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The quality of the description of nuclear masses and charge radii, cal-
culated in various microscopic approaches, is studied. The Hartree-Fock-
Bogoliubov (HFB), Extended Thomas-Fermi model with Strutinski Integral
(ETFSI), Relativistic Mean Field (RMF) and Macroscopic-Microscopic (MM)
approaches are considered. In the HFB approximation, both finite-range
(Gogny) and zero-range (Skyrme) effective forces are used. Spherical even-
even nuclei (116 nuclides), from light (A=186) to heavy (A4=220) ones, with
known experimental mass are chosen for the study. A general result is that
the best description of masses of considered nuclei is obtained in the MM and
ETFSI approaches, while the best charge radii are obtained within the RMF
and ETFSI approximations. The behaviour of nuclear masses and radii, when

one moves far off the 3-stability line, is also studied.

PACS numbers: 21.10.Dr, 21.10.Ft, 21.10.Gv, 21.60.Jz

1 Introduction

Recently one witnesses an impressive increase in the number of nuclei far from
stability, for which the masses have been measured [1,2]. This tendency is expected
to be continued, due to a fast progress in the development of techniques of radioactive
beams (e.g. [3-5]). Also the accuracy of measurements of nuclear masses is being
significantly improved. For example, the use of the Penning trap leads to accuracies
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of about 10 keV [6]. Progress in measuring nuclear radii is also large (e.g. [7,8]),
and the increase in quality and quantity of available data constitutes a formidable
challenge for the nuclear structure theory.

The objective of the present paper is to study these two basic properties of
nuclei, masses and radii, and address the question how well they can be described
by the present-day microscopic approaches. Such an analysis may also serve as a
starting point to improve these approaches. We also aim at predicting the behaviour
of masses and radii in nuclei far from the 3-stability line. Difference in predictive
powers of various theoretical methods can give us one of the best indications on
which of them is more reliable. This may serve as a guideline not only for future ex-
periments but also for the astrophysical applications which often require knowledge
of data which will not be easily accessible in the nearest future.

We limit our study to microscopic approaches, i.e., those which derive nuclear
properties from the fact that nuclei are built of interacting neutrons and protons.
Among these, we employ theories which use the effective two-body interactions or
Lagrangians, as the self-consistent Hartree-Fock-Bogoliubov (HFB) approach with
zero-range (Skyrme) and finite-range (Gogny) effective interactions, or the Rela-
tivistic Mean Field (RMF) theory. We also present results obtained within the Ex-
tended Thomas-Fermi model with Strutinski Integral (ETFSI), which combines the
features of the self-consistent Hartree-Fock approach with those of the Macroscopic-
Microscopic (MM) approximation, as well as those obtained within the MM models,
themselves.

In the present study, we consider only the spherical nuclei; 116 even-even nuclides
with the mass numbers A > 16, known experimental masses, and which are close
enough to magic numbers of protons and neutrons to be considered spherical, are
taken. The paper is an extension of our previous work [9].

Our paper is organized in the following way. Theoretical approaches used in the
paper are summarized in sect. II. The results of calculations and their discussion are
presented in sect. III, while sect. IV gives the conclusions drawn from our study.

2 Theoretical approaches

In the present Section, we very briefly present essential elements of the theoreti-
cal approaches used. Without going into any details, we aim at stressing generic
similarities and differences between the theories which are important in trying to
understand similarities and differences between the obtained results.



2.1 HFB with the Skyrme force

The Skyrme type [10] force used in the present study has the following standard
form (e.g. [11-13])

v(riz) = to (1 +20F)d(r12) + 3ta(l + 21F)[k3,8(r12) + d(riz)ki,]
+t2(1 + T2 Py )kor - 6(r12)kiz + sta(1 + 23F5)p*(R)d(r12) (1)
+itWoo - [kzl X 5(['12)1(12]’

where ry» = r; — ro is the vector of relative position of interacting nucleons, k2 =
(V1= V2)/2i, koy = (V2 — V)/2i are the respective vectors of relative momentum
and are acting to the right and to the left, respectively, R = (r; + r2)/2, o =
o1 + o2, P, is the spin-exchange operator, and t;,z;, (i = 0,1,2,3), Wy and « are
adjustable parameters. (One should note here that the parameter ¢; of [11] is defined
as 1/6 of that in eq. (1), the latter equation being, however, a more widely accepted
definition.)

