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Abstract

The longitudinal polarization, the transverse polarization, and the forward-backward
asymmetry of Λ baryons, have been measured using a sample of 4.34 million hadronic Z0

decays collected with the OPAL detector at LEP between 1990 and 1995. These results are
important as an aid to the understanding of hadronization mechanisms. Significant longitudinal
polarization has been observed at intermediate and high momentum. For xE (≡ 2EΛ/

√
s) > 0.3,

the longitudinal polarization has been measured to be −32.9 ± 5.5 (stat) ± 5.2 (syst)%. We
have observed no transverse polarization. A significant forward-backward asymmetry has been
measured and can be described by a JETSET model.
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1 Introduction

It is well known that the weak interactions are parity violating. Consequently, fermions
produced in Z0 decays have a longitudinal polarization that depends on their left and right
electroweak couplings. The polarization is large for quarks but not directly measurable.
Assuming the electroweak Standard Model to hold, the extent to which this longitudinal
polarization is transferred to the observed hadrons is an interesting test of hadronization.
Moreover, in the absence of beam polarization, the quarks have no transverse polarization
component and any observed transverse polarization can only arise during the hadronization
phase.

In the case of unpolarized beams, standard electroweak theory predicts for the charge −1
3

quarks from Z0 decay a longitudinal polarization of −0.94 [1]. The corresponding antiquarks
have the same degree of polarization, but with opposite helicity. The polarization varies by
±2% with the centre-of-mass production polar angle θ. Gluon radiation will reduce this value
slightly − a one-loop QCD calculation [2] shows that this reduction is about 3%. Therefore, we
expect that strange quarks from Z0 decays will have a polarization of −91%, with an uncertainty
of a few percent.

The possibility to measure the quark helicities from the polarization of the leading baryons
was first suggested in [3]. In the simple quark model the Λ1 spin is given by the spin of
the constituent s quark, and the polarization of the primary s quark will be transferred to a
directly produced leading Λ. According to the JETSET Monte Carlo program [4] a fraction
of Λ will contain the primary s quark from e+e− → Z0 → ss, in particular those with high
momentum. It is these Λ, through a study of their weak decays, that are thus expected to
reveal the most information about the polarization of the initial s quark. In addition, during
decays of heavier baryon resonances containing the original quark some of the initial quark
polarization is expected to be transferred to the final Λ.

Parity violation in the weak decay of Λ→ pπ leads to an angular distribution of the decay
proton given by

1

N

dN

d cos θ∗
= 1 + αPL cos θ∗ (1)

where cos θ∗ is the angle between the proton and the decaying Λ flight directions, transformed
to the Λ rest frame, and α = 0.642 ± 0.013 is the Λ decay parameter [5]. The longitudinal
polarization, PL, of the Λ can therefore be determined from the distribution of cos θ∗. The
dependence of PL on Λ momentum is investigated by determining the polarization in a number
of xE intervals, where the fractional energy of the Λ, xE, is given by 2EΛ/

√
s.

Several groups have reported that the Λ, as well as other hyperons, produced in fixed-target
hadroproduction experiments exhibit significant transverse polarization [6]. However, there is
no generally accepted mechanism that can explain the pattern of observed polarizations. It has
been suggested [7] that a measurement of the transverse polarization of Λ in e+e− annihilation
events could indicate the extent to which final-state interactions contribute to the transverse
polarization seen in fixed-target experiments.

The Standard Model of electroweak interactions predicts a forward-backward asymmetry of
the fermions produced in e+e− collisions. Pairs of fermions are produced preferentially with the

1Unless otherwise specified the use of a particle name refers to the particle plus the corresponding antiparticle.

4



fermion forward and the antifermion backward with respect to the direction of the incoming
electron beam. We would expect that those Λ which contain the primary s quark would reflect
this asymmetry, although again there will be a reduction due to fragmentation effects [8].

This paper is organized as follows. The OPAL detector and event samples are described in
Section 2. In Section 3 the selection criteria for Λ baryons are given, along with the method of
determining the signal and background. The measurement of the longitudinal polarization and
associated systematic error are detailed in Sections 4 and 5. In Section 6 we use the JETSET
Monte Carlo to predict the longitudinal polarization that we may expect to observe. Section 7
presents the measurement of the transverse polarization and Section 8 the measurement of the
Λ forward-backward asymmetry.

