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Abstract

It is shown that there exist nine different ways to describe the flavor mixing, in

terms of three rotation angles and one CP -violating phase, within the standard elec-

troweak theory of six quarks. For the assignment of the complex phase there essentially

exists a continuum of possibilities, if one allows the phase to appear in more than four

elements of the mixing matrix. If the phase is restricted to four elements, the phase

assignment is uniquely defined. If one imposes the constraint that the phase disap-

pears in a natural way in the chiral limit in which the masses of the u and d quarks are

turned off, only three of the nine parametrizations are acceptable. In particular the

“standard” parametrization advocated by the Particle Data Group is not permitted.

One parametrization, in which the CP -violating phase is restricted to the light quark

sector, stands up as the most favorable description of the flavor mixing.
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In the standard electroweak theory, the phenomenon of flavor mixing of the quarks is

described by a 3× 3 unitary matrix, the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2].

This matrix can be expressed in terms of four parameters, which are usually taken as three

rotation angles and one phase. A number of different parametrizations have been proposed

in the literature [2]–[5]. Of course, adopting a particular parametrization of flavor mixing

is arbitrary and not directly a physical issue. Nevertheless it is quite likely that the actual

values of flavor mixing parameters (including the strength of CP violation), once they are

known with high precision, will give interesting information about the physics beyond the

standard model. Probably at this point it will turn out that a particular description of the

CKM matrix is more useful and transparent than the others. For this reason, we find it

useful to analyze all possible parametrizations and to point out their respective advantages

and disadvantages. This is the main purpose of this short note.

In the standard model the quark flavor mixing arises once the up- and down-type mass

matrices are diagonalized. The generation of quark masses is intimately related to the

phenomenon of flavor mixing. In particular, the flavor mixing parameters do depend on the

elements of quark mass matrices. A particular structure of the underlying mass matrices

calls for a particular choice of the parametrization of the flavor mixing matrix. For example,

in Ref. [6] it was noticed that a rather special form of the flavor mixing matrix results, if

one starts from Hermitian mass matrices in which the (1,3) and (3,1) elements vanish. This

has been subsequently observed again in a number of papers [7]. Recently we have studied

the exact form of such a description from a general point of view and pointed out some

advantages of this type of representation in the discussion of flavor mixing and CP -violating

phenomena [5]. One of the aims of this work is also to view this parametrization in the

context with other ways of describing the flavor mixing.

In the standard model the weak charged currents are given by

(u, c, t)L

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 ds
b


L

, (1)

where u, c, ..., b are the quark mass eigenstates, L denotes the left-handed fields, and Vij

are elements of the CKM matrix V . In general Vij are complex numbers, but their absolute

values are measurable quantities. For example, |Vcb| primarily determines the lifetime of B

mesons. The phases of Vij , however, are not physical, like the phases of quark fields. A phase

transformation of the u quark (u→ u eiα), for example, leaves the quark mass term invariant

but changes the elements in the first row of V (i.e., Vuj → Vuj e
−iα). Only a common phase

transformation of all quark fields leaves all elements of V invariant, thus there is a five-fold

freedom to adjust the phases of Vij.

In general the unitary matrix V depends on nine parameters. Note that in the absence

of complex phases V would consist of only three independent parameters, corresponding to

three (Euler) rotation angles. Hence one can describe the complex matrix V by three angles

and six phases. Due to the freedom in redefining the quark field phases, five of the six phases
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in V can be absorbed; and we arrive at the well-known result that the CKM matrix V can

be parametrized in terms of three rotation angles and one CP -violating phase. The question

about how many different ways to describe V may exist was raised some time ago [8]. Below

we shall reconsider this problem and give a complete analysis.

If the flavor mixing matrix V is first assumed to be a real orthogonal matrix, it can in

general be written as a product of three matrices R12, R23 and R31, which describe simple

rotations in the (1,2), (2,3) and (3,1) planes:

R12(θ) =

 cθ sθ 0

−sθ cθ 0

0 0 1

 ,

R23(σ) =

 1 0 0

0 cσ sσ

0 −sσ cσ

 ,

R31(τ) =

 cτ 0 sτ

0 1 0

−sτ 0 cτ

 , (2)

where sθ ≡ sin θ, cθ ≡ cos θ, etc. Clearly any two rotation matrices do not commute with

each other. There exist twelve different ways to arrange products of these matrices such

that the most general orthogonal matrix R can be obtained [8]. Note that the matrix

R−1
ij (ω) plays an equivalent role as Rij(ω) in constructing R, because of R−1

ij (ω) = Rij(−ω).

Note also that Rij(ω)Rij(ω
′) = Rij(ω + ω′) holds, thus the product Rij(ω)Rij(ω

′)Rkl(ω
′′) or

Rkl(ω
′′)Rij(ω)Rij(ω

′) cannot cover the whole space of a 3× 3 orthogonal matrix and should

be excluded. Explicitly the twelve different forms of R read as

(1) R = R12(θ) R23(σ) R12(θ′) ,

(2) R = R12(θ) R31(τ) R12(θ′) ,

(3) R = R23(σ) R12(θ) R23(σ′) ,

(4) R = R23(σ) R31(τ) R23(σ′) ,

(5) R = R31(τ) R12(θ) R31(τ ′) ,

(6) R = R31(τ) R23(σ) R31(τ ′) ,

in which a rotation in the (i, j) plane occurs twice; and

(7) R = R12(θ) R23(σ) R31(τ) ,

(8) R = R12(θ) R31(τ) R23(σ) ,

(9) R = R23(σ) R12(θ) R31(τ) ,

(10) R = R23(σ) R31(τ) R12(θ) ,

(11) R = R31(τ) R12(θ) R23(σ) ,

(12) R = R31(τ) R23(σ) R12(θ) ,
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where all three Rij are present.

Although all the above twelve combinations represent the most general orthogonal matri-

ces, only nine of them are structurally different. The reason is that the products RijRklRij

and RijRmnRij (with ij 6= kl 6= mn) are correlated with each other, leading essentially to

the same form for R. Indeed it is straightforward to see the correlation between patterns

(1), (3), (5) and (2), (4), (6), respectively, as follows:

R12(θ) R31(τ) R12(θ′) = R12(θ + π/2) R23(σ = τ) R12(θ′ − π/2) ,

R23(σ) R31(τ) R23(σ′) = R23(σ − π/2) R12(θ = τ) R23(σ′ + π/2) ,

R31(τ) R23(σ) R31(τ ′) = R31(τ + π/2) R12(θ = σ) R31(τ ′ − π/2) . (3)

Thus the orthogonal matrices (2), (4) and (6) need not be treated as independent choices.

We then draw the conclusion that there exist nine different forms for the orthogonal matrix

R, i.e., patterns (1), (3) and (5) as well as (7) – (12).

We proceed to include the CP -violating phase, denoted by ϕ, in the above rotation

matrices. The resultant matrices should be unitary such that a unitary flavor mixing matrix

can be finally produced. There are several different ways for ϕ to enter R12, e.g.,

R12(θ, ϕ) =

 cθ sθ e
+iϕ 0

−sθ e
−iϕ cθ 0

0 0 1

 , (4a)

or

R12(θ, ϕ) =

 cθ sθ 0

−sθ cθ 0

0 0 e−iϕ

 , (4b)

or

R12(θ, ϕ) =

 cθ e
+iϕ sθ 0

−sθ cθ e
−iϕ 0

0 0 1

 . (4c)

Similarly one may introduce a phase parameter into R23 or R31. Then the CKM matrix

V can be constructed, as a product of three rotation matrices, by use of one complex Rij

and two real ones. Note that the location of the CP -violating phase in V can be arranged

by redefining the quark field phases, thus it does not play an essential role in classifying

different parametrizations. We find that it is always possible to locate the phase parameter

ϕ in a 2× 2 submatrix of V , in which each element is a sum of two terms with the relative

phase ϕ. The remaining five elements of V are real in such a phase assignment. Accordingly

we arrive at nine distinctive parametrizations of the CKM matrix V , as listed in Table 1,

where the complex rotation matrices R12(θ, ϕ), R23(σ, ϕ) and R31(τ, ϕ) are obtained directly

from the real ones in Eq. (2) with the replacement 1→ e−iϕ.

Some instructive relations of each parametrization, as well as the rephasing-invariant

measure of CP violation [9] defined by J through

Im
(
VilVjmV

∗
imV

∗
jl

)
= J

3∑
k,n=1

(
εijkεlmn

)
, (5)
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have also been given in Table 1. One can see that P2 and P3 correspond to the Kobayashi-

Maskawa [2] and Maiani [3] representations, although different notations for the CP -violating

phase and three mixing angles are adopted here. The latter is indeed equivalent to the

“standard” parametrization advocated by the Particle Data Group [3, 4]. This can be seen

clearly if one makes three transformations of quark field phases: c→ c e−iϕ, t→ t e−iϕ, and

b→ b e−iϕ. In addition, P1 is just the one proposed by the present authors in Ref. [5].

