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Abstract

We solve the Langevin equation with the memory kernel. The stochastic force
possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation
function and related quantities characterizing transport properties, are calculated
at the assumption that the system is in the thermal equilibrium. Stochastic trajec-
tories are simulated numerically, using the kangaroo process as a noise generator.
Results of this simulation resemble Lévy walks with divergent moments of the ve-
locity distribution. We consider motion of a Brownian particle, both without any
external potential and in the harmonic oscillator field, in particular the escape from
a potential well. The results are compared with memory-free calculations for the

Brownian particle.

PACS numbers: 05.40.+j,05.60+w,02.50.Ey

Typeset using REVTEX



I. INTRODUCTION

Stochastic equations are often regarded as an effective description of a complicated high-
dimensional system. Fast varying variables are substituted by a fluctuating force and the
stochastic equation possesses only few degrees of freedom. However, such a procedure de-
stroys in general the Markovian property of the original system (1]. Consequently, the
stochastic force put into the effective equation must have a finite correlation time. The
non-Markovian behaviour is especially prominent in nonlinear dynamical systems possess-
ing a complex structure of the phase space, where chaotic regions coexist with regular,
stable structures. Trajectories stick to islands of stability and only slowly penetrate cantori.
They consist then of long segments corresponding to free paths, interrupted by intervals
of frequent and rapid changes of direction. This kind of motion is known as Lévy flights
(walks). Processes exhibiting Lévy flights are scale-invariant and have fractal properties:
they are usually characterized by divergent moments [2]. Specific transport properties like
the anomalously enhanced diffusion can be accounted for the existence of long jumps. The
velocity autocorrelation function (VAF), C(t) = (v(0)v(¢)), depends algebraically on time
and the mean squa.fed displacement rises faster then lineary with time [3]. Those quantities
are strictly connected to the statistics of free paths [4].

Slowly decaying correlations are known in various phenomena including the chemical
reactions in solutions [3] , ligands migration in biomolecules [6] , atomic diffusion through a
periodic lattice [7] , Stark broadening [8] and many others. The power-low autocorrelation
functions have been also found in the molecular dynamics [9] devised to describe nuclear
collisions. From the point of view of transport phenomena, models of this kind can be
traced back to a very simple system: the Lorentz gas of periodically distributed scatterers.
A particle can move freely in such a lattice for very long time intervals giving rise to long
tails of VAF, proportional to 1/t. The autocorrelation of force in the molecular dynamics
has the same form. The mean squared displacement {r?) is proportional to ¢lnt, then the

diffusion coefficient diverges logarithmically. If one passes on to quantum mechanics and



takes into account the antisymmetrization effects [10], all above observations still hold.

To study transport phenomena of a system with known fluctuation properties, it is
appropriate to apply the Langevin formalism, avoiding intricacies of many-body dynamics.
Recently, we have addressed the Langevin problem for algebraic correlations {11] solving the

two-dimensional stochastic equation:

dr
—C-i? =
dv(t) oV (r)

where the potential V' generates a conservative force, 5 1is the friction constant, and the

external noise (stochastic force) F(¢) has algebraically decaying correlations:

(FO)F(2)) ~ 1/t (2)

(F(t)) =0 .

The stochastic force F(t) has been assumed as a time series generated by a deterministic,
but chaotic, dynamical system, namely as proportional to the velocity of particle in the
two-dimensional periodic Lorentz gas (the generalized Sinai billiard). In that approach, the
friction force is an intrinsic property of the system, unrelated to the properties of the driv-
ing noise. Hence, the fluctuation - dissipation theorem is not fulfilled. Nevertheless, for any
initial condition in the Langevin equations, the system drives towards an asymptotic stable
state with the constant (v?) . It has been found that in the absence of external potential, the
mean squared displacement (r?)(t) grows as tlogt, thus the diffusion coefficient is infinite.
A study of the particle escape from a parabolic potential well has revealed important differ-
ences, compared to the case of fast decaying correlations. The energy distributions have a
pronounced peak corresponding to the particles which are associated with long trajectories
in the adjoined billiard and leave the potential well without any change of chaotic force
value. This peak is superimposed on the Gaussian distribution. The Gaussian shape of the
energy distribution, in contrast to the Maxwellian exponential shape, is connected with par-

ticles dwelling inside the potential well for a long time, never reaching the equilibrium state.
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In turn, the probability that the particle remains inside the well (the survival probability)
depends on time as 1/¢, in the large ¢ limit.

