidates, where the combinatorial background

is more severe, the candidate momentum is required to exceed 70% of the beam energy.
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g. For the exclusive modes, we take advantage of the fact that the decay products of a pseudoscalar
meson are isotropically distributed in its rest frame. We define θ∗ as the angle between the Bc

candidate direction and the direction of the J/ψ in the Bc rest frame. Since the combinatorial
background mainly peaks near the backward direction (cos θ∗ = −1.0), we require cos θ∗ > −0.8.

h. For the exclusive modes, the invariant mass of the Bc candidates must be in the mass interval 6.0
to 6.5 GeV/c2 (hereafter referred to as the signal region) which is centered around the predicted
Bc mass, with a width which is about three times the Bc mass resolution (≃ 80 MeV/c2) on
each side. The mass window includes the entire range of predictions for the Bc mass. For the
semileptonic mode, where the full invariant mass cannot be calculated, the invariant mass of the
J/ψℓ+ combination is used to define the signal region. The rarity of random combinations of
three leptons in hadronic Z0 decays combined with the high mass of the Bc produces a natural
separation point between the signal and the background combinations. Figure 4 shows the
invariant mass distribution for J/ψℓ+ combinations from a sample of simulated B+

c → J/ψℓ+ν
decays, along with the distribution of the combinatorial background from simulated samples
of the B → J/ψX and prompt J/ψ events (see the following section for detail). The signal
distribution peaks above 4.0 GeV/c2 and the background combinations are mostly at lower
masses. Hence we restrict the signal region to the mass interval 4.0 to 6.5 GeV/c2.

i. B+ → J/ψK+ decays can fake B+
c → J/ψℓ+ν decays if the kaon is misidentified as a lepton.

For the semileptonic mode we reject candidates that have a reconstructed mass within 3σ in
mass resolution (σ ≃ 60 MeV/c2) of the measured B+ mass when the third lepton candidate
is assigned the kaon mass.

4.3 Estimation of Reconstruction Efficiencies and the Background Levels

The reconstruction efficiencies are calculated from Monte Carlo generated event samples, with the Bc

meson simulated at a mass of 6.25 GeV/c2. In the J/ψπ+ mode the leptons from the J/ψ decay are
expected to have a sin 2θ angular distribution with respect to the J/ψ direction in the Bc rest-frame.
In order to simulate this distribution, which was not included in the Monte Carlo generator, the
selected events in the J/ψπ+ mode were reweighted. For the decay B+

c → J/ψa+
1 we conservatively

assume an a+
1 width of 400 MeV. Each sample is composed of events with the appropriate Bc decay

and subsequent J/ψ → ℓ+ℓ− decay. The mass resolution is found to be about 80 MeV/c2 in the
modes J/ψπ+ and J/ψa+

1 . The reconstruction efficiencies for these modes are (10.0 ± 0.7)% and
(1.8 ± 0.3)%, respectively, and (5.5 ± 0.5)% for the semileptonic mode B+

c → J/ψℓ+ν, where the
errors are due to Monte Carlo statistics. The reconstruction efficiency is sensitive to the Bc momentum
distribution. An estimate of this sensitivity is found by comparing the efficiencies obtained using the
distribution predicted by JETSET 7.4 with those obtained assuming the theoretical calculations of
reference [2]. Values of mb = (4.9 ± 0.2) GeV/c2 and mc = (1.5 ± 0.2) GeV/c2 were used for
the input quark masses [3]. In the J/ψπ+ mode the difference is 16.3%. For the J/ψa+

1 mode, where
a harder cut of xE > 0.7 is applied, a difference of 37.9% is found. In the semileptonic mode the
difference is 5.7%. We take the systematic errors on the efficiencies to be one half of the difference for
each mode.

