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Results are reported of an experimental search for the unique, rapidly varying temporal pattern of
solar axions coherently converting into photons via the Primakoff effect in a single crystal germanium
detector when axions are incident at a Bragg angle with a crystalline plane. The analysis of 1.94 kgyr
of data from the 1 kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound
by an axion-photon coupling of,,, < 2.7 X 107 GeV"!, independent of axion mass uptel keV.
[S0031-9007(98)07812-0]

PACS numbers: 14.80.Mz, 13.40.-f, 96.60.Vg

Early QCD theories predicted a particle with the quan-and of a proposed method of detecting them was given by
tum numbers of the; meson, but with a mass close to van Bibberet al. [8]. Details of a theory for searching
that of the pion. A term added to the QCD Lagrangianfor axions with germanium detectors were recently given
to ameliorate this so-called U(1) problem violatét® by Creswicket al.[9]. The objective is to detect solar
invariance in strong interactions and implied a neutroraxions through their coherent Primakoff conversion into
electric-dipole moment abou®’ times larger than the ex- photons in the lattice of a germanium crystal when the
perimental upper bound [1]. Peccei and Quinn [2] intro-incident angle satisfies the Bragg condition. The detection
duced a new field causing strom@P violation to vanish rates in various energy windows are correlated with the
dynamically. Subsequently, Weinberg [3,4] and Wilczekrelative orientations of the detector and the sun [9]. This
[5] demonstrated that the Peccei-Quinn mechanism genecorrelation results in a distinctive, unique signature of the
ates a Nambu-Goldstone boson, the axion, that couples toexion. In this Letter, the results of a search using a 1 kg,
two-photon vertex via a coupling,,,. Axion production ultralow background germanium detector installed in the
via the Primakoff effect occurs when a photon couples tAHIPARSA iron mine in Sierra Grande, Argentina, at°’41
a charge via a virtual photon, producing an axion. Detec41’ 24" S and 65 22’ W are presented. A description of
tion can occur by observing photons resulting from axionghe experimental setup and detector spectrum was given
coupling to electrical charges via virtual photons. earlier by Di Gregorioet al.[10] and by Abriolaet al.

The dense volume of photons and charges in the sun ¢t1]. This experiment was motivated by papers by Buch-
any star produces conditions for axion production. Themiller and Hoogeveen [12] and by Paschos and Zioutas
Ge detector then can act as the axion-photon converter anitl3]; the present technique was suggested by Zioutas and
detector. When the characteristic wavelength of the axionleveloped by Creswickt al. [9]. The original technique
satisfies a Bragg condition in the single crystal Ge detectoifpor searching for solar axions with magnetic helioscopes
photon production would occur with an expected temporalvas presented by Sikivie [14].
pattern depending on the changing relative directions be- Single Ge crystals are grown with an axis of symmetry
tween the vectors from the solar core and the crystallin@along the (100) axis, but this detector was constructed
planes. originally for another purpose, so the (010) and (001)

Extensive reviews of axion phenomenology and theiraxes relative to the cryostat were not determined before
effects on stellar evolution have been given by Raffeltassembly, as they should be in future experiments.

[6,7] who gives a bound of0~ ' GeV~! on the coupling Therefore, to place a bound on the axion interaction
of axions to the two-photon vertex from the populationrate, the data were analyzed for many azimuthal orienta-
of red giant stars. A detailed treatment of solar axiondions of the crystal, and the weakest bound was selected.
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The terrestrial energy spectrum and flux of axions fromwidth AE, typically 0.5 keV,
the sun can be approximated by the expression [8,9]:

A Vv ,do 1 dd 1
3 R(k,E) = 2lic — —— =
D _ g, S 1) )= 2her, %lS(G)I dQ |G]? dE 2
dE Eo(eE/Eo — 1) .o
« [er £~ Ealk.G)
where A = (g4, X 10%)* and is dimensionlesst, = er Vo

1.103 keV, and®, = 5.95 X 10'* cm 2sec!. The to- e

tal flux for A = 1 integrated from 0 to 12 keV i3.54 X — erf(E E(k.G) AE)} (5)
10" cm~2sec’!'. The spectrum is a continuum peaking at V2o

about 4 keV decreasing to a negligible contribution above R Y 2

8 keV. The differential cross section for Primakoff con- WhereE.(k, G) = hc|G|*/2k - G and erfx) = 2/ X

version on an atom with nuclear charge is [9] Je " dt is the eror function. In Eq.(5) we have
neglected the angular size of the core of the sun and the
do Z2ah*c*gl ., 1 ¢*(4k? — ¢?) mass of the axion which is justified whem,c? is small
a0 [ 167 } (@ + g2 2) compared to the core temperature of the sun [12], i.e., up

to a few keV. In Eq. (5),0 is the width of the error
whereg is the momentum transfet, is the momentum of  function. _ _ _ _

the incoming axion, and, is the screening length of the ~ The theoretical axion detection rate for this detector,
atom in the lattice. For germaniumx, = Z2ah’c’g2, / calculated with Eq. (5), is shown in Fig. 1. The position
87 = 1.15 X 107* cn? wheng,,, = 1078 GeV~!, or of the sun is computed at any instant in time using the
equivalentlyA = 1. U.S. Naval Observatory Subroutines (NOVAS) [16]. The

For light axions, the Primakoff process in a periodic Pronounced variation i (k, E) as a function of time in-

lattice is coherent when the Bragg conditiah/ 6ing — vites the data to be analyzed with the correlation function:
n) is satisfied, or wherg transferred to the crystal is a .
reciprocal lattice vectoG = 2w (h,k,1)/ag. Hereay is X = Z[R(ti,E) — (R(E)n(t;), (6)

i=1

the size of the conventional cubic cell, aldk, and!/ are
integers [15]. _ _
It was shown that the rate of conversion of axions withwhereR(#;, E) is the smooth shape of the theoretical rate

energyE when the sun is in the direction N(k, E), can  at the instant of timez;, (R(E)) is the average rate over a
be written [9] finite time interval, andu(z;) is the number of events at
t; in a time intervalA¢, usually O or 1. The choice for
-1 dod the weighting functionW (s, E) = R[k(¢), E] — (R(E))
(©) @ dE o is motivated by the requirement that any constant back-
. ground average to zero iy, whereas a counting rate
y <E B hc|G|2> 3) which follows R[k(z), E] increasesy.
-G/ The number of counts at timein the interval Az is
assumed to be due in part to axions and in part to back-
whereV is the volume of the crystaly. is the volume ground governed by a Poisson process with mean,
of a unit cell, S(G) is the structure function for germa-
nium, andd®/dE is evaluated at the axion energy of (n(t)y = [AR(t,E) + b(E)]At, (7)

hