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1 Introduction

It is known that inclusive heavy quark production is a calculable process in pertur-

bative QCD, since the heavy quark mass acts as a cut-off for the final state collinear

singularities. Thus, the process

e+e− →Z/γ →Q + X , (1.1)

where Q is the heavy quark and X is anything else, is calculable. Its cross section

can be expressed as a power expansion in the strong coupling constant

dσ

dx
(x, E, m) =

∞
∑

n=0

a(n)(x, E, m, µ) ᾱn
s (µ) , (1.2)

where E is the centre-of-mass energy, m is the mass of the heavy quark, µ is the

renormalization scale, and

ᾱs(µ) =
αs(µ)

2π
. (1.3)

As usual we define

x =
2 p · q

q2
, (1.4)

where q and p are the four-momenta of the intermediate virtual boson and of the

final heavy quark Q. The cross section (1.2), normalized to the total cross section, is

sometimes referred to as the heavy quark fragmentation function in e+e− annihilation.

When E/m is not too large, the truncation of eq. (1.2) at some fixed order in the

coupling can be used to compute the cross section. On the other hand, if E ≫ m,

the nth order coefficient of the expansion will in general contain up to n powers of

log (E/m), thereby spoiling the convergence of the expansion. These large logarithms

can be resummed, according to the method described in ref. [1]. First of all, since

log (E/m) is large, one is entitled to neglect the terms that are suppressed by powers

of m/E. One then observes that, in this limit, the inclusive heavy quark cross section

must satisfy the factorization theorem formula

dσ

dx
(x, E, m) =

∑

i

∫ 1

x

dz

z

dσ̂i

dz
(z, E, µ) D̂i

(

x

z
, µ, m

)

, (1.5)

where dσ̂i(z, E, µ)/dz are the MS-subtracted partonic cross sections for producing

the parton i, and D̂i(x, µ, m) are the MS fragmentation functions for the parton i

into the heavy quark Q. In order for eq. (1.5) to hold, it is essential that one uses

a renormalization scheme where the heavy flavour is treated as a light one, like the
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pure MS scheme. Thus dσ̂i(z, E, µ)/dz has a perturbative expansion in terms of αs

with nf flavours, where nf includes the heavy one. The scale µ is the factorization

and renormalization scale. It should be chosen of the order of E, in order to avoid

the appearance of large logarithms of E/µ in the partonic cross section. The MS

fragmentation functions D̂i obey the Altarelli-Parisi evolution equations:

dD̂i

d log µ2
(x, µ, m) =

∑

j

∫ 1

x

dz

z
Pij

(

x

z
, ᾱs(µ)

)

D̂j(z, µ, m) . (1.6)

The Altarelli-Parisi splitting functions Pij have the perturbative expansion

Pij

(

x, ᾱs(µ)
)

= ᾱs(µ)P
(0)
ij (x) + ᾱ2

s(µ)P
(1)
ij (x) + O(ᾱ3

s) , (1.7)

where P
(0)
ij are given in ref. [2] and P

(1)
ij have been computed in refs. [4]-[7]. The only

missing ingredients for the calculation of the inclusive cross section are the initial

conditions for the MS fragmentation functions. These were obtained at the NLO level

in ref. [1] by matching the O(ᾱs) direct calculation of the process (i.e. formula (1.2))

with the expansion of formula (1.5) at order ᾱs. They have the form

D̂Q(x, µ0, m) = δ(1 − x) + ᾱs(µ0) d
(1)
Q (x, µ0, m) + O(ᾱ2

s)

D̂g(x, µ0, m) = ᾱs(µ0) d(1)
g (x, µ0, m) + O(ᾱ2

s) , (1.8)

all the other components being of order ᾱ2
s. Thus, in order to compute the NLO

resummed expansion, one takes the initial conditions eqs. (1.8), at a value of µ0 of

order m, evolves them at the scale µ (taken to be of order E), and then applies

formula (1.5), using a NLO expression for the partonic cross section

dσ̂i

dx
(x, E, µ) = â

(0)
i (x) + â

(1)
i (x, E, µ) ᾱs(µ) + O(ᾱ2

s) . (1.9)

For example, if the parton i is the heavy quark itself, one gets

dσ̂Q

dx
(x, E, µ) = δ(1 − x) + â

(1)
Q (x, E, µ) ᾱs(µ) + O(ᾱ2

s) , (1.10)

where we have normalized the cross section to 1 at zeroth order in the strong coupling

constant.