The expected background level in each channel is determined by searching for Bc decays in the sim-
ulated hadronic Z0 event sample. According to Monte Carlo simulations the background combinations
at masses below the signal region are dominated by the combinations of a real J/ψ with random tracks
from b hadron decays or from the fragmentation processes. The J/ψ mesons originate dominantly from
the decays of b hadrons, with a small fraction, (4.8 ± 1.7 ± 1.7)% [23], of prompt J/ψ (J/ψ resulting
from the fragmentation processes). In total, the simulated hadronic event sample contains 2800 events
containing a leptonic J/ψ decay. To improve the statistical significance of the background studies we
apply the Bc search to a sample of 80,000 hadronic Z0 decays containing the process B → J/ψX,
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where a J/ψ → ℓ+ℓ− decay is present in each event. This Monte Carlo sample is equivalent to 30
times the size of the data sample. In addition, the Bc search was applied to two samples of 4000
events containing the processes Z0 → J/ψqq̄ and Z0 → J/ψcc̄ in order to study background due to
prompt J/ψ production from gluon fragmentation and c quark fragmentation, respectively, which are
the predicted dominant production mechanisms for prompt J/ψ [24]. The predicted branching ratios
for these processes are Br(Z0 → J/ψqq̄) = 1.9 × 10−4 and Br(Z0 → J/ψcc̄) = 0.8 × 10−4. These
Monte Carlo sets are equivalent to 40 and 100 times the size of the data sample, respectively.

The resulting invariant mass distributions for the Bc candidates in the three modes are shown in fig-
ure 5. From these distributions we estimate the background level (see table 1) by counting the number
of candidates in the signal region and normalising to the number of events expected in the data sample.
The contribution to the background from B → J/ψX events is normalised using the measured rate
Br(Z0 → J/ψX) = (3.9 ± 0.2 ± 0.3) × 10−3 [5]. The contribution from prompt J/ψ is normalised us-
ing the measured rate of prompt J/ψ production Br(Z0 → prompt J/ψX) = (1.9 ± 0.7 ± 0.7) × 10−4,
with the two components of the prompt J/ψ signal each assigned a fraction of the total branching
rate according to the ratio of their theoretical production rates. The measured rate of prompt J/ψ
production is in agreement with the theoretical rates. The uncertainty in the normalisation factors is
used as a systematic error for each background estimate.

Background Decay Mode

B+
c → J/ψπ+ B+

c → J/ψa+
1 B+

c → J/ψℓ+ν

B → J/ψX 0.22 ± 0.09 ± 0.02 1.01 ± 0.19 ± 0.09 0.61 ± 0.15 ± 0.06
J/ψ(c quark frag.) 0.24 ± 0.05 ± 0.13 0.07 ± 0.03 ± 0.04 0.13 ± 0.04 ± 0.07
J/ψ(gluon frag.) 0.17 ± 0.06 ± 0.09 0.02 ± 0.02 ± 0.01 0.07 ± 0.04 ± 0.04

Total 0.63 ± 0.12 ± 0.16 1.10 ± 0.19 ± 0.10 0.82 ± 0.16 ± 0.10

Table 1: Background estimates from samples of 80,000 B → J/ψX enriched events, 4000 prompt
J/ψ from the gluon fragmentation process, Z0 → J/ψqq̄, and 4000 prompt J/ψ from the c quark
fragmentation process, Z0 → J/ψcc̄. The first error is statistical and the second is systematic.

5 Results and Upper Bounds on the Production Rates

Figure 6 shows the invariant mass distributions of the J/ψπ+, J/ψa+
1 , and J/ψℓ+ν candidates in the

data sample. The shapes and overall levels of the distributions below the signal regions are consistent
with the distributions obtained from the simulated background samples. In the mode J/ψπ+ we find
two events in the signal range 6.0 to 6.5 GeV/c2. The invariant masses of the two Bc candidates are
(6.29 ± 0.17) GeV/c2 and (6.33 ± 0.063) GeV/c2. The errors are calculated from the errors on the
track parameters. The reconstructed decay times of the two candidates are τ = (−0.06 ± 0.19) ps
and τ = (0.09 ± 0.10) ps, respectively. The estimated background in this mode is (0.63 ± 0.20)
events. The probability for a background of 0.63 events to fluctuate to 2 or more is 13.2%. In the
mode J/ψℓ+ν we find one event in the signal region. The mass of the candidate J/ψℓ+ combination
is 5.76 GeV/c2. The momentum is 15.4 GeV/c. The reconstructed decay length is (0.14 ± 0.14) cm.
The estimated background in this mode is (0.82 ± 0.19) events. In the signal region above the
mass of the candidate event, 5.76 to 6.5 GeV/c2, the probability to observe one or more events from
background is 8.9%, while the efficiency is reduced to (0.6 ± 0.2)%. There are no candidate events in
the J/ψa+