Out of all versions of the interaction exploited up to now, we choose the following
three. One is the widely and for a long time studied interaction SIII (cf. e.g. [13,14]).
The second one is the interaction SkM* [11] which is a modification of the earlier
interaction SkM [15] and has been introduced to better reproduce the experimental
binding energies and fission barriers of nuclei. The third variant of the interaction
is the SkP one, developed in [16] to obtain a good description of pairing correlations
within the HFB approach, and, simultaneously, preserving the same accuracy in
reproducing other properties of nuclei reached with earlier variants of the force.

Table I specifies the parameters of the interaction for all three variants. Recently,
also new sets of parameters of the Skyrme force, specially devised for neutron-rich
nuclei, have been proposed [17,18].

The three Skyrme forces, taken by us, are used for the calculations in the particle-
hole (p-h) channel, i.e., for the generation of the mean field. For each force, however,
three different interactions are used for the calculations in the particle-particle (p-p)
channel [19], i.e., for the generation of the pairing correlations. The first interaction
is just the same as that used in the p-h channel. The second is the contact o force

Vo(r1z2) = Vod(r12) (2)
and the third is the § force with the strength dependent on nuclear density

VO(e12) = (Vo + G Vap")o(rua). )

Thus, for each standard force, three effective interactions are finally used. They are
denoted [19], e.g., in the case of the SIII force, by SIII, SIII’ and SIII?, respectively.
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Table 1. Values of the parameters of the Skyrme interactions: SIII, SkM*, SkP and

SkSC4
Param.  Units SII  SkM* SkP SkSC4
to MeV-fim® -1128.75 -2645.00 -2931.70 -1789.420
t1 MeV-fm® 395.00 410.00 320.62 283.467
to MeV-fm° -95.00 -135.00 -337.41 -283.467
t3 MeV-fm® 14000.00 15595.00 18708.97 12782.300
Xo - 0.45 0.09 0.29215 0.790
Xy - 0.00 0.00 0.65318 -0.500
Xo - 0.00 0.00 -0.53732 -0.500
X3 - 1.00 0.00 0.18103 1.13871
W MeV-fm® 120.00 130.00 110.00 124.877
@ - 1.00 1/6 1/6 1/3
Ref. - [13,14] 1] [16] 28]

A motivation for introducing the interactions, egs. (2) and (3), in the p-p channel
is that only the SkP force is chosen in such a way as to give reasonable pairing
correlations. The SIII and SkM* forces, however, are repulsive in the p-p channel
and lead to a vanishing pairing. The parameters of the interactions (2) and (3) are
taken the same as in [19], where they were adjusted to reproduce the experimental
neutron pairing gap for the nucleus '°Sn.

We use the approach in which the hamiltonian is treated in the spatial-coordinate
representation. The corresponding HFB equations take the form of two coupled
differential equations, which are solved numerically in the way described in [16].
An advantage of this approach is that it properly takes into account the particle
continuum states, and therefore, makes the approach also applicable to nuclei far
from the 3-stability line. A disadvantage is a necessity to use cut-off parameters in
the summation of nuclear densities, which is a consequence of the unphysically large
strength of the Skyrme force for high particle momenta (cf. the discussion in [20]).

2.2 HFB with the Gogny force

The finite-range Gogny force has been specially devised (similarly as the zero-range
SkP force) to describe the pairing properties simultaneously with the mean field,
within the HFB formalism. With this force, one avoids divergencies in the pairing
calculations, in contrast with the zero-range forces, for which the energy cut-off is
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necessary and plays the role of an additional parameter, as already mentioned above.

However, the resulting non-locality of the mean fields precludes a solution in spatial

coordinates and does not allow for analyzing the coupling to continuum states.
The Gogny force has been proposed in [21] and has the form [21,22]

v(ri2) = Xm1.(Wi+ BiP, — HiP, — MiPUPT)e_r?Z/#?

+t3(1 + $3Pg)pa(R)5(r12) + 'I;WLsd . [Vgl X 6(r12)V12], (4)

where P, and P, are the spin and isospin exchange operators, respecively, Vo =
V1 — V3, and the other notation is the same as in eq.(1). The quantities u;, W;, B;,
H;, M; (i=1,2) and t3, z3, Wis are adjustable parameters, together 13 parameters.
Thus, the central force has two parts. One is composed of two Gaussian functions
(with a short and intermediate ranges) and is independent of the density. The other
is of zero range, depends on the density and is of the same form as that in the
Skyrme force. It is needed to get the property of saturation. The spin-orbit term is
also of the same form as that in the Skyrme force.

In all calculations performed up to now with the Gogny force, two variants of
the parameters, D1 and D1S, have been used. The D1S variant is a modification of
the earlier force D1 to better reproduce the fission barriers [23], the heights of which
were overestimated with the D1 force. Since the study [23], in which the D1S force
has been introduced, only this force is used in all calculations. We also employ it in
this paper. The parameters of it [24] are given in Table II.

Table II. Values of the parameters of the Gogny interaction D1S [24]

W; B; H; M, w t3 x3 Wis o
MeV MeV MeV MeV fm MeV - MeV -

i=1 -1720.30 1300.00 -1813.53 1397.60 0.7 | 1390.60 1.00 130 1/3
| 1=2 103.64 -163.48 162.81 -223.93 1.2

The success of the Gogny force is that it is able to reproduce a wide range of
nuclear properties with one set (D1S) of its parameters, as discussed in [25, 26].

The HFB equations are solved by diagonalization in the harmonic oscillator
basis; 13 oscillator shells are taken for the lightest nuclei, like Ca, and 17 shells for
the heaviest ones, like Pb.



2.3 Extended Thomas-Fermi model with Strutinski Integral

This approach is something between the self-consistent Hartree-Fock (HF) approxi-
mation and the Macroscopic-Microscopic (MM) approach. It uses the expansion of
the HF energy (which is a functional of the HF density pur) in powers of

dp = pur — P, (5)

where § is a smooth approximation to pgp. The expansion retains only the linear
term in dp, leading to the Strutinski energy theorem

Elpur] ~ E[p] + D& - tr(hp), (6)
9

where h is the smooth single-particle hamiltonian generated from p by the effective
nucleon-nucleon interaction, &' are the eigenvalues of h, ¢ stands for p (protons) or n
(neutrons) and the summation over i extends over all occupied single-particle states.
For the interaction, the Skyrme force, eq.(1), is taken. Its parameters were treated
as independent ones in their fit to experimental masses. Their final values [27, 28],
labeled by SkSC4, are shown in Table I. The effective mass m;, of a nucleon is taken
to be equal to its real mass m,.

The Thomas-Fermi energy is adopted for E[p] in eq. (6), with p taken in the
simple Fermi form

pa(r) = Poo/[1 + exp(r — Cq) /a4, (7)
where parameters C, and a, are determined by minimizing E[p].

Formula (6) for the energy has the form of that used in the MM approach.
There is, however, an important difference. In the MM approach, the macroscopic
(smooth) part is not connected with the microscopic (shell correction) part. In
distinction to that, the smooth energy E[p] in eq. (6) is calculated with the same
p which appears in the shell correction. Also the smooth part of the sum of the
single-particle energies t7(hp) (Strutinski integral) is calculated here without using
the Strutinski smearing prescription. This makes the ETFSI approach applicable
also to nuclei close to the drip lines.

The pairing interaction is treated by the BCS method with the pairing force
taken in the form of eq. (2). The same V; is assumed for protons and neutrons and
fitted, together with the Skyrme-force parameters, to best reproduce experimental
masses. The result is: V5 = —220.0 MeV - fm?.