The procedure outlined above guarantees that all terms of the form (ᾱsL)n (lead-

ing order) and ᾱs(ᾱsL)n (next-to-leading order), where L is the large logarithm, are

included correctly in the resummed formula. Observe that, at the NLO level, the
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scale that appears in ᾱs in eqs. (1.8) and (1.9) could be changed by factors of order

1, since this amounts to a correction of order ᾱ2
s. However, one cannot set µ0 = µ

in eqs. (1.8) (or µ = m in formula (1.9)), since this amounts to a correction of order

ᾱ2
sL, and thus it would spoil the validity of the resummation formula at the NLO

level.

There is essentially no room for these considerations to fail. They are a conse-

quence of the factorization theorem for fragmentation functions, which is quite well

established [3, 4].

The validity of this procedure has however been questioned by Kniehl et al. in

ref. [8]. In their procedure, the heavy quark short distance cross section is replaced

by

dσ̂′

Q

dx
(x, E, µ) = δ(1 − x) + ᾱs(E)

[

â
(1)
Q (x, E, µ) + d

(1)
Q (x, µ0, m)

]

+ O(ᾱ2
s) , (1.11)

and the initial condition by

D̂′

Q(x) = δ(1 − x) , (1.12)

which is to be evolved from the scale µ0 to the scale µ using the NLO MS evolution

equations. This procedure differs at the NLO level from the standard procedure

advocated in ref. [1]. The difference starts to show up in the terms of order ᾱ2
sL.

Recently, we have completed a calculation of heavy quark inclusive production at

order ᾱ2
s [10]. Using this calculation, we are in a position to verify explicitly the

approach of ref. [1], and thereby dismiss the approach of ref. [8]. In the next section

we describe the procedure we followed in detail.

2 Calculation

Instead of dealing with the realistic case of Z/γ decay, we perform the calculation

for a hypothetical vector boson V that couples only to the heavy quark with vectorial

coupling.

We introduce the following notation for the Mellin transform:

f(N) ≡
∫ 1

0
dx xN−1f(x) . (2.1)

We adopt the convention that, when N appears instead of x as the argument of

a function, we are actually referring to the Mellin transform of the function. This
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notation is somewhat improper, but it should not generate confusion in the following,

since we will be working only with Mellin transforms. The Mellin transform of the

factorization formula (1.5) is given by

σ(N, E, m) =
∑

i

σ̂i(N, E, µ) D̂i(N, µ, m) , (2.2)

where

σ(N, E, m) =
∫ 1

0
dx xN−1dσ

dx
(x, E, m) , (2.3)

and a similar one for σ̂i(N, E, µ), and the Mellin transform of the Altarelli-Parisi

evolution equation (1.6) is

dD̂i(N, µ, m)

d log µ2
=
∑

j

ᾱs(µ)
[

P
(0)
ij (N) + P

(1)
ij (N) ᾱs(µ) + O(ᾱ2

s)
]

D̂j(N, µ, m) . (2.4)

We want to obtain an expression for σ(N, E, m) valid at the second order in ᾱs. Thus,

we need the solution of eq. (2.4), with initial condition at µ = µ0, accurate at order

ᾱ2
s. This is easily done by rewriting eq. (2.4) as an integral equation

D̂i(N, µ, m) = D̂i(N, µ0, m)

+
∑

j

∫ µ

µ0

d log µ′2 ᾱs(µ
′)
[

P
(0)
ij (N) + P

(1)
ij (N) ᾱs(µ

′)
]

D̂j(N, µ′, m) . (2.5)

The terms proportional to ᾱ2
s can be evaluated at any scale (µ or µ0), the difference

being of order ᾱ3
s. Factors involving a single power of ᾱs can instead be expressed in

terms of ᾱs(µ0) using the renormalization group equation

ᾱs(µ
′) = ᾱs(µ0) − 2π b0 ᾱ2

s(µ0) log
µ′2

µ2
0

+ O(ᾱ3
s(µ0))

b0 =
11CA − 4 nf TF

12π
, (2.6)

where nf is the number of flavours including the heavy one. Equation (2.5) then

becomes

D̂i(N, µ, m) = D̂i(N, µ0, m) +
∑

j

∫ µ

µ0

d log µ′2 ᾱs(µ0)P
(0)
ij (N)D̂j(N, µ′, m)