1 mode in the signal region compared with an estimated background of (1.10 ± 0.22) events.
We determine an upper bound at 90% confidence level on the number of events in each channel by

applying Poisson statistics to the number of events observed in the signal region, without background
subtraction. This is used to calculate an upper limit on the production rate from:
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Error Source Decay Mode

B+
c → J/ψπ+ B+

c → J/ψa+
1 B+

c → J/ψℓ+ν

MC statistics 7.2% 16.6% 9.1%
Bc fragmentation 8.2% 19.0% 2.9%

Lepton eff. 6.5% 6.5% 7.5%
Br(J/ψ) 2.3% 2.3% 2.3%

hadronic eff. 0.5% 0.5% 0.5%
final state radiation 0.6% 0.6% 0.6%

Total error 12.8% 26.2% 12.4%

Table 2: Summary of systematic errors on the product branching ratio upper limits.

Br(Z0 → B+
c X)

Br(Z0 → qq̄)
× Br(B+

c → final state) = N (at 90% C.L.) ×
ǫhad

(N (Z0) × ǫ× Br(J/ψ → ℓ+ℓ−))
,

whereN(Z0) is the total number of hadronic Z0 events in the data sample; ǫhad is the hadronic event se-
lection efficiency, 0.981 ± 0.005; ǫ is the reconstruction efficiency for each mode; and Br(J/ψ → ℓ+ℓ−) is
the branching ratio for the leptonic decays of J/ψ, J/ψ → e+e− and J/ψ → µ+µ−, 0.1203 ± 0.0028 [25].
For the mode B+

c → J/ψa+
1 , we also account for the branching ratio Br(a+

1 → ρ0π+) = 0.5. The
total systematic uncertainties on the branching ratio upper limits for each mode are shown in table 2.
These systematic uncertainties are included in the following 90% confidence level upper limits using
the technique of ref. [26]:

Br(Z0 → B+
c X)

Br(Z0 → qq̄)
× Br(B+

c → J/ψπ+) < 1.06 × 10−4,

Br(Z0 → B+
c X)

Br(Z0 → qq̄)
× Br(B+

c → J/ψa+
1 ) < 5.29 × 10−4,

Br(Z0 → B+
c X)

Br(Z0 → qq̄)
× Br(B+

c → J/ψℓ+ν) < 6.96 × 10−5,

where the branching ratio for the mode B+
c → J/ψℓ+ν is for decay to either J/ψ e+ν or J/ψµ+ν.

If we interpret the two candidate events in the B+
c → J/ψπ+ mode as signal we find a branching

ratio of,

Br(Z0 → B+
c X)

Br(Z0 → qq̄)
× Br(B+

c → J/ψπ+) = (3.8+5.0
−2.4 ± 0.5) × 10−5,

where the first error is statistical and the second systematic.
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6 Conclusion

We have performed a search for Bc meson decays in data collected with the OPAL detector at LEP.
Two candidate Bc → J/ψπ+ decays are observed in a mass window around the theoretical prediction
of the Bc mass, compared with an estimated background of (0.63 ± 0.20) events in this mode. The
weighted average mass of the two candidates is (6.32 ± 0.06) GeV/c2, which is consistent with the
predicted mass of the Bc meson. One candidate is observed in the mode B+

c → J/ψℓ+ν, with a
J/ψℓ+ mass of 5.76 GeV/c2. The estimated background in this mode is (0.82 ± 0.19) events. We
have also searched for the decay B+

c → J/ψa+
1 , but no candidate events were observed. The estimated

background in this mode is (1.10±0.22) events. Upper limits at the 90% confidence level are calculated
for the production rates of these processes,

Br(Z0 → B+
c X)

Br(Z0 → qq̄)
× Br(B+

c → J/ψπ+) < 1.06 × 10−4,

Br(Z0 → B+
c X)

Br(Z0 → qq̄)
× Br(B+

c → J/ψa+
1 ) < 5.29 × 10−4,

Br(Z0 → B+
c X)

Br(Z0 → qq̄)
× Br(B+

c → J/ψℓ+ν) < 6.96 × 10−5.

The branching ratio limits for the B+
c → J/ψπ+ and B+

c → J/ψℓ+ν mode are comparable with
the limits reported by the ALEPH, DELPHI and CDF collaborations [27][28][29].
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[15] T. Sjöstrand, Comp.Phys.Comm. 39 (1986) 347;
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