2 The OPAL Detector and Data Selection

OPAL is a multipurpose detector covering almost the entire solid angle around one of four
interaction regions at LEP. Details concerning the detector and its performance are given
elsewhere [9]. This analysis relies mainly on the information from the central tracking chambers
which are described briefly in this section.

Tracking of charged particles is performed by a central drift chamber system, consisting of a
vertex chamber, a jet chamber and z-chambers2. The central detector is positioned inside
a solenoid, which provides a uniform magnetic field of 0.435 T. The vertex chamber is a
precision drift chamber which covers the range | cos θ| < 0.95. The jet chamber is a large
volume drift chamber 4 m long and 3.7 m in diameter which provides tracking in the r - φ
plane using up to 159 measured space points and in z by charge division along the wires.
The jet chamber also allows the measurement of the specific energy loss of charged particles,
dE/dx. A dE/dx resolution of 3.5% [10] has been obtained for tracks with | cos θ| < 0.7,
allowing particle identification over a large momentum range. A precise measurement of the
z-coordinate is provided by the z-chambers which surround the jet chamber and cover the range
| cos θ| < 0.72. The combination of these chambers leads to a momentum resolution of σpt/pt

≈
√

0.022 + (0.0015 · pt)2, pt being the transverse track momentum with respect to the beam
direction in GeV, and where the first term represents the contribution from multiple Coulomb
scattering.

This analysis is based on the complete data sample collected between 1990 and 1995 with
centre-of-mass energies on or near the Z0 peak. At these energies the longitudinal polarization
of the fermions produced in the Z0 decay is effectively independent of the centre-of-mass energy.
With the requirement that all of the central tracking chambers be operational, a total of 4.34
million hadronic Z0 decays were selected using the criteria described in [11] with an efficiency
of 98.4 ± 0.4%. The remaining background processes, such as e+e− → τ+τ− and two-photon
events, were estimated to be at a negligible level (0.1% or less). Events where the thrust axis
lay close to the beam axis were rejected by requiring | cos θthrust| < 0.9, where θthrust is the polar
angle of the thrust vector determined from charged tracks. All selected events were used in the
determination of the polarization while only events recorded at the Z0 peak (86% of the data)
were used in the measurement of the forward-backward asymmetry as it is expected to vary
rapidly with the centre-of-mass energy.

2In OPAL the coordinate system is defined such that the positive z-axis is along the direction of the electron
beam, r is the coordinate normal to the beam axis, and θ and φ are the polar and azimuthal angles.
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To determine the selection efficiencies for the Λ baryon, we have used a sample of
approximately 3 million JETSET 7.3 and 4 million JETSET 7.4 hadronic Z0 decays that
were processed through the full OPAL detector simulation program [12]. The versions of
JETSET have been tuned to agree with overall event shapes and various single particle inclusive
distributions and rates as measured by OPAL. Details of the parameters can be found in [13].
The two versions differ mainly in the tuning of the fragmentation parameters and the decay
branching ratios of heavy flavour hadrons. The results obtained using the two JETSET samples
separately were consistent, so the final results are based on the total combined Monte Carlo
sample.

3 Selection of Λ Candidates and Background

Determination

The following procedure is used to select Λ → pπ candidates. All pairs of oppositely charged
tracks were checked for intersections in the xy plane and required to pass the following set of
conditions:

• each track must have a transverse momentum, pt, in the xy plane of at least 150 MeV;

• the intersection radius in the xy plane must lie between 1 and 150 cm from the primary
event vertex;

• Σ|d0|, the sum of the absolute values of d0 (d0 is defined as the distance of closest approach
to the primary event vertex in the xy plane) for each track, must be larger than 0.2 cm;

• each track must have at least 40 jet chamber hits, and at least 4 z-chamber hits in the
barrel region (| cos θ| < 0.72), or a measurement of the track endpoint in the endcap region
of the jet chamber. The cut on the number of jet chamber hits restricts the acceptance
to | cos θ| < 0.93).

• ̂(~r, ~p), the angle between the vector from the primary vertex to the intersection point and
the summed momenta of the tracks, must be less than 0.5◦ (' 8.7 mrad);

• neither track can have hits more than 2 cm away from the intersection point of the two
tracks in the direction of the primary vertex;

• the decay angle of the higher momentum particle (assumed to be a proton), | cos θ∗|, must
be less than 0.95. According to the Monte Carlo this requirement reduces the γ → e+e−

conversion background to levels that are below 1% of the total sample for xE between
0.05 and 0.09 and to an insignificant amount above xE = 0.3. Any remaining γ conversion
events are therefore neglected in the following analysis.

• if the higher momentum track has more than 20 hits contributing to the dE/dx
measurement, the probability3 of the track being a proton is required to be more than
5%.

3The χ2 probability is calculated from the difference between the measured and expected dE/dx for a given
particle type, in units of the dE/dx resolution, assuming a Gaussian distribution.
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All track pairs passing these cuts are then refitted. Both tracks are constrained to originate
from a common vertex in z to improve the invariant mass resolution. The total χ2 of this
fit is required to be acceptable (less than 50). For all track pairs passing this cut the higher
momentum track is assumed to be the proton. Track pairs with a summed momentum of at
least 500 MeV (xE = 0.027) are accepted for further analysis. The invariant mass of the pair,
Mpπ, and the decay angle, cos θ∗, are calculated. The distribution of the invariant mass versus
the decay angle, after all of the above selection cuts, is shown in Figure 1a for part of the data
sample. The Λ signal can be clearly seen, along with a K0

s signal. Shown in Figure 1b is the
projection onto the Mpπ axis for the complete data sample, compared to the Monte Carlo.

The resolution of the Λ mass, in both the data and Monte Carlo samples, was 2.3 ± 0.1 MeV
for xE < 0.05 and 3.5 ± 0.2 MeV for 0.3 < xE < 0.4. No correction was applied to account for
the difference between the magnetic field value used in the Monte Carlo and the value measured
in the detector. For this reason there is a slight shift in mass visible in Figure 1b which has no
effect in any of the following analyses. The selection efficiency for Λ→ pπ decays was 25% at
xE = 0.15, decreasing to 10% at xE = 0.4. These efficiencies are compatible with those given in
our most recent paper on strange baryon production [14] in which different Λ selection criteria
were used.

The data from 0.027 ≤ xE ≤ 1.0 were divided into nine xE intervals. After the cut on cos θ∗

to remove the γ → e+e− background, 19 bins of equal width between −0.95 < cos θ∗ < 0.95
were used in each interval. For each bin the number of Λ candidates was determined according
to the procedure outlined in the remainder of this section.

Small, yet significant differences have been observed between the momentum spectra seen
in the data and those given by the JETSET Monte Carlo for Λ baryons, and to a lesser extent
for K0

s mesons. The Monte Carlo Λ momentum distribution was weighted by an xE dependent
factor in order to reproduce the distribution observed in the data [14]. These weights varied
from 0.99 at xE = 0.05 to 0.88 at xE = 0.4. Similarly, the K0

s momentum distribution from the
Monte Carlo was scaled by the ratio of the generated and observed momentum distributions [15].
These weights varied from 1.01 to 1.05.

Along with the Λ signal there are residual backgrounds from two sources: random
combinations of oppositely charged pairs of tracks, and K0

s decays. The amount of background
from each of these sources inside a window around the Λ mass (MΛ = 1.115684 GeV [5])
was calculated from the Monte Carlo simulation. Different windows were used for xE < 0.1
and xE > 0.1, as shown on Figure 1a. A wider window was used at higher momentum due
to the degradation of the mass resolution as the momentum of the Λ increases. Since the
mass resolution also degrades as | cos θ∗| increases, the window increases in width as | cos θ∗|
increases. Combining these two effects, the signal windows as a function of cos θ∗ are given by
|Mpπ−MΛ| < (0.007+| cos θ∗|×0.008 GeV) (xE < 0.1) and |Mpπ−MΛ| < (0.009+| cos θ∗|×0.006
GeV) (xE > 0.1).

In Table 1 the number of Λ extracted in each cos θ∗ bin is given, along with the Monte
Carlo efficiency and the fractions of K0

s and random background, for xE > 0.3. The total
number of Λ candidates and the calculated background fractions for each xE interval are given
in Table 2. The number of Λ found in each bin are further corrected by the efficiency to obtain
the distribution of the number of Λ that were originally produced in the full data sample, as
a function of cos θ∗. From these distributions the longitudinal polarization as a function of xE
was then determined.
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cos θ∗ Efficiency Random Background K0
s Fraction Λ Signal

Fraction
−0.95 – −0.85 0.043 0.421 0.005 197 ± 31
−0.85 – −0.75 0.075 0.246 0.010 342 ± 26
−0.75 – −0.65 0.084 0.219 0.014 344 ± 23
−0.65 – −0.55 0.103 0.189 0.019 384 ± 24
−0.55 – −0.45 0.112 0.191 0.023 408 ± 26
−0.45 – −0.35 0.122 0.158 0.034 404 ± 24
−0.35 – −0.25 0.132 0.122 0.056 458 ± 24
−0.25 – −0.15 0.143 0.141 0.065 430 ± 25
−0.15 – −0.05 0.140 0.121 0.073 494 ± 26
−0.05 – 0.05 0.135 0.140 0.097 490 ± 26