+
∑

j

ᾱ2
s(µ0)P

(1)
ij (N)D̂j(N, µ0, m) log

µ2

µ2
0

− 2π b0

∑

j

ᾱ2
s(µ0)P

(0)
ij (N)D̂j(N, µ0, m)

1

2
log2 µ2

µ2
0

. (2.7)
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We now need to express D̂j(N, µ′, m) on the right-hand side of the above equation

as a function of the initial condition, with an accuracy of order ᾱs. This is simply

done by iterating the above equation once, keeping only the first two terms on the

right-hand side. Our final result is then

D̂i(N, µ, m) = D̂i(N, µ0, m) +
∑

j

ᾱs(µ0)P
(0)
ij (N)D̂j(N, µ0, m) log

µ2

µ2
0

+
∑

kj

ᾱ2
s(µ0)P

(0)
ik (N) P

(0)
kj (N)D̂j(N, µ0, m)

1

2
log2 µ2

µ2
0

+
∑

j

ᾱ2
s(µ0)P

(1)
ij (N)D̂j(N, µ0, m) log

µ2

µ2
0

− 2π b0

∑

j

ᾱ2
s(µ0)P

(0)
ij (N)D̂j(N, µ0, m)

1

2
log2 µ2

µ2
0

. (2.8)

Since the initial condition is

D̂j(N, µ0, m) = δjQ + ᾱs(µ0) d
(1)
j (N, µ0, m) + O(ᾱ2

s(µ0)) , (2.9)

eq. (2.8) becomes, with the required accuracy:

D̂i(N, µ, m) = δiQ + ᾱs(µ0) d
(1)
i (N, µ0, m) + ᾱs(µ0)P

(0)
iQ (N) log

µ2

µ2
0

+
∑

j

ᾱ2
s(µ0)P

(0)
ij (N)d

(1)
j (N, µ0, m) log

µ2

µ2
0

+
∑

k

ᾱ2
s(µ0)P

(0)
ik (N) P

(0)
kQ (N)

1

2
log2 µ2

µ2
0

+ ᾱ2
s(µ0)P

(1)
iQ (N) log

µ2

µ2
0

− 2π b0 ᾱ2
s(µ0)P

(0)
iQ (N)

1

2
log2 µ2

µ2
0

. (2.10)

Re-expressing ᾱs(µ0) in terms of µ, we get

D̂i(N, µ, m) = δiQ + ᾱs(µ) d
(1)
i (N, µ0, m) + 2π b0 ᾱ2

s(µ) d
(1)
i (N, µ0, m) log

µ2

µ2
0

+ ᾱs(µ)P
(0)
iQ (N) log

µ2

µ2
0

+
∑

j

ᾱ2
s(µ)P

(0)
ij (N)d

(1)
j (N, µ0, m) log

µ2

µ2
0
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+
∑

k

ᾱ2
s(µ)P

(0)
ik (N) P

(0)
kQ (N)

1

2
log2 µ2

µ2
0

+ ᾱ2
s(µ)P

(1)
iQ (N) log

µ2

µ2
0

+ π b0 ᾱ2
s(µ)P

(0)
iQ (N) log2 µ2

µ2
0

. (2.11)

The partonic cross sections are given by

σ̂i(N, E, µ) = δiQ + δiQ + ᾱs(µ) â
(1)
i (N, E, µ) + O(ᾱ2

s(µ)) , (2.12)

where â
(1)
i vanishes unless i is either Q, Q or g. Thus, combining eq. (2.12) with

eq. (2.11) according to eq. (2.2), we obtain

σ(N, E, m) = 1 + ᾱs(µ)

[

â
(1)
Q (N, E, µ) + d

(1)
Q (N, µ0, m) + P

(0)
QQ(N) log

µ2

µ2
0

]

+ ᾱ2
s(µ)