The above approach is an approximation because it neglects memory effects. In fact, a
properly formulated Langevin problem emerging as a coarse graining over a set of hidden
variables must contain a velocity dependent friction term [12]. For that purpose, Kubo 113]

postulated instead of (1), a phenomenological integro-differential equation:

md—:l—gﬁ = —m/ot K(t—7)v(r)dr — ﬂgg-) + F(t) (3)

where K (t) represents the retarded friction kernel. This equation implies the dissipation-
fluctuation theorem, linking properties of the stochastic force (amplitude, correlation time)
and characteristics of a heat bath with which the system remains in the equilibrium.

Memory effects have important physical consequences. The meaning and significance of
history-dependent frictional resistance for fluid dynamics has been realized already at the
beginning of the century by Boussinesq [14]. In the framework of the reaction-rate theory
[15], memory effects modify substantially the Kramers result [16] for the escape rate from
metastable states. In turn, the kinetic equation which is non-Markovian does not conserve
energy due to memory effects (the collision broadening) [17]. As a result, the influence of
collisions on the time evolution of the distribution function is diminished [18] and the initial
distribution survives longer. The similar change of the relaxation time has been obtained
from the quantum kinetic equation [19]. One can then expect important consequences
on problems formulated in terms of the Boltzmann-Langevin equation [20] . In nuclear
dynamics, taking into account memory effects is crucial because systems considered are
small [21].

The molecular dynamics can serve as a simple model of fluid, the molecules being repre-
sented as hard spheres. Then one can also expect algebraic correlations, similarly as for the
Lorentz gas. Indeed, Alder and Wainwright [22] have shown by a direct numerical integra-
tion of the Navier-Stokes equation, that the diffusion coefficient diverges and the VAF has

the algebraic tail. In the two-dimensional case it approaches ¢~! | whereas in three dimen-
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sions: t73/2. Solving the Langevin equation with the retarded frictional resistance, derived

by Boussinesq [14]), Mazo [23] has found that the autocorrelation function of the random
force is proportional to ¢=3/? for large t. Exponents determining autocorrelation functions
in hydrodynamics depend mainly on the dimensionality of the system and are insensitive
to both the interaction and the shape or size of the Brownian particle. Recently, the long-
time Brownian motion has been studied in the framework of the linearized hydrodynamics
[24]. It has been found that in two dimensions the VAF approaches asymptotically 1/t for
translational Brownian motion and 1/¢? for rotational one.

In this paper we present solutions of Eq.(3) for the noise with the algebraic autocor-
relation function. Some averaged quantities, like the VAF, can be easily derived from (3)
without defining details of the stochastic force, providing the stochastic system is in the ther-
mal equilibrium. We do that in Sec.II, starting from usual assumptions, originally stated by
Kubo [13]. The main purpose of this work is, however, to solve the GLE directly by sim-
ulating trajectories numerically. A possibility of such simulation is important for modeling
physical processes. In Sec.IlI we present a method of generation of the stochastic force with
given, e.g. algebraic, correlations. For this purpose we utilize a specific generalization of
the random walk, a Markov process known as the kangaroo process. Inserting a time series
generated in that way into (3) and solving the equation, we get a trajectory. Averaging
over statistical ensemble allows to determine statistical properties of the system (Sec.IV).

In Sec.V we consider the Brownian motion in the harmonic oscillator field and in Sec. VI we

summarize the most important results of this work.



II. THE VELOCITY AUTOCORRELATION FUNCTION FOR THE

EQUILIBRIUM STATE

We start with the equation (3) providing V(r) = 0. Let the stochastic force F(¢) satisfy

the conditions:

and

(v(O)F(?)) = 0. (3)

The condition (5) can be interpreted as a manifestation of the causality [25]. We assume
that the system is in the equilibrium with the heat bath of temperature 7. Multiplying the

Eq.(3) by v(0) and averaging over the equilibrium ensemble we get, :

m eV OV(D) = = [ K(s = 7)(v(O)V(r)dr + (v(O)F(1). (6

From (5), the last term vanishes. The above equation can be solved to obtain the VAF.