The charge radius of a nucleus is calculated as

<12 SP={<1? >, 8212 (8)



where
<r?>,= /ﬁp(r)rzdr (9)
and s, = 0.8 fm is the rms radius of the charge distibution of proton.

A detailed description of the ETFSI approach is given in [27,28] and in references
quoted therein.

2.4 Relativistic Mean Field approach

This approach is based on a Lagrangian which describes the interaction of nucleons
by exchange of mesons and photons in the Lorentz-invariant way. The Lagrangian
density has the form [29-33]

L =(i,0" — MY + 18,00%0 —U(o) — 10,0
+imiwuwt — IRLR™ + Imip p#* — (L F* (10)
“‘901/;0'¢ - QMZ”YM/M" - g,,IE’YyTwp“ - 6’&’)’#1/},4“,

where ¥ is the nucleon (Dirac spinor) field, ¢ is the scalar, w* is the isoscalar-vector
and p* is the isovector-vector meson fields, with the masses m,, m,, and m,, and
the coupling constants g,,g. and g,, respectively; A* is the electromagnetic field.
The quantities Q**, R#* and F* are tensors of the respective fields. The potential
U(o) for the scalar meson o is assumed in the form

1 . 1 1
U_) = Emf,az + 3—9303 + 19404, (11)

i.e. with two self-coupling terms (non-linearity).

The coupled Dirac and Klein-Gordon equations, corresponding to the Lagrangian
(10), are solved in the self-consistent Hartree way. The basis consisting of 20 oscil-
lator shells has been used when solving the equations.

Nine constants: M ,my, My, My, §s, Gu» 9p, §3 aRd g4 are treated as parameters of
the theory. Three sets of these parameters: NL1 [34], NL2 {35] and NL3 [36] are
taken for the calculations. Two of them, NL1 and NL2, are already discussed for a
longer time. The third one, NL3, is a very recent set. The parameters of these three
sets are given in Table III, for convenience of the reader. The pairing interaction
characterized by the energy gap A = 1247%/2 has been used.



Table III. Values of the parameters of the RMF approach

Param. Units NL1 NL2 NL3

MeV 9380 9380  939.0
m, MeV 49225 504.89 508.194 |
m, MeV 795359 780.0 782.501
m, MeV 7630 7630  763.0
g - 10138  9.111  10.217
& ~  13.285 11.493  12.868
g, - 4976 5507  4.474
gz fm~' -12.172 -2.304 -10.431
g1 ~ 36265 13.783 -28.885
Ref. - 34  [35] 136]

2.5 Macroscopic-microscopic model

In this study, we use two recent versions of the macroscopic-microsopic model. One
is the Finite-Range Droplet Model (FRDM) [37] and the other is the Thomas-Fermi
(TF) model (38].

The macroscopic part of FRDM is an extension of the original droplet model [39]
to improve description of the average nuclear properties. The microscopic part is
the Strutinski shell correction, based on the folded-Yukawa single-particle potential.
Nine parameters of the model are fitted to the ground-state masses of 1654 nuclei
(with the proton number Z > 8 and the neutron number N > 8) and to 28 fission-
barrier heights. The model is described in detail in [37].

The macroscopic part of mass of the TF model is based on a (generalized Seyler-
Blanchard) effective nucleon-nucleon interaction, which is of the Yukawa type with
the strength dependent on the average density of interacting nucleons and on their
relative momentum. Six of the seven parameters of the interaction are fitted to
1654 ground-state masses of nuclei with Z, N > 8. The microscopic part is taken
the same as in FRDM [37] for nuclei with Z, N > 30. For lighter nuclides, this part
is taken in a semiempirical form with additional parameters fitted to masses of these
light nuclei. As a result, the model describes masses of all nuclides, starting from
that with Z, N = 1. Details of it are given in [38].



3 Results and discussion

3.1 Masses

Table IV gives the rms values of the difference between the calculated and exper-
imental masses. The differences are calculated for 116 even-even spherical nuclei,
from %0 to ??°Th, for which the experimental masses are known. The table is very
similar to that given by us earlier [9]. Only in the RMF case, the NLSH variant [40)]
of the parameters has been presently replaced by the more recent variant NL3 [36].
All HFB and RMF masses are calculated by us, the ETFSI results are taken from [28]
and the MM masses are taken from [37] in their FRDM and FRLDM variants, and
from [38] in their TF variant of the smooth part of the mass. As the experimental
values, the masses evaluated by Audi and Wapstra [41] are used.

Table IV. Mass rimms deviations in MeV

SIII: 4.74 | SkP: 2.37 | SkM*: 6.32
SIII®: 3.07 | SkP?: 2.53 | SkM*S: 5.36
SIII%#: 2.26 | SkP®: 2.32 | SkM*dr: 4.74
Gogny: 2.07

RMF(NL1):  3.94 | RMF(NL2): 11.24 | RMF(NL3): 2.48
ETFSI: 0.80

MM(FRDM): 0.65 MM(FRLDM): 0.76 | MM(TF):  0.57

One can see in Table IV that the smallest deviations from experimental masses
are obtained in the MM approach. Within the HFB approximation, the best results
are obtained with the Gogny force. Among the Skyrme forces, the best results are
obtained in the SkP case. The results obtained with the interaction modified in
the p-p channel, SkP?%, are only very little better than those with the original force
SkP, and the SkP° results are even slightly worse. This differs from the case of the
SIII (and also SkM*) force, for which the variant SIII% is much better than SIII.
Results labeled as SIII and SkM* correspond to vanishing pairing correlations, as
discussed in sect. 2.1, and are therefore much worse. The results obtained within
the RMF theory strongly depend on the variant of the parameters used. They are
very poor with the NL2 set, while they are quite good with the very recent variant
NL3.

Figure 1 shows the dependence of the deviations from experimental masses on
the neutron number N. Isotopes of six elements with Z=20(Ca), 38(Sr), 50(Sn),
62(Sm), 82(Pb) and 90(Th) are taken. These are the nuclides, the proton number Z
or neutron number N of which are magic or close to magic numbers, as these nuclei
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Figure 1: Dependence of the deviation of theoretical mass from the experimental

one on the neutron number N, for the elements: Ca, Sr, Sn, Sm, Pb and Th. Six

variants of the theoretical mass are considered.
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are spherical. Six variants of the calculations are chosen for the illustration.

One can see that the smallest deviations are obtained in the case of the macroscopic-
microscopic approach MM(TF), in accordance with the smallest rms value given in
Table IV. In this case, the best agreement with experiment is obtained for the heav-
iest nuclei. Actually, the discrepancy obtained for the Pb and Th isotopes does not
exceed 1 MeV (in the absolute value), while it may be as large as about 2 MeV for
lighter nuclei (***°Ca). The results of the ETFSI approach are of about the same
quality as those of MM(TF). Here, again, the description of mass is better for heavy
nuclei than for the lighter ones.

Among the HFB variants of the calculations, the best description of mass is
obtained with the Gogny force. Still, for some nuclei, the deviations may be quite
large, about 3 MeV (*2Ca) or even more (***Pb). The isotopic dependence of mass,
in the Gogny case, is relatively good for some elements (e.g. Sn), while it is much
poorer for others. For example, the deviation changes from -2.1 MeV for **®*Pb to
3.5 MeV for 2*Pb, i.e. by about 5.6 MeV, with the change of N by only 6 units.
The quality of the SkP results is similar to that of the Gogny ones. Although rather
good for some elements (e.g. Sn), the results may give as large deviations as 4
MeV (Sm isotopes) or even larger (Th isotopes) for other elements. The deviations
obtained with the SIII® force are rather large. They are as high as about 5 MeV
(82Sr, 142165 214Ph) or even higher (*'?Sn). The isotopic dependence of mass
obtained with this force is rather poor. The results obtained in the RMF approach
(the NL3 variant of parameters) are rather good for the elements Ca, Sn and Sm,
but rather bad for Sr and Th.

It is interesting to study the behaviour of mass, obtained in various approaches,
when one moves away from the g-stability line. To this aim, we choose nuclei with
the proton or neutron numbers equal to one of the four largest magic numbers:
Z = 50,82 and N = 82,126. As the experimental mass is not known for many of
these nuclei, one of the calculated masses is taken as a reference. We choose the SkP
mass for that. The reason is that this mass is calculated in the present analysis and
is therefore available for all studied nuclei, but also that the SkP masses reproduce
relatively well the experimental values.

To study this dependence of mass on the neutron N and proton Z numbers, far
from the 3-stability region, we take the same six variants of the calculation as in
Fig. 1 and still add one variant more, MM(FRDM), of the macroscopic-microscopic
approach. As MM(TF) and MM(FRDM) differ only by the smooth (macroscopic)
part of the mass, the difference in their behaviour is just the difference between their
macroscopic parts.
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Figure 2 shows the mass calculated for nuclides with the proton closed shell at
Z = 50. This is an extension of the results, shown already in Fig. 1 for the Sn
isotopes, to neutron numbers N < 56 and also to NV > 82. One can see that in both
these regions of very light and very heavy isotopes, the calculated masses differ much
from each other. The Gogny mass is by about 7 MeV smaller for '%°Sn and by about
10 MeV larger for 1°Sn, than the SkP mass. Both MM masses and the ETFSI mass
are relatively close to each other and they are also not very far from the SkP result.

Figure 3 shows the results for isotones with N = 82. Here, again, the calculated
masses differ much from each other. Again, the difference between the Gogny and
SkP masses is very large. The RMF mass differs also much from the SkP mass.

The behaviour of masses for the Pb isotopes is shown in Fig. 4. This is an
extension of the results, shown already in Fig. 1, to N < 120 and also to V > 132.
Similarly as in Fig. 3, a large difference in the behaviour of the Gogny and SkP
masses is visible.

Finally, Fig. 5 shows the results for the N=126 isotones. The difference of about
30 MeV between the Gogny and SkP masses for 7%Sn illustrates the problems which
appear when one approaches the neutron drip line. (The nucleus '"®Sn is still stable

with respect to the separation of one and also of two neutrons, according e.g. to the
ETFSI model.)

3.2 Radii

Table V, similar to Table IV, gives the rms values for the difference between the
calculated and experimental charge radii. Here, however, the rms is calculated for
only 33 spherical nuclei (of 116 nuclei used in Table IV), for which the charge radius
has been measured. With respect to Table IV, the MM models are skipped. The
experimental values, used to calculate the rms results, are taken from the recent
evaluation of experimental data [8].

Table V. Charge-radius rns deviations in fm

- SIII: 0.059 | SkP: 0.040 | SkM*: 0.022
SIIIC: 0.057 | SkP?: 0.033 | SkM*: 0.021
SIII¢: 0.065 | SkP%#: 0.043 | SkM*d»: 0.023
Gogny: 0.031
RMF(NL1): 0.026 | RMF(NL2): 0.031 | RMF(NL3): 0.028
ETFSI: 0.021
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One can see that the best description of the charge radii is obtained within the
ETFSI model and for the HFB calculations with the SkM*® force. The results with
the SkM* force are very good almost independently of the interaction used to gen-
erate the pairing correlations. Relatively good results are also obtained in the RMF
calculations with the NL1 and NL3 parameters. With the NL2 parametrization, the
results are slightly worse, similar to those obtained in the HFB approach with the
Gogny and SkP° forces. The largest rms values are obtained with the SIII force,
independently of the variant of the pairing interaction used.

Figure 6 illustrates the dependence of the discrepancy between the calculated
values of the charge radius and the experimental ones on the neutron number N,
for three elements: Ca, Sn and Pb. These are the elements, for which most exper-
imental values are available. The same variants of the calculations are taken for
the illustration as in Fig. 1, with the exception that the macroscopic-microscopic
values are skipped, as mentioned already above. One can see that the dependence
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Figure 6: Dependence of the deviation of theoretical charge radius from the ex-
perimental one on the neutron number N, for the elements: Ca, Sn and Pb. Five
variants of the theoretical radius are considered.
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of the discrepancy is rather weak for Sn and Pb, i.e.,that the calculations correctly
reproduce the isotopic dependence of the radius for these two (heavy) elements.

When one moves away from the 3-stability line, the differences between proton
(or charge), rp, and neutron (neutron-matter), ry, radii increase. Within the HFB
approximation with the Skyrme forces, this effect has recently been studied in [42].
Here, we present results obtained within the RMF approach (NL3 variant) and
within the HFB theory with the Gogny force, and compare them with the SkP
results [42].

Figures 7-10 show results obtained for the the same chains of nuclei as used in
Figs. 2-5. Results of the three variants of the calculations: HFB with the Gogny
and SkP forces and the RMF(NL3) variant, are shown.

One can see in Fig. 7 that for light isotopes of tin (like ®*Sn), the neutron radius
is by up to about 0.27 fm smaller, and for heavy isotopes (like '*°Sn) it is by up to
about 0.48 fm larger, than the proton radius. For stable isotopes ''®Sn and '**Sn,
for which both these radii are measured, the experimental value of r, is larger than
that of r, by 0.064 fm and 0.176 fm, respectively. The isotope, for which these two
radii are expected to be equal, is !'°Sn or '?Sn, depending on the variant of the
calculation.

5‘ L] L T L) ) L 1 T 1 ] ¥ 1
5.2 s - RMF(NL3) i
o - Gogny
o - SkP
50 .

* - exp (protons)
x - exp (neutrons)

r (fm)

46 |

44

A 1 L | s i 1 1 /] [l 1 1

40 45 H0 55 60 65 70 75 80 8 90 95

Figure 7: Charge and neutron-matter radii calculated for a long chain of Z=52 (Sn)
isotopes. Three variants of the calculations are considered. Experimental values are
also shown, for comparison.
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Figure 8: Same as in Fig. 7, but for the N=82 isotones.

It is seen in Fig. 8 that for such a neutron-rich nucleus as '**Zr, r, may be
larger than r, by up to about 0.58 fm. The difference 0.58 fm is obtained in the
RMF(NL3) calculation. The nucleus '??Zr is expected to be close to the neutron
drip line (according, e.g., to the ETFSI model).

Figure 9 shows that the experimental values of r, and r, for *®*Pb differ by
0.085 fm. The nucleus, for which these radii are expected to be about equal, is
much lighter. This is the isotope: *¥Pb in the Gogny, '*Pb in the SkP, and '**Pb
in the RMF(NL3) calculations, respectively. Especially large difference between r,
and 7, is obtained for neutron-rich isotones with N=126 (Fig. 10). It is about 0.52
fm in the Gogny, about 0.77 fm in the SkP and about 0.86 fm in the RMF(NL3)
calculations, for the nucleus ®Sn. These two radii are expected to be about equal
only at about the heavy end of this chain, around the neutron-deficient nucleus:
2187 220Py or 22Fm, depending on the variant of the calculation.

A comparison between the considered approaches shows that apart from the
immediate vicinity of the neutron drip line, results obtained within the HFB theory
with the SkP and Gogny forces are very similar; isotopic trends are almost identical
and the only difference between these two approaches is a systematic offset of about
0.05 fm which makes the radii obtained for the Gogny force slightly smaller. As
discussed in [42] and illustrated also here, very close to the neutron drip line the
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Figure 10: Same as in Fig. 7, but for the V=126 isotones.
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SkP force gives sudden increase of the radius. This effect occurs because the neutron
distributions extend in these nuclei to large distances. It is not clear at the moment
whether the other forces can give similar results, because such a question can only
be answered by solving corresponding self-consistent equations in space coordinates.