{

∑

i

â
(1)
i (N, E, µ)P

(0)
iQ log

µ2

µ2
0

+ 2π b0 d
(1)
Q (N, µ0, m) log

µ2

µ2
0

+
∑

j

[

P
(0)
Qj (N) + P

(0)

Qj
(N)

]

d
(1)
j (N, µ0, m) log

µ2

µ2
0

+
∑

k

[

P
(0)
Qk (N) + P

(0)

Qk
(N)

]

P
(0)
kQ (N)

1

2
log2 µ2

µ2
0

+
[

P
(1)
QQ(N) + P

(1)

QQ
(N)

]

log
µ2

µ2
0

+ π b0 P
(0)
QQ(N) log2 µ2

µ2
0

}

. (2.13)

The above formula should accurately describe the terms of order ᾱsL, ᾱs, ᾱ2
sL

2 and

ᾱ2
sL. Terms of order ᾱ2

s, without logarithmic enhancement, are not accurately given

by the fragmentation formalism at NLO level, and have consistently been neglected.

The lowest order splitting functions are given by

P
(0)
QQ(N) = CF

[

3

2
+

1

N(N + 1)
− 2 S1(N)

]

,

P
(0)
Qg (N) = P

(0)

Qg
(N) = CF

[

2 + N + N2

N(N2 − 1)

]

,

P
(0)
gQ (N) = TF

[

2 + N + N2

N(N + 1)(N + 2)

]

, (2.14)

where, restricting ourselves to integer values of N ,

S1(N) =
N
∑

j=1

1

j
. (2.15)
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P
(1)
QQ(N) and P

(1)

QQ
(N) are given by

P
(1)
QQ(N) = PNS

QQ(N) + Pq′q(N) , P
(1)

QQ
(N) = PNS

QQ
(N) + Pq′q(N) , (2.16)

where the non-singlet components are given by

PNS
QQ(N) = P CF

QQ(N) + P CA

QQ(N) + P
nf

QQ(N) , PNS
QQ

(N) = P CF

QQ
(N) + P CA

QQ
(N) ,

P CF

QQ(N) = C2
F [PF (N) + ∆(N)] , P CA

QQ(N) = 1
2
CFCAPG(N) ,

P
nf

QQ(N) = nfCFTF PNF (N) , P CF

QQ
(N) = C2

F PA(N) ,

P CA

QQ
(N) = −1

2
CFCAPA(N) ,

(2.17)

and

Pq′q(N) = −CF TF
8 + 44N + 46N2 + 21N3 + 14N4 + 15N5 + 10N6 + 2N7

N3(N + 1)3(N + 2)2(N − 1)
. (2.18)

PF (N), ∆(N), PG(N) and PNF (N) were taken from the appendix of ref. [1] and

PA(N) is given in eq. (5.39) of ref. [4]. We have obtained our explicit expression for

Pq′q(N) using the equation

Pq′q =
P S

QQ − PNS
QQ − PNS

QQ

2nf
, (2.19)

where P S
QQ is the singlet component2, calculated in ref. [5]. Equation (2.19) is easily

seen to follow from eqs. (2.16) and from eqs. (2.42) of ref. [9].

The expressions for â
(1)
Q and d

(1)
Q are respectively given in eq. (A.12) and (A.13)

of ref. [1]. The coefficient â(1)
g can be obtained by performing the Mellin transform of

the expression cT,g + cL,g, where cT,g and cL,g are given in eq. (2.16) of ref. [9]. Thus

â(1)
g (N, E, µ) = CF

{

2(2 + N + N2)

N(N2 − 1)
log

E2

µ2
+ 4

[

−
2

(N − 1)2
+

2

N2
−

1

(N + 1)2

]

−2
[

2

N − 1
S1(N − 1) −

2

N
S1(N) +

1

N + 1
S1(N + 1)

]

}

d(1)
g (N, µ0, m) = P

(0)
gQ (N) log

µ2
0

m2
. (2.20)

2We warn the reader that, sometimes, in the literature, the notation P S is used for the “sea”

component, and PQQ is used for the singlet one. Here we use PQQ for the full QQ splitting function.
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In order to make a more detailed comparison with our fixed order calculation, we

separate the O(ᾱ2
s) contributions to σ(N, E, m) according to their colour factors.