Using Laplace transforms, one gets [26]:

Ao (vE)
Cls) = s+ jz(s) (M)

where tilde denotes, from now on, the Laplace transform: f(s) = L[f(¢)]. Similarly, mul-

tiplying the generalized Langevin equation by F(0) and using (7) one obtains [26] the

fluctuation-dissipation theorem:

K(s) = (F(0)F(s))/(m*(v*(0))) (8)

where (F(0)F(s)) = L[(F(0)F(¢))]. Since the system is supposed to be in the equilibrium

state, characterized by the temperature T', hence {(v?(0)) = T'/m . Then inverting (8) allows

to express the friction kernel by the noise autocorrelation function Cr(t) = (F(0)F(¢)):
K(t) = (F(0)F(¢))/mT. (9)
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The generalized Langevin equation with the stochastic force correlated algebraically has
been extensively studied in connection with the motion of Brownian particles in a viscous
fluid. Chow and Hermans [27] have solved Eq.(6) for noise correlations, i.e. memory kernels,
proportional to t=32, ¢ > 0. They found C(t) ~ t~3/2? asymptotically, for large times.

Let us consider the following noise autocorrelation function:

afe t<e
Cr= { (10)
aft t>e
where ¢ is a small number. Without the loss of generality, the constant o will be assumed
equal one in the numerical calculations.

Using (9), we calculate the Laplace transform of the kernel. Formula (7) takes the form:

=0\ T/m
Cls) = s+ a(l — Ei(—es))/mT (11)

where Ei(z) denotes the integral exponential function defined by:

Ei(z) = /2 e’ [z dz (12)

-0

and the integral is calculated on an arbitrary path on the plane z, cut along the positive
real half-axis. To determine the VAF, we have to invert the Laplace transform, performing

the integral:

1 +icoto

C(t) = LYC(s)] = — / O(z)e* dz . (13)

271 —i00+0

Details of the derivation are explained in the Appendix. The final result reads:
Cly=2xt)  (t>0) (14)
where

x(t) = e~ (cy sin bt + c3 cos bt) —

(15)

T/ /00 e™ ¥ dz
e, (mTz/a+ Ety(ez) — 1) 4+ 72

7



In the above expression the constants a, b, ¢; and ¢, depend both on ¢ and T. The modified
integral exponential function Eiy(z) is defined by the following expansion:
Ei(z) ='y+lnz+§:$"/n!n, z>0 (16)
n=1
where v = 0.5772157... is the Euler constant.
The Laplace transform in the expression (15) can be easily evaluated numerically. Fig.
1 shows C(t) for temperatures T = 1,2 and € = 5-107%,10"2. For all presented cases,
the curves initially fall rapidly to negative values and then approach zero from below. For
large ¢, the tail is algebraic with numerically estimated exponent equal —1.18. This kind of
asymptotic behaviour is called "the Lorentz tail” and is typical in the molecular dynamics
[28]. It can be observed at all densities of random scatterers and for all sorts of their types
and arrangements. For example, the same shape of VAF has been found by Rahman [29] in
molecular-dynamical simulation of interacting particles motion in the liquid argon.
This shape of the VAF cannot be achieved for the fast decaying noise correlations. For
comparison, let us consider Cr(t) = arexp(—27t). Then (7) becomes:
C(s) =T/m (s+27)/(s(s + 2%) 4+ a/mT). Inverting this Laplace transform, we get for the

VAF the following expression:
1/2¢/=A (Be“At - Ae‘Bt) A<O0
Clt)y=T/m x ¢ e 7 (Ft+1) A=0
e 7 /VA ("y sinx/Ktﬁ—x/Zcosx/Zt) A>0

where A=% —+v/—A ,B=7++v/=A and A = a/(mT) — %%. Thus the exponential tail
of the VAF found in this case is quite different from the tail found for the algebraic noise
correlations. For small ¥, the tail may become negative but then it oscillates around zero
with the exponentially diminishing amplitude.

Knowing the VAF, one can calculate the mean square displacement applying the identity:

(r2)(t) = 2 /0 “(t = r)C(r)dr . (17)



Hence, the diffusion coefficient:

14,
D=3 lim — (r)(t)
is given by
p=[ C@t)dt.
| ew (18)

The diffusion coefficient assumes a finite value for the algebraic correlations. This can be
checked by inserting (14) and (15) into (18), changing the order of integration and expanding
the Ei; function. Thus with the assumptions made in this Section, the GLE does not imply
any kind of the anomalous diffusion for the noise correlated as 1/¢. However, it is not obvious
that the GLE with algebraic correlations gives the velocity distribution with the convergent
second moment, i.e. the system is always able to reach the thermal equilibrium. We will
address this general problem in a separate paper. In the following, we solve directly the
GLE with a concrete, specifically prescribed stochastic force and show that in that case the

velocity variance can diverge.