From a mathematical point of view, all nine different parametrizations are equivalent.

However this is not the case if we apply our considerations to the quarks and their mass

spectrum. It is well known that both the observed quark mass spectrum and the observed

values of the flavor mixing parameters exhibit a striking hierarchical structure. The latter can

be understood in a natural way as the consequence of a specific pattern of chiral symmetries

whose breaking causes the towers of different masses to appear step by step [10, 11, 12].

Such a chiral evolution of the mass matrices leads, as argued in Ref. [11], to a specific way

to introduce and describe the flavor mixing. In the limit mu = md = 0, which is close to the

real world, since mu/mt � 1 and md/mb � 1, the flavor mixing is merely a rotation between

the t–c and b–s systems, described by one rotation angle. No complex phase is present; i.e.,

CP violation is absent. This rotation angle is expected to change very little, once mu and

md are introduced as tiny perturbations. A sensible parametrization should make use of this

feature. This implies that the rotation matrix R23 appears exactly once in the description

of the CKM matrix V , eliminating P2 (in which R23 appears twice) and P5 (where R23 is

absent). This leaves us with seven parametrizations of the flavor mixing matrix.

The list can be reduced further by considering the location of the phase ϕ. In the limit

mu = md = 0, the phase must disappear in the weak transition elements Vtb, Vts, Vcb and

Vcs. In P7 and P8, however, ϕ appears particularly in Vtb. Thus these two parametrizations

should be eliminated, leaving us with five parametrizations (i.e., P1, P3, P4, P6 and P9).

In the same limit, the phase ϕ appears in the Vts element of P3 and the Vcb element of P4.

Hence these two parametrizations should also be eliminated. Then we are left with three

parametrizations, P1, P6 and P9. As expected, these are the parametrizations containing

the complex rotation matrix R23(σ, ϕ). We stress that the “standard” parametrization [4]

(equivalent to P3) does not obey the above constraints and should be dismissed.

Among the remaining three parametrizations, P1 is singled out by the fact that the CP -

violating phase ϕ appears only in the 2× 2 submatrix of V describing the weak transitions

among the light quarks. This is precisely the system where the phase ϕ should appear, not

in any of the weak transition elements involving the heavy quarks t and b.

In the parametrization P6 or P9, the complex phase ϕ appears in Vcb or Vts, but this

phase factor is multiplied by a product of sin θ and sin τ , i.e., it is of second order of the

weak mixing angles. Hence the imaginary parts of these elements are not exactly vanishing,

but very small in magnitude.

In our view the best possibility to describe the flavor mixing in the standard model is to

adopt the parametrization P1. As discussed in Ref. [5], this parametrization has a number
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of significant advantages in addition to that mentioned above. Especially it is well suited for

specific models of quark mass matrices (see, e.g., Refs. [6, 7]).

We conclude: there are nine different ways to describe a real 3×3 flavor mixing matrix in

terms of three rotation angles. Introducing a complex phase ϕ does not increase the number

of distinct parametrizations, except for the fact that there is a continuum of possibilities

for assigning the phase factors. Imposing natural constraints in view of the observed mass

hierarchy (i.e., in the limit mu = md = 0 phases should be absent in the (2,2), (2,3), (3,2)

and (3,3) elements of the mixing matrix), we can eliminate six parametrizations, including

the original Kobayashi-Maskawa parametrization [2] and the “standard” parametrization

proposed in Refs. [3, 4]. We propose to use the parametrization P1 for the further study of

flavor mixing and CP -violating phenomena.
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Table 1: Classification of different parametrizations for the flavor mixing matrix.