Choosing for simplicity µ = E and µ0 = m, and using the notation

â
(1)
Q/g(N) = â

(1)
Q/g(N, E, µ)|µ=E , d

(1)
Q/g(N) = d

(1)
Q/g(N, µ0, m)|µ0=m , (2.21)

we write

σ(N, E, m) = 1 + ᾱs(E) A(N, E, m) + ᾱ2
s(E) B(N, E, m)

A(N, E, m) = â
(1)
Q (N) + d

(1)
Q (N) + P

(0)
QQ(N) log

E2

m2

B(N, E, m) = BCF
(N, E, m) + BCA

(N, E, m) + Bnf
(N, E, m) + BTF

(N, E, m)

BCF
(N, E, m) =

{

P
(0)
QQ(N)

[

d
(1)
Q (N) + â

(1)
Q (N)

]

+ P CF

QQ(N) + P CF

QQ
(N)

}

log
E2

m2

+
1

2

[

P
(0)
QQ(N)

]2
log2 E2

m2

BCA
(N, E, m) =

[

P CA

QQ(N) + P CA

QQ
(N) +

11

6
CA d

(1)
Q (N)

]

log
E2

m2

+
11

12
CA P

(0)
QQ(N) log2 E2

m2

Bnf
(N, E, m) =

[

P
nf

QQ(N) −
2

3
nfTF d

(1)
Q (N)

]

log
E2

m2

−
1

3
nfTF P

(0)
QQ(N) log2 E2

m2

BTF
(N, E, m) =

[

â(1)
g (N) P

(0)
gQ + 2 P

(0)
Qg (N) d(1)

g (N) + 2 Pq′q(N)
]

log
E2

m2

+P
(0)
Qg (N) P

(0)
gQ (N) log2 E2

m2
, (2.22)

where the subscripts CF , CA, nf and TF denote the C2
F , CF CA, nfCF TF and CF TF

colour components.

The fixed order calculation of ref. [10] can be used to compute the cross section

for the production of a heavy quark pair plus one or two more partons, at order ᾱ2
s.

We separate contributions in which four heavy quarks are present in the final state,

from those where a single QQ pair is present together with one or two light partons.

These last contributions were computed only in a three-jet configuration, and they

are singular in the two-jet limit, that is to say, when x→1. Furthermore, the virtual
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corrections to the two-body process V →Q + Q are not included in our calculation.

In order to remedy for these problems, we proceed as follows. The O(ᾱ2
s) inclusive

cross section for V →Q + Q + X, can be written symbolically in the following form

dσ

dx
= a(0)δ(1 − x) + ᾱs

∫

dY a(1)(x, Y ) + ᾱ2
s

[
∫

dY a
(2)
l (x, Y ) + 2

∫

dY a
(2)
h (x, Y )

]

(2.23)

where Y denotes all the other kinematical variables, besides x, upon which the final

state may depend. We assume µ = E, and we do not indicate, for ease of notation,

the dependence upon E and m of the various quantities. The term a
(2)
l arises from

final states with a single QQ pair plus at most two light partons, while a
(2)
h arises

from final states with two QQ pairs. The factor of 2 in front of the a
(2)
h contribution

accounts for the fact that we may detect either one of the two heavy quarks. The

moments of the inclusive cross section can be written in the following way

σ(N) =
∫

dx xN−1 dσ

dx
= σ + ᾱs

∫

dx dY (xN−1 − 1) a(1)(x, Y )

+ ᾱ2
s

[
∫

dx dY (xN−1 − 1) a
(2)
l (x, Y ) + 2

∫

dx dY (xN−1 − 1

2
) a

(2)
h (x, Y )

]

(2.24)

where

σ = a(0) + ᾱs

∫

dx dY a(1)(x, Y ) + ᾱ2
s

[
∫

dx dY a
(2)
l (x, Y ) +

∫

dx dY a
(2)
h (x, Y )

]

.