0.05 – 0.15 0.153 0.149 0.144 536 ± 28
0.15 – 0.25 0.163 0.164 0.135 566 ± 28
0.25 – 0.35 0.178 0.173 0.130 580 ± 30
0.35 – 0.45 0.170 0.213 0.141 532 ± 30
0.45 – 0.55 0.174 0.234 0.110 519 ± 30
0.55 – 0.65 0.166 0.300 0.101 446 ± 31
0.65 – 0.75 0.150 0.328 0.092 453 ± 32
0.75 – 0.85 0.145 0.411 0.086 385 ± 35
0.85 – 0.95 0.127 0.444 0.071 341 ± 31

Table 1: The efficiency, random combination background fraction, K0
s fraction and the number

of Λ candidates extracted from the data sample, as a function of cos θ∗, for xE > 0.3. The Λ
signal uncertainty includes contributions from both the random background and K0

s fraction
uncertainties.

4 Measurement of the Longitudinal Polarization

To calculate the polarization for each xE range, the efficiency-corrected cos θ∗ distribution was
fitted to a straight line of the form

1

N

dN

d cos θ∗
= 1 + αPL cos θ∗, (2)

where α = 0.642 ± 0.013 is the Λ decay parameter [5]. For Λ, α = −0.642 ± 0.013 by CP
invariance. However, since the helicity of the s quark is expected to be opposite that of the
s quark, the same slope is expected for Λ and Λ. The polarization is thus calculated directly
from the slope of the fitted line.

The measured values of PL, as calculated from the fits, are given in Table 2. From these
results we observe an indication of longitudinal polarization for Λ with xE > 0.09 and a
significant polarization for those with xE > 0.2. The systematic errors are discussed in the
following section, and the results are compared to a JETSET Monte Carlo calculation in
Section 6. The fits are good in all xE intervals. In Figure 2 the fits for 3 separate xE regions
are shown, along with the fit for xE > 0.3, where the χ2 is 19.5 for 19 fitted points.

Since the Λ has a non-zero magnetic moment the spin will precess in the magnetic field
of the detector. We have estimated that this effect will cause a change in the polarization of
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xE Total Λ Random Background K0
s Fraction PL (%)

Fraction
0.027 – 0.05 22280 0.170 0.092 1.1 ± 3.8 ± 3.0
0.05 – 0.08 42479 0.181 0.091 −2.5 ± 2.2 ± 2.5
0.08 – 0.09 11542 0.135 0.036 0.4 ± 3.9 ± 2.2
0.09 – 0.1 10031 0.140 0.029 −8.9 ± 4.2 ± 3.2
0.1 – 0.15 35101 0.148 0.034 −5.7 ± 2.2 ± 1.3

0.15 – 0.2 18139 0.187 0.039 −9.1 ± 3.2 ± 3.5
0.2 – 0.3 15723 0.218 0.049 −15.4 ± 3.7 ± 3.9
0.3 – 0.4 5569 0.205 0.072 −19.3 ± 6.5 ± 6.5
0.4 – 1.0 2950 0.222 0.110 −45.7 ± 9.8 ± 7.7

0.3 – 1.0 8309 0.210 0.084 −32.9 ± 5.5 ± 5.2

Table 2: The number of Λ candidates extracted from the data sample, the random background
fraction, K0

s fraction, and the measured longitudinal polarization of Λ from Z0 decay. The first
error quoted for the polarization is statistical, the second systematic.

no more than 1 – 2%, depending on the momentum of the Λ and the polar angle of the flight
direction. We have not included any correction for this effect in our results.

5 Systematic Error on the Longitudinal Polarization

Several possible sources of systematic error were identified and studied: background
determination, the Λ selection cuts, the acceptance window used to determine the number of Λ
events, and the factors used to renormalize the Monte Carlo K0

s and Λ momentum distributions.
Each of these will be discussed below and the values summarized in Tables 3 and 4.

As was mentioned in the previous section, the polarization is expected to be the same for
Λ and Λ. This was verified explicitly. For xE > 0.3 the polarization for Λ (Λ) was measured to
be −33.4± 7.8% (−32.3± 7.9%), where the errors are statistical only. It was also verified that
the polarizations of Λ and Λ were consistent in all momentum regions.