Parametrization Useful relations

P1: V = R12(θ) R23(σ,ϕ) R−1
12 (θ′) J = sθcθsθ′cθ′s

2
σcσ sinϕ sθsθ′cσ + cθcθ′e

−iϕ sθcθ′cσ − cθsθ′e
−iϕ sθsσ

cθsθ′cσ − sθcθ′e
−iϕ cθcθ′cσ + sθsθ′e

−iϕ cθsσ
−sθ′sσ −cθ′sσ cσ

 tan θ = |Vub/Vcb|

tan θ′ = |Vtd/Vts|

cos σ = |Vtb|

P2: V = R23(σ) R12(θ, ϕ) R−1
23 (σ′) J = s2

θcθsσcσsσ′cσ′ sinϕ cθ sθcσ′ −sθsσ′

−sθcσ cθcσcσ′ + sσsσ′e
−iϕ −cθcσsσ′ + sσcσ′e

−iϕ

sθsσ −cθsσcσ′ + cσsσ′e
−iϕ cθsσsσ′ + cσcσ′e

−iϕ

 cos θ = |Vud|

tanσ = |Vtd/Vcd|

tan σ′ = |Vub/Vus|

P3: V = R23(σ) R31(τ, ϕ) R12(θ) J = sθcθsσcσsτc
2
τ sinϕ cθcτ sθcτ sτ

−cθsσsτ − sθcσe
−iϕ −sθsσsτ + cθcσe

−iϕ sσcτ
−cθcσsτ + sθsσe

−iϕ −sθcσsτ − cθsσe
−iϕ cσcτ

 tan θ = |Vus/Vud|

tanσ = |Vcb/Vtb|

sin τ = |Vub|

P4: V = R12(θ) R31(τ, ϕ) R−1
23 (σ) J = sθcθsσcσsτc

2
τ sinϕ cθcτ cθsσsτ + sθcσe

−iϕ cθcσsτ − sθsσe
−iϕ

−sθcτ −sθsσsτ + cθcσe
−iϕ −sθcσsτ − cθsσe

−iϕ

−sτ sσcτ cσcτ

 tan θ = |Vcd/Vud|

tan σ = |Vts/Vtb|

sin τ = |Vtd|

P5: V = R31(τ) R12(θ, ϕ) R−1
31 (τ ′) J = s2

θcθsτcτsτ ′cτ ′ sinϕ cθcτcτ ′ + sτsτ ′e
−iϕ sθcτ −cθcτsτ ′ + sτcτ ′e

−iϕ

−sθcτ ′ cθ sθsτ ′

−cθsτcτ ′ + cτsτ ′e
−iϕ −sθsτ cθsτsτ ′ + cτcτ ′e

−iϕ

 cos θ = |Vcs|

tan τ = |Vts/Vus|

tan τ ′ = |Vcb/Vcd|

P6: V = R12(θ) R23(σ,ϕ) R31(τ) J = sθcθsσc
2
σsτcτ sinϕ−sθsσsτ + cθcτe

−iϕ sθcσ sθsσcτ + cθsτe
−iϕ

−cθsσsτ − sθcτe
−iϕ cθcσ cθsσcτ − sθsτe

−iϕ

−cσsτ −sσ cσcτ

 tan θ = |Vus/Vcs|

sinσ = |Vts|

tan τ = |Vtd/Vtb|

P7: V = R23(σ) R12(θ, ϕ) R−1
31 (τ) J = sθc

2
θsσcσsτcτ sinϕ cθcτ sθ −cθsτ

−sθcσcτ + sσsτe
−iϕ cθcσ sθcσsτ + sσcτe

−iϕ

sθsσcτ + cσsτe
−iϕ −cθsσ −sθsσsτ + cσcτe

−iϕ

 sin θ = |Vus|

tan σ = |Vts/Vcs|

tan τ = |Vub/Vud|

P8: V = R31(τ) R12(θ, ϕ) R23(σ) J = sθc
2
θsσcσsτcτ sinϕ cθcτ sθcσcτ − sσsτe

−iϕ sθsσcτ + cσsτe
−iϕ

−sθ cθcσ cθsσ
−cθsτ −sθcσsτ − sσcτe

−iϕ −sθsσsτ + cσcτe
−iϕ

 sin θ = |Vcd|

tan σ = |Vcb/Vcs|

tan τ = |Vtd/Vud|

P9: V = R31(τ) R23(σ,ϕ) R−1
12 (θ) J = sθcθsσc

2
σsτcτ sinϕ−sθsσsτ + cθcτe

−iϕ −cθsσsτ − sθcτe
−iϕ cσsτ

sθcσ cθcσ sσ
−sθsσcτ − cθsτe

−iϕ −cθsσcτ + sθsτe
−iϕ cσcτ

 tan θ = |Vcd/Vcs|

sinσ = |Vcb|

tan τ = |Vub/Vtb|
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