(2.25)

The expression for σ(N) can now be easily computed with our program, since the

(xN−1 − 1) factors regularize the singularities in the two-jet limit, and suppress the

two-body V →Q + Q virtual terms. Furthermore, in the massless limit

σ = 1 + 2 ᾱs(E) + c ᾱ2
s(E) + O

(

m2

E2

)

+ O(ᾱ3
s) (2.26)

where c is a constant. In fact, the O(ᾱ2
s) term does not contain any large logarithm, as

long as ᾱs is the coupling with nf flavours, including the heavy one3. Reintroducing

the energy and mass dependence, we have

σ(N, E, m) = 1 + ᾱs(E) L(N, E, m) + ᾱ2
s(E) M(N, E, m)

+ c ᾱ2
s(E) + O

(

m2

E2

)

+ O(ᾱ3
s)

3If instead the cross section formulae are expressed in terms of ᾱ
(nf−1)
s we have

σ = 1 + 2 ᾱ
(nf−1)
s (E) + 4

3TF log E2

m2 ᾱ2
s + O(ᾱ2

s).



–11–

L(N, E, m) = 2 +
∫

dx dY
(

xN−1 − 1
)

a(1)(x, Y )

M(N, E, m) =
∫

dx dY
(

xN−1 − 1
)

a
(2)
l (x, Y )

+ 2
∫

dx dY
(

xN−1 − 1

2

)

a
(2)
h (x, Y ) . (2.27)

We have calculated L(N, E, m) and M(N, E, m) numerically, using E = 100 GeV

and m = 8, 4, 3, 2.5, 2, 1.5, 1, 0.6, 0.5, 0.4, 0.2 GeV, for a vector current coupled

to the heavy quark. We expect that, for small masses, A(N, E, m) should coincide

with L(N, E, m), and M(N, E, m) should differ from B(N, E, m) by a mass and

energy independent quantity, since such term is actually beyond the next-to-leading

logarithmic approximation. We find very good agreement between A(N, E, m) and

L(N, E, m). We present the results for M(N, E, m) separated into the different colour

components

M(N, E, m) = MCF
(N, E, m) + MCA

(N, E, m) + Mnf
(N, E, m) + MTF

(N, E, m) .

(2.28)

In Fig. 1 we have plotted our results for MCA
(crosses with error bars) and for BCA

(solid lines). An arbitrary (N -dependent) constant has been added to the curves for

Figure 1: CF CA component of the ᾱ2
s coefficient in σ(N,E,m), as a function

of log E2/m2, for N =2, 5, 8 and 11.

BCA
, in order to make them coincide with the numerical result for m/E = 0.015. We
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find, as the mass gets smaller, satisfactory agreement for all moments. Notice that,

as intuitive reasoning would suggest, for higher moments we need smaller masses to

approach the massless limit. In Figs. 2, 3 and 4 we report the analogous results for

the remaining colour combinations. Again, we find satisfactory agreement.

Figure 2: Same as in Fig. 1, for the nfCF TF component.

If one follows the procedure proposed by Kniehl et al., eqs. (2.22) are modified in

the CF CA and in the nfCFTF coefficients. More specifically, the terms proportional

to d
(1)
Q all disappear from the expressions of the CF CA and of the nFCF TF coefficients.

In fact, by inspecting formulae (1.11) and (1.12), and the derivation of eq. (2.13), we

see that the only relevant difference between the two approaches is that the term

ᾱs(µ0) d
(1)
Q is replaced by ᾱs(µ) d

(1)
Q , which, using the renormalization group equation,

amounts to a difference of −2π b0 ᾱ2
s d

(1)
Q log µ2/µ2

0, precisely what is needed to cancel

the term of the same form appearing in eq. (2.13). The modified result of Kniehl et

al. is also shown in Figs. 1 and 2 (dashed lines). It is quite clear that their approach

does not work.
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Figure 3: Same as in Fig. 1, for the C2
F component.

Figure 4: Same as in Fig. 1, for the CF TF component.

3 Conclusions

In the present work, we have verified at order ᾱ2
s the NLO fragmentation function

approach to the computation of the heavy quark fragmentation function given in
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ref. [1]. Besides excluding an alternative that has been proposed in the literature [8],

we have given a verification of several ingredients that go into the fragmentation

function formalism, such as the initial conditions, computed in ref. [1], the NLO

splitting functions in the time-like region [4], and finally we have also performed a

further test of the validity of the fixed order calculation of ref. [10].
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