The fraction of random background in the signal is not constant as a function of cos θ∗

and increases as | cos θ∗| → 1 (see Table 1). If the background is not properly corrected for,
especially at larger values of | cos θ∗|, a significant systematic effect could be introduced. To
estimate the effect of the background determination the efficiency corrected cos θ∗ distributions
were fitted over 3 different sub-intervals: −0.75 < cos θ∗ < 0.95, −0.75 < cos θ∗ < 0.65 and
−0.95 < cos θ∗ < 0.65. The systematic error was taken to be the RMS deviation of these fitted
values from the value obtained when fitting over the full interval.

The selection cuts used to isolate the Λ signal are also a possible source of systematic
error. If a particular cut variable is not well modelled by the Monte Carlo too many or too
few events will be removed in either the data or Monte Carlo and a possible systematic error
introduced. The calculation of the polarization was repeated for several different values of the

most important selection cuts (the ̂(~r, ~p), Σ|d0|, dE/dx, and hit radius cuts). The cut on ̂(~r, ~p)
was varied between 0.25◦ and 1.0◦ and the Σ|d0| cut between 0.2 and 0.4 cm. The dE/dx
probability was varied between 0 (no cut applied) and 10%. The cut on the distance of hits
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Selection Cut

xE
̂(~r, ~p) Σ|d0| Hit Radius dE/dx Total

0.027 – 0.05 1.9 0.4 1.1 0.7 2.3
0.05 – 0.08 1.8 0.6 0.6 0.9 2.2
0.08 – 0.09 1.5 0.8 0.3 0.5 1.8
0.09 – 0.1 1.0 0.3 0.7 0.6 1.9
0.1 – 0.15 0.7 0.4 0.5 0.6 1.1

0.15 – 0.2 1.7 0.7 0.5 1.0 2.2
0.2 – 0.3 0.8 1.7 0.4 1.5 2.4
0.3 – 0.4 1.4 2.2 0.9 1.1 3.0
0.4 – 1.0 2.5 3.4 2.0 3.2 5.6

0.3 – 1.0 1.6 2.2 1.0 1.1 3.1

Table 3: Systematic error contributions (in %) to PL from the selection cuts. The total
contribution is the sum, added in quadrature, of the individual contributions.

away from the intersection point of the two tracks was varied between 1 and 10 cm. For each cut
at least 6 different values of the cut were chosen within the ranges specified and the polarization
recalculated for each value. The RMS deviation of these values from the value obtained using
the cut default was taken to be the systematic error for that particular selection cut. The
contributions from each selection cut as a function of xE are given in Table 3, where the total
systematic error due to the Λ selection procedure is then obtained by adding the contributions
from all cuts in quadrature.

The width of the acceptance window around the Λ mass may also affect the calculation of
PL. If the window is too narrow, Λ that are reconstructed with an invariant mass a significant
distance away from the nominal Λ mass will be lost which could introduce a cos θ∗ bias. Since
the resolution in the data is almost the same as in the Monte Carlo, it is expected that as long
as the window is wide enough to include the signal peak the systematic effects will be small.
To investigate the effect of the acceptance window, several additional windows were studied,
both narrower and wider than the default. As in the two previous cases, the RMS deviation of
the values from the default case was taken to be the systematic error.

The method used to adjust the Monte Carlo momentum distributions such that they
agreed with those observed experimentally is another possible source of systematic error.
Weighting factors were determined as a function of momentum and applied to the Monte
Carlo distributions. These factors each had an experimental error associated with them. The
factors were varied by ±1σ and the polarization recalculated. The difference from the value
determined using the nominal correction factor was taken as the systematic error.

The various contributions to the systematic error are compiled in Table 4. The total
systematic error is obtained by adding all of the contributions in quadrature.