IITI. GENERATION OF THE STOCHASTIC FORCE

For that purpose we apply a stochastic process called "the kangaroo process” (KP). It is
defined [30] as a stepwise random function m(t): m(t) = m; in the time interval t; < ¢ < t;4.
The length of intervals of constant m, i.e. the frequency of jumping times v(m) , is a function
of the value of the process itself. The KP is a stationary Markov process. The probability
that the KP at time At is between m and m + dm , knowing that it was equal m’ at time

t =0, is given for infinitesimal time intervals At by :
Pxp(m,At|m',0)={1 — v(m)At} §(m—-m') +Q(m)v(m)At . (19)

The first term on the rhs of eq. (19) is the probability that no jump occurred in the time

interval (0, At) . The term v(m')At is the probability that one jump occurred. Immediately



after such a jump, the probability density of m becomes Q(m) . The Focker-Planck equation
for the KP reads [30,31]:

3 . S
s Pm )= Bm {[ Pep(m, At m',0)P(m’, t)dm’ — P(m, t)}(At) (20)
At -0

At >0

= —y(m)P(m,t) + Q(m) / v(m')B(m, t)dm'

The stationary probability density P(m) of m(t) is related to Q@(m) by :

) = Y m)P(m) _ v(m)P(m)
Q(m) Sv(m")P(m')dm'’ (v) ' (21)

One can prove that for even functions P(m) and v(m) , the covariance of the KP,
T(jt — t']) = (m(t)m(t)), is of the form [30] :

~ +00 dm
_r(t)Nfu(o) m?P(m) T exp(~v |t |) dv . (22)

Calculation of the frequency v(m) requires then the inversion of the Laplace transform and

the solution of a simple differential equation. In particular, for f‘(t) =1/t one obtains:

y(m) ~ 0"”' m?P(m')dm’ . (23)

An important quantity is the "free path” length defined as s = 1/v. Knowing P(m),
we can determine the free path distribution S(s) [32]. For the covariance I'(t) = 1/¢, this

distribution can be expressed as:

1

s2m? (s)

S(s) = (24)

where m(s) is obtained from (23). The distribution S(s) decays very slowly with increasing
s and the fastest rate one can obtain is S(s) ~ s72, in the limit of long paths.

The KP can be formulated also for higher dimensional systems. In two dimensions we
have m = [m;,m,]. Assuming in addition that the norm of the process is constant and

equal one, |m| = 1, the coordinates m, = cos$ and m, = sin ¢ and the frequency v are
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expressed in terms of a single random angle. Denoting the probability distribution of this
process by Pg(4), one obtains for the covariance of the KP :

F(t)= [ Polé)F expl—vlthas (25)

The probability distribution Ps(¢) must be an even function. For I'(t) = 1/¢ the frequency

becomes:

?

v(6)= [ Pa(s)s (26)

and the free path distribution S(s) appears to be independent of Pg(¢) and takes the simple

form:
S(s) ~s72. (27)

According to (26), the free path becomes infinite for ¢ = 0.
The KP can be also applied to generate a stochastic process with another kind of auto-
correlation function, in particular an arbitrary algebraic covariance I'(t) ~ [t|™V/* (k > 0) .

In two dimensions, the frequency v of that process becomes:

. ( [ P¢<¢'>d¢')n | (25)

implying the free path distribution S(s) ~ s—(+3) Technically, one can then generate the
stochastic process with covariance (10) in the following way:

i) Choose a random number ¢, uniformly distributed in the interval (0,1),

ii) Calculate m, = y/acos ¢/+/€ and my = y/asin ¢/ /¢,

iii) Choose signs of m, and my, independently and with equal probability,

iv) Determine the time interval At = €/¢ within which the process keeps the value (m.,m,).
The described procedure assumes a uniform probability Ps(¢) and does not care about the
angular distributions. In fact, this particular process is non-isotropic. If a physical problem

imposes specific requirements concerning angular symmetry, the algorithm can easily be

modified [32].
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The covariance does not determine a stochastic process completely and some properties
of GLE solutions, with the KP as the stochastic force, must be sensitive to higher-order

autocorrelations. However, the VAF and the transport properties implied by it, depend

only on the covariance CF.

IV. THE NUMERICAL RESULTS FOR V(R)=0

The two-dimensional KP described in Sec.III will serve to realize the stochastic force in

the generalized Langevin problem. Thus we have:

F(t) =m(t). (29)

The autocorrelation function of this force is given by (10). The average is taken over a
statistical ensemble which is defined by the uniform probability density distribution Pg(¢).
The parameter € has a simple interpretation, namely it is equal to the shortest time step
within which the force is constant.

The force (29) is an integrable function. Obviously, it fulfills the condition (4). The most
distinctive feature of F(¢) is the presence of long periods of time when its value remains
constant. Those intervals are interwoven with regions of rapid change as can be seen in
Fig. 2 which shows the running sum of one component of the stochastic force as a function
of time. Due to the scale invariance of the free path distribution S(s) , the plot is self-
similar, i.e. a magnification of any of its part including rapid variations, gives statistically
the same sequence of long and short intervals. This magnification procedure has its limit at
the interval scale e.

We solve now the equation (3) with V(r) = 0 and the initial conditions:
v(0)=r(0)=0. (30)

Since the kernel K(¢—7) depends only on time differences, the equation can be solved using
the Laplace transform technique [33] . We have found the following solution, valid under

the assumption that v(¢) does not change substantially within the interval of size €:
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and

r(t)=h(t)+ | R(t—7)h(r)dr (32)

where

h(t) = /Ot g(r)dr . (33)

The resolvent R(t) is given as the inverted Laplace transform of the following function:

= o (Ei(—es) — 1)
R(s) = mTs+ a(l — Ei(—es)) (34)
One can easily check that R(t) is related to the time-derivative of the function x (15):
d
R(t)=—2x(t)  (t>0). (35)

The functions g(¢) and h(t) are continuous and single-valued for all ¢ > 0. Thus the inte-
grals in (31) and (32) can be understood in standard Riemannian sense. Fig. 3 shows an
exemplary trajectory in both the velocity space and the configuration space. The intermit-
tent structure of long and short intervals of noise variations is visible also here, exhibiting
a picture typical for Lévy walks [34]. The plotted trajectories, especially r(t), are relatively
smooth functions. Despite the fact that the driving force assumes both positive and negative
values with equal probability, the trajectory r(t) departs continuously from the origin and
the reflection symmetry is apparently broken.

Using (31), we can calculate directly the second moment of the velocity distribution,
(v2)(t). The averaging is performed according to the procedure explained in Sec.IIl, i.e.
over a statistical ensemble constructed by a uniform sampling of the noise direction ¢. We
have calculated trajectories in the velocity space up to a given time t , according to (31)

and with the initial conditions (30). Then the average of (v?)(t) has been taken. Fig. 4
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presents the results for e = 1072 and 7 = 1. Clearly, the velocity variance does not reach
any equilibrium. It stabilizes for a while but then grows again. The second moment is thus
divergent as one could expect for Lévy flights [2] and the parameter ' can no longer be
identified with the temperature. The entire velocity distribution does expand with time. Fig.
5 presents the distribution of v2. It broadens with time and the shape of the distribution
indicates the presence of long flights in the form of a peak which becomes diffused at longer
times. On the right hand side of the peak, at high energies, another structure develops
which results from the gradual equilibrization. This structure tends asymptotically to the
Maxwellian distribution.

Similarly, one can obtain from (31) the VAF (v(¢o)v(t)). Fig. 6 presents the result of
numerical calculation for ¢, = 3. The chosen set of parameters corresponds to the case which
is shown in Fig. 1 by the solid line. The present result does not exhibit any negative tail.
The VAF falls rapidly for ¢ close to to, similarly as in Fig. 1, but then oscillates around a
stabilized value C == 0.33. Knowing the asymptotic behaviour of C(¢) one can assess the
rate of diffusion by means of (17). In contrast to the results of Sec.II, the diffusion appears
strongly enhanced: (r?) = Cyt? , and the diffusion coefficient grows lineary with time, as
for the ballistic motion. This outcome can be confirmed by direct evaluation of the mean
squared displacement (r?), using (32). We have indeed found the quadratic time-dependence
for (r?), as Fig. 7 shows. Moreover, the parabola parameter approximately equals Ce.