The isotopic dependencies of the charge radii are similar in all three presented
theories. However, for neutron radii one obtains in the RMF approach with the NL3
interaction a much faster increase with the neutron number than in the other two
theories. Since the neutron radii have been measured for two tin isotopes, !!%Sn and
12431, we can conclude that here the RMF results are in a better agreement with
data than the HFB results. On the other hand, in the 2°®Pb nucleus the difference
between neutron and proton radius is overestimated by the RMF approach by about
a factor of two, while it is correctly accounted for by the HFB theory. Clearly, a
significant increase in the number of available experimental data for neutron radii
is needed before a more conclusive evaluation of theoretical results can be made.

4 Conclusions

The following conclusions may be drawn from our study:

(1) The best description of mass of the considered nuclei is obtained in the
macroscopic-microscopic approach. The description by the ETFSI model is, how-
ever, of a similar quality. In both descriptions, the agreement with experimental
values is better for heavy than for light nuclei.

(2) Among the self-consistent Hartree-Fock-Bogoliubov descriptions, the variant
using finite-range Gogny effective interaction gives the best results. The quality of
the variant making use of the Skyrme SkP force is, however, similar. The results
obtained with the SIII force, which has been used for a long time in the calculations
of various nuclear properties, are worse. The isotopic dependence of mass, obtained
with the SIII force, is also rather poor.

(3) Within the Relativistic Mean Field approach, a significant improvement of
the description of masses has been obtained with the very recent set of parameters
NL3. The quality of this description is similar to that of the HFB approach with
the SkP force.

(4) It seems that a better description of masses could be obtained, both in the
HFB and RMF approaches, if more data (i.e., masses of more nuclei) would be used
in the adjustment of free parameters. It should also be stressed that in neither of
these theories the existing parameters have been determined with a focus on masses,
as has been done in the MM or ETFSI methods.

(5) The discrepancy between various approaches, in predictions of nuclear masses,
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becomes especially large when one moves off the G-stability line. For example, the
Gogny mass is by about 7 MeV smaller for '°°Sn and by about 10 MeV larger for
140Sn than the SkP mass, although these two nuclei are not very far from the exper-
imental region. For a more neutron-rich nucleus, like 8¢Nd, this difference increases
to about 15 MeV, and it further increases to about 30 MeV for the nucleus '7°Sn.
This illustrates the difficulties in predicting nuclear masses when one approaches the
neutron drip line.

(6) Nuclear charge radius is best described by the ETFSI model and by the HFB
calculations with the SkM* forces. The description by the RMF method with the
NL1 and NL3 parameters is not much worse. Similarly as for mass, the description
is generally better for heavy nuclei than for lighter ones.

(7) For nuclei far from (-stabilty, the calculated proton and neutron radii much
differ. For example, for light isotopes of Sn (like ®®*Sn), the neutron radius is by up
to about 0.27 fm smaller, and for heavy isotopes (like '*°Sn) it is by up to about
0.48 fm larger, than the proton radius. For still more neutron-rich isotopes (like
176Sn), r, is obtained larger than r, by up to about 0.86 fm.

(8) While for lighter elements, the nuclei, for which 7, is about equal to r,, are
situated in the 3-stability region, they are expected to be rather far from this region
for heavy elements. For example, for Sn isotopes, such nuclei are obtained to be
11081 or '2Sn, depending on the variant of the calculation, i.e. on the border of 3
stability (**2Sn is the lightest isotope which is 3 stable). For the N=126 isotones,
the relation rp~r, is obtained for 28U (in the SkP variant), ?**Pu (the Gogny case)
or *°Fm (the RMF(NL3) calculation). Thus, the approximate equality of these two
radii is expected to appear for the very neutron-deficient nuclei, removed from the
B-stability region by about 16 mass units or more.

(9) Neutron radii increase with neutron number much faster in the RMF ap-
proach than in the HFB theories. More experimental data are definitely needed
before one can conclude whether this fact characterizes the particular forces used or
illustrates more profound features of the theoretical description.
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