6 Longitudinal Polarization Prediction

We use the model of Gustafson and Häkkinen [1] to calculate the expected polarization from
each of several Λ production sources. The JETSET Monte Carlo has been used to determine
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xE Background Selection Acceptance Momentum Total
Determination Cuts Window Distribution

0.027 – 0.05 0.7 2.3 1.8 0.3 3.0
0.05 – 0.08 0.1 2.2 1.2 0.2 2.5
0.08 – 0.09 1.1 1.8 0.4 0.4 2.2
0.09 – 0.1 2.5 1.9 0.5 0.5 3.2
0.1 – 0.15 0.4 1.1 0.4 0.4 1.3

0.15 – 0.2 2.3 2.2 1.2 0.6 3.5
0.2 – 0.3 2.9 2.4 0.7 0.7 3.9
0.3 – 0.4 5.4 3.0 1.7 1.0 6.5
0.4 – 1.0 4.4 5.6 2.7 1.1 7.7

0.3 – 1.0 3.2 3.1 2.3 1.2 5.2

Table 4: Contributions (in %) to the systematic error on PL.

the production rates of Λ from each of these sources, and the calculated polarizations are then
compared to the measurements.

It is necessary to distinguish between Λ which are produced directly and those which come
from decays of heavier resonances. It is also necessary to distinguish between Λ which contain
a primary strange quark and those which contain an s quark produced in the fragmentation
process. To estimate the polarization in each of these cases, the following assumptions are
made [1]:

• In a simple quark model the spin of the Λ is determined by the spin of the s quark.
Therefore, a directly produced Λ should be polarized in the same way as the primary s
quark.

• Some Λ will be decay products of heavier baryons which contain the primary s quark.
These Λ will inherit some fraction of the parent’s polarization. Estimates are given for
the Σ0, Ξ−, Σ(1385)±, and Ξ(1530).

• If a Λ contains a primary u or d quark, that quark becomes part of a spin-0 ud diquark
pair, and it is assumed the polarization of the initial quark is lost in the formation of the
Λ.

• Quarks produced in the fragmentation process are expected to have no longitudinal
polarization and consequently Λ containing these quarks will not be polarized.

It is therefore expected that much of the contribution to an observable polarization will
come from Λ that contain the initial s quark, either directly or via a decay. Contributions from
the decay of the Ω− can be neglected due to its very low production rate. There will likely
be some contribution from the decays of charm and beauty baryons, but just how much of the
quark polarization that will be transferred to the Λ is unknown.

It is possible to use the JETSET Monte Carlo to predict the relative abundances of Λ
from the various production sources as a function of xE. Two versions of JETSET version
7.4 were used. The first version uses the default version of the “popcorn” model for baryon
production [16] and has been tuned by OPAL. The parameter set used (see [13]) results
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xE > 0.15 xE > 0.3 xE > 0.4
Λ Source Λ Polarization Default MOPS Default MOPS Default MOPS

Fragmentation 0. 0.461 0.566 0.254 0.398 0.177 0.344
u 0. 0.020 0.028 0.036 0.054 0.044 0.069
d 0. 0.015 0.023 0.027 0.044 0.034 0.056

direct s −0.91 0.152 0.071 0.278 0.137 0.355 0.175
Σ0 −0.10 0.010 0.024 0.018 0.046 0.022 0.059
Σ∗ −0.51 0.055 0.037 0.096 0.068 0.110 0.077
Ξ −0.55 0.058 0.034 0.103 0.064 0.123 0.074
Ξ∗ −0.46 0.008 0.011 0.014 0.020 0.016 0.022
Ω− 0. 0.001 0.001 0.001 0.002 0.001 0.002

c baryon −0.25 0.086 0.072 0.112 0.098 0.088 0.083
b baryon −0.25 0.073 0.063 0.045 0.046 0.025 0.031
b meson 0. 0.061 0.070 0.016 0.023 0.005 0.008

Predicted Polarization (%) −24.3 −14.5 −40.6 −24.4 −48.4 −28.4

Table 5: Relative contributions to the Λ rate for xE > 0.15, 0.3 and 0.4 in the default version
of the JETSET popcorn scheme and the modified popcorn scheme (MOPS).

from a global fit to OPAL measurements of event shape distributions, mean charged particle
multiplicities, single particle inclusive momentum spectra for π±, K±, p(p) and Λ (Λ); and to
LEP measurements of the single particle inclusive production rates of 26 hadrons identified in Z0

decays. Even with this additional tuning significant differences still exist between the predicted
and observed rates and momentum spectra of several baryons [14]. Recently however, a modified
popcorn scheme has been proposed [17] which incorporates a more complete implementation
of baryon production within the LUND string fragmentation model. This version is also used
with the OPAL tuning, together with an adjustment of PARJ(10) 4 to 2.8, to obtain better
agreement with the observed baryon rates and the Λ momentum distribution.