The rapid, ballistic diffusion rate results from the existence of long periods of constant
noise values and is related to statistics of the free paths. Zumofen and Klafter [4] have
shown, studying a simple map, that the free path distribution (27) implies a slightly slower
growth of the mean square displacement: (r?) ~ t?/logt. However, such time dependence
cannot be excluded also in our case because the logarithmic modification is weak and may
easily be overlooked in numerical calculations.

A similar observation has been made in the recent study of diffusion in the Knudsen
gas [35] , where for a large variety of the algebraic chord length distributions running at

large distances, the Knudsen diffusion is a Lévy walk which is dominated by the ballistic

14



dynamics.

V. THE BROWNIAN OSCILLATOR - THE ESCAPE FROM THE POTENTIAL

WELL

So far we have discussed the motion of particle subjected only to the stochastic force

and retarded friction. Now we add the harmonic oscillator potential:

V(r) = wr?/2 (36)

and solve the GLE (3) with the noise correlations (10) and the initial conditions (30).
Applying the same procedure as in Sec.IV, we find the solution also in the form (31) and

(32). The Laplace transform of the resolvent is now given by :

= o(Ei(-es)—1)/mT —w/s

R =
() s+ a(l —Ei—es))/mT +w/s (37)
The resolvent itself, R(t) = £~'[R(s)] , becomes:
R(t) = €7 (¢1 sin bt + ¢, cos bt) +
(38)

rze ¥ dr

+mT/a [
i /a/o (mTz/a+ Eiy(ez) — 1 + mTw/az)® + 72

An important application of the above formalism is a study of the particle escape from
a spherically symmetric potential well. Let us assume that the particle rests initially at
the bottom of the well (36) and its motion is governed by (3). The stochastic force F(t)
accelerates the particle which may eventually reach the top of the well at |r| = rg. At this
time, all interactions: the potential, the stochastic force and the friction, are switched off
and the particle escapes freely. Thus we shall study the generalized Langevin problem with
an absorbing barrier. Physically, one can model in this way the evaporation process. A
quantity of interest, accessible experimentally, is the distribution of total energy of escaping

particles, P(E). In order to derive this distribution from the GLE, one should know the
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velocity at [r| = rp. Technically, the particle position r(t) has been calculated from (32).
The inverse of this function at |r| = rg , determines the time when the barrier is reached.
In turn, (31) for ¢t = ¢(rg) gives the velocity vg at the barrier. The final, asymptotic
energy is £ = wry /2 + mvp?/2.

The energy distribution of escaping particles is shown in Fig. 8. The parameters, T =
100, € =102, m =1, rg = 50 and w = 0.032, have been chosen to allow comparison with
solutions of the ordinary Langevin equation (1) [11,32]. Those results, obtained from (1),
have two characteristic features: (i) the peak at relatively low energies and (i1) the Gaussian
tail. The peak may be interpreted as a manifestation of long free paths and attributed to
particles escaping due to long-time action of a constant stochastic force, i.e. without any
randomization. The Gaussian tail, in turn, results from particles subjected to only limited
number of noise variations, which is not enough to attain the equilibrium state. The GLE
produces a similar peak (shown in Fig. 8) but its form is more diffused and dominates the
entire spectrum. The right flank falls very slowly, like a power law, and then bends down,
reflecting the similar trend for the potential-free case (see Fig. 5).

Fig. 9 shows the survival probability for particles inside the wall, defined as a number
of particles which yet have not leave the well at a time ¢. This probability is exponential, in
a sharp contrast with the standard Langevin equation, always predicting the tail 1 /t [36]).

One could argue that the outcome concerning energy distributions must be of minor
physical significance if the system does not possess a stable velocity distribution and the
average energy diverges with the time. However, it is not the case in the high 7' limit. For
large values of T', Fig. 10 presents the time dependence of the velocity variance of Brownian
particle subjected to the harmonic oscillator force, without absorbing barrier. Now (v2)(¢)
reaches a stationary value. Moreover, this stationary value is proportional to the parameter
T which, in turn, can now be identified with the temperature of the equilibrium state. Thus

in the high-T' limit, the dissipation-fluctuation theorem (8) holds.
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VI. SUMMARY AND CONCLUSIONS