In Table 5 the sources of origin of the Λ are given as predicted by both the default and
modified versions of the popcorn scheme for xE > 0.15, 0.3 and 0.4. The contribution to the
polarization from each source is also given (according to the method of [1], except that we have
assumed an additional contribution of 25% for Λ from the decays of charm and bottom flavoured
baryons). This assumption is based on a measurement of the Λb polarization at LEP [18]. The
calculated polarization is shown in Figure 3 for both the default and modified versions of the
popcorn scheme. The modified popcorn scheme predicts less polarization, due mostly to the
reduced rate of direct Λ production in that model (for example, for xE > 0.3 only 13.7% of Λ
contain the primary s quark directly, compared to 27.8% in the default popcorn version).

The agreement between the predicted longitudinal polarization of the two JETSET versions
and the measurements is quite good over the entire momentum range. No clear discrimination
between the two versions is possible. There are probably other effects that must be considered
beyond the model used here. However, even with these simple assumptions, the observed
polarization is reasonably well modelled.

4In the modified popcorn scheme there is a suppression of leading baryons. In order to obtain the proper
amount of final baryons, a scale factor (PARJ(10)) is applied to PARJ(1), the suppression factor for diquark
production.
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pT (GeV/c) PΛ
T (%)

< 0.3 −1.8 ± 3.1 ± 1.0
0.3 – 0.6 0.4 ± 1.8 ± 0.7
0.6 – 0.9 1.0 ± 1.9 ± 0.7
0.9 – 1.2 0.8 ± 2.2 ± 0.6
1.2 – 1.5 0.0 ± 2.7 ± 0.6
> 1.5 1.8 ± 1.6 ± 0.5

> 0.3 0.9 ± 0.9 ± 0.3
> 0.6 1.1 ± 1.0 ± 0.4

Table 6: Measured transverse polarization of Λ baryons as a function of pT (the transverse
momentum of the Λ measured relative to the event thrust axis). The first error is statistical,
the second systematic.

7 Measurement of the Transverse Polarization

It has been observed that in hadron-hadron collisions Λ baryons obtain a significant polarization
in the direction perpendicular to the event plane. Several models (see [6] and references therein)
have been put forward to explain this effect but, as yet, there is no accepted explanation.
In e+e− annihilation the transverse polarization of the primary quarks is suppressed by a
factor mq/

√
s from helicity conservation, so any transverse polarization will arise only in the

hadronization phase [7].

The transverse polarization is investigated along a direction, â = p̂Λ × p̂thrust, where p̂Λ is
the Λ direction and p̂thrust is the direction of the thrust axis in the Λ hemisphere. The method
to determine the transverse polarization is very similar to that used to measure the longitudinal
polarization. The function given by Equation (1) is fitted to an efficiency corrected distribution
of cosφp, where φp is the angle in the Λ rest frame between the proton and â.

A pπ mass selection window of constant width as a function of cosφp was used. The width
of the window increased with xE to account for the worsening of the mass resolution with
increasing momentum. For xE < 0.08 a window of width ± 8 MeV from the nominal Λ mass
was used, for 0.08 < xE < 0.1 the width was ± 11 MeV, for 0.1 < xE < 0.3 it was ± 15 MeV
and for xE > 0.3 it was ± 20 MeV. All other selection cuts were the same as those used in the
PL analysis, and the method of determining the efficiency-corrected distributions was identical.

The data were binned in pT , where pT is the transverse momentum of the Λ measured
relative to the thrust axis. The results of the fits for several pT intervals are shown in Figure 4.
As in the longitudinal polarization analysis, the transverse polarization, PΛ

T , is given by the
slope of the fitted line divided by the Λ decay parameter, α. The results of these fits are given
in Table 6. Since the random background in this case has no significant dependence on cosφp,
it is assumed that there is no systematic effect due to the determination of that background.
All other systematic error contributions were determined following the same procedure as was
used in the PL analysis. Additionally, there were no significant differences found between the
values measured for Λ and Λ. For example, for pT > 0.3 GeV/c, the transverse polarization
measured for Λ was 1.9 ± 1.4% and for Λ the value obtained was 1.5 ± 1.4% (statistical errors
only).

From the results shown in Table 6 we conclude that there is no evidence for any significant

13



transverse polarization of Λ baryons over the entire range of pT . As was mentioned previously,
it is expected that the primary quarks will not be transversely polarized. This is investigated by
applying an energy cut and studying only those Λ with xE > 0.15. The result for the transverse
polarization of these Λ is PΛ

T = −0.4 ± 2.3% (statistical error only) for pT > 0.3 GeV/c. In
addition, we have studied the transverse polarization in and out of the scattering plane. If the
thrust axis is replaced by the z-axis, the transverse polarization out of the scattering plane,
along the direction p̂Λ × ẑ, is found to be −1.1± 1.8%. In the scattering plane, along the
direction defined by p̂Λ × (ẑ × p̂Λ), the polarization is found to be −1.3± 1.7%. The errors are
statistical errors only.

8 Measurement of the Forward-Backward Asymmetry

The Λ forward-backward asymmetry has also been measured over the same xE range as the
longitudinal polarization. It is expected that for high momentum Λ this asymmetry will reflect
the original s quark asymmetry [8]. In this part of the analysis the corrected distributions of
B cos θ were used to determine AFB, where B is the baryon number and θ is measured with
respect to the direction of the incoming electron beam.

From the efficiency-corrected distributions of B cos θ the forward-backward asymmetry is
calculated from:

AFB =
NF −NB

NF +NB

(3)

where NF is the total number with B cos θ > 0 and NB the total number with B cos θ < 0.
The values of AFB calculated with Equation (3) are given in Table 7, as well as the values
calculated from the OPAL tuned version of the JETSET Monte Carlo, with and without the
modified popcorn scheme. The first error is statistical, the second systematic. The random
background was symmetric about cos θ = 0 and it was found to give a negligible contribution
to the systematic error. The other contributions to the systematic error were determined using
the same procedures as those used for the longitudinal polarization analysis. In Figure 5 the
measurements are plotted along with curves showing the predictions from both the default
OPAL version of JETSET and the modified popcorn version. The agreement between the
measurements and the JETSET models is good, but the present statistics do not allow a
distinction between models.

9 Discussion and Conclusions

We have observed significant values of longitudinal polarization for Λ with intermediate and
high momentum. For xE > 0.3 the polarization has been measured to be

−32.9± 7.6%

The total error is given by the statistical and systematic errors added in quadrature. This
value is in agreement with that reported by the ALEPH Collaboration [19] who have measured
PL = −32 ± 7% for z = p/pbeam(' xE) > 0.3. The longitudinal polarization results are
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xE AFB AFB AFB
(measured) (JETSET default) (modified popcorn)

0.027 – 0.05 −0.007 ± 0.008 ± 0.006 0.003 0.003
0.05 – 0.08 0.005 ± 0.005 ± 0.005 0.005 0.004
0.08 – 0.09 −0.008 ± 0.009 ± 0.005 0.009 0.006
0.09 – 0.1 0.022 ± 0.010 ± 0.006 0.010 0.008
0.1 – 0.15 0.030 ± 0.005 ± 0.006 0.018 0.013

0.15 – 0.2 0.033 ± 0.008 ± 0.006 0.027 0.022
0.2 – 0.3 0.029 ± 0.008 ± 0.006 0.040 0.034
0.3 – 0.4 0.068 ± 0.015 ± 0.008 0.056 0.043
0.4 – 1.0 0.102 ± 0.021 ± 0.008 0.074 0.058

0.15 - 1.0 0.047 ± 0.005 ± 0.006 0.045 0.036
0.3 - 1.0 0.083 ± 0.012 ± 0.006 0.062 0.050

Table 7: Experimentally determined AFB for Λ baryons. The first error is statistical, the second
is systematic.

reasonably well modelled using a simple quark model and the JETSET Monte Carlo, which has
been tuned using LEP data. However, as is discussed in [20], the interpretation of the results is
not unique. We have also investigated the transverse polarization of Λ baryons. No significant
evidence was found for any transverse polarization. This is consistent with the result reported
by ALEPH [19].

For xE > 0.15 the Λ forward-backward asymmetry was found to be

0.047± 0.008.

This is in agreement with the value of 0.0450 ± 0.0053 reported by ALEPH [19]. At higher
momenta, xE > 0.3, the asymmetry was measured to be

0.083± 0.013,

again in agreement with the ALEPH result of 0.085 ± 0.012, and the DELPHI [21] result of
0.085 ± 0.039 measured in the range 0.25 < z < 0.5 (z = p/pbeam). The measurements are also
in agreement with the expectation from JETSET.
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Figure 1: (a) Invariant mass of Λ candidates versus cos θ∗ after selection cuts. The window
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Figure 5: The measured Λ forward-backward asymmetry (solid points) and predictions from
JETSET with two different versions of the popcorn model of baryon production. The error
bars are statistical and systematic errors, added in quadrature.
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