The Langevin equation with strongly correlated stochastic force reveals phenomena un-
known to the standard Brownian motion theory which assumes either white or coloured
(exponential) noise. Proper handling of the friction force leads to the generalized, integro-
differential equation, including the memory kernel. In the present paper we have solved this
equation assuming the noise autocorrelation function with the tail which is proportional to
1/t. Usually, one postulates that the Brownian particle, described by the GLE, is in the equi-
librium with a heat bath of given temperature. Then its velocity and position probability
distributions are stationary and stable with finite moments and the velocity autocorrelation
function can be easily derived. In the case of the 1/t noise correlations , the VAF has the
algebraic tail and is negative value for large ¢t . Nevertheless, the integral of the VAP, i.e.
the diffusion coeflicient, is finite and the GLE does not predict any kind of the anomalous
diffusion. Thus the transport properties of the system, as determined by the VAF, do not
differ substantially from those for rapidly falling noise correlations.

On the other hand, one can directly calculate the VAF and the diffusion rate by sim-
ulating the stochastic force numerically. For that purpose, the kangaroo process has been
applied. The tail of the VAF oscillates now around a constant, finite value, rendering that
the diffusion rate is ballistic, i.e. {r?) ~ t2. This system is unable to reach any equilibrium
state because the second moment of the velocity distribution (v?), diverges with time. Also
the energy distribution broadens constantly. It consist of two parts: a peak, connected with
long paths of Brownian particle subjected to a constant acceleration, and the Maxwellian
tail. The divergent moments are characteristic for Lévy flights. Numerically simulated
trajectories, both in the velocity space and in the configurational space, are typical for in-
termittent structure of Lévy flights: long regular segments are separated by points of rapid
direction change and outbursts of irregular motion. In this way, solutions of the GLE reflect
properties of the KP which can go through very long paths: the free paths distribution for

KP falls off like 1/s%. Despite irregularities, trajectories in the configurational space are
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relatively smooth, having a continuous first derivative.

It is probably useful at this moment to mention that the Knudsen diffusion in three-
dimensional for the algebraic pore chord distribution ¢(r) ~ 1/r*" and 1 < p* < 2 is the
Lévy walk dominated by the ballistic dynamics, similarly as found in this work. This is an
important analogy in view of the significance of the Knudsen gas concept for a phenomeno-
logical description of the nuclear one-body dissipation [37] , which is a dominant dissipation
mechanism at low excitation energies. Hence, the GLE with the correlated stochastic force
could be a microscopic generalization of the phenomenologically successful nuclear one-body
dissipation mechanism.

Usually, the memory kernel is taken as proportional to the noise autocorrelation function
in order to satisfy the dissipation-fluctuation theorem. In general, this assumption is not
sufficient for that purpose because the equilibrium state is not reached and, hence, the
temperature is not determined. However, as we have shown in the case of the harmonic
oscillator potential, the equilibrium state is restored in the high-7 limit. This conclusion
has important consequences for possible applications because the divergent moments are
usually non-physical. Indeed, it is so, e.g., for the evaporation process. We have modelled
this process assuming the potential well in the form of the harmonic oscillator and looking for
the solution of a problem with the absorbing barrier. The shape of the energy distribution
of the escaping particles is dominated by a wide peak with slowly falling right flank. A more
rapid fall shows up only at very high energies and corresponds to a very small probability.

The comparison of results of the present paper with Ref. [11] allows to assess the influence
of memory effects on calculated quantities. There are some similarities, e.g., the velocity
(energy) spectra for both approaches possess the peak attributed to long intervals of con-
stant value of the stochastic force. However, its shape is different: the tail of the energy
distribution of particles escaping from the potential well for the Markovian, memory-free
case is Gaussian, independently of the noise generator used [32]. The survival probability
also changes. Introducing the retarded friction changes its shape from the algebraic one,

proportional to 1/t, into the exponential one. This modification of the survival probability
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tail brings about a qualitative change: the average time the particle spends inside the well,
t ~ [§°tN(t)dt, becomes finite. Last but not least, in contrast to the results obtained using
the GLE, the memory-free Langevin equation always implies the full equilibrization though
not 1n accordance with the fluctuation-dissipation theorem.

The regularization of the force autocorrelation function 1/t near ¢ = 0, in the form (10),
1s necessary to avoid a singularity which would result in a trivial solution v(¢) =0 if e — 0.
What is then the meaning and importance of the parameter €7 Numerical results are not
very sensitive on it since e enters formulas only logarithmically. Fig. 1 can serve as an
illustration. The parameter € influences the rate of change of the noise, namely, the smallest
time step of the noise variation is just €. As we have mentioned in the Introduction, the
stochastic force with the covariance proportional to 1/t can be generated also by means
of a non-Markovian, deterministic system - the periodic Lorentz gas, equivalent to the
generalized Sinai billiard. The Lorentz gas applies as a useful model of physical processes,
e.g. in hydrodynamics. According to that picture, e corresponds to the smallest path the
particle can experiernce between subsequent collisions with scatterers and depends on the
geometry of billiard. Consequently, the practical choice of a value of € for a particular

physical problem should stem from origin and interpretation of the stochastic force.
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APPENDIX
The Appendix is devoted to the derivation of integral (13). We choose the contour C
comprising a straight line parallel to the imaginary axis, positioned at any positive o, and
the large half-circle in the left half-plane. The plane is cut along the negative real axis.

The integral over the half-circle vanishes from the Jordan lemma for ¢ > 0. Thus we have:

s e = o SO A (00 = 1%%0) = C(t) = I = S where S denotes the sum over
residues. The integrand possesses two conjugate simple poles at z;, = —a + bi  (a > 0).

The singular points can easily be found numerically using the following expansion:

Ei(z) = v+ In(-2) + i(—z)”/n! n. (39)

n=1

After some algebra, we obtain:

2 exp(zlt) —at :
S=T%«a (rnT/a+6—1/zl+O(62)+cc) e " (c1 sin bt + ¢, cos bt) (40)

where c.c. means the complex conjugate. The constants are given by: ¢; = bA, ¢, =

[(mT/a+€)(a®+b*) +a] A and

2mT /o
(mT/a+€)*(a? +6?) + 2a(mT/a+e)+1°

To calculate the sum of integrals I we utilize the following property of the integral exponent:

Ei(z £:0) =Ei;z T 7z (z > 0). Combining the results for S and 7, we get (14).
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Figure captions

Fig. 1

The velocity autocorrelation function calculated from (14) for € = 1072 with T = 1
(the solid line) and T = 0.5 (the long-dashed line). The short-dashed line corresponds to
¢ =5-107% and T = 1. The particle mass is m = 1. The negative tail is algebraic with an
universal exponent equal —1.18 .

Fig. 2

The running sum Sr(t) = 3, F;, where F; = F(tl) in the time interval t'; < t' < t';41 |
are subsequent constant values of one component of the stochastic force generated by the
two-dimensional KP and € = 0.01 . Since a term is added to the sum only when the force
assumes a new value, Sg remains constant between subsequent changes of the force change.
The sum comprises 300 terms for ¢ = 20.

Fig. 3

A particle trajectory in the velocity (left side) and in the configuration (right side) spaces
for e = 1072 and T = 1. The particle mass is m = 1. Both pictures correspond to the time
interval ¢ € (0,20). The initial conditions are given by (30).

Fig. 4

The variance of the velocity distribution (v?) as a function of time for ¢ = 1072 and
T=1.

Fig. 5

The time evolution of the distribution P(v?) for ¢ = 1072 and 7' = 1. The curves
corresponds to the following times: ¢ = 5 (solid line), ¢ = 20 (dots) and t = 50 (triangles).
All distributions are normalized to unity.

Fig. 6

The velocity autocorrelation function C(t) = (v(to)v(t)) where to = 3, for ¢ = 1072 and
T=1.

Fig. 7

The mean square displacement (r?) as a function of time for e = 1072 and T' = 1.
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Fig. 8

The energy distribution of particles escaping from the harmonic oscillator potential well
(36) which is cut at |r| = rp. The parameter values are: T = 100, ¢ = 1072, m=1, rg = 50
and w = 0.032. The statistical ensemble consist of 50000 trajectories. The distribution is
normalized to unity.

Fig. 9

The number of trajectories which do not escape from the potential well (36) up to the
time ¢ (the survival probability). The parameters are the same as in Fig. 8.

Fig. 10

The variance of the velocity distribution (v?) as a function of time for a particle in the
harmonic oscillator potential (36). The solid line corresponds to T = 100 and the dashed
line to T' = 50. The other parameters are the same as in Fig. 8. The averages were taken

over 5000 trajectories for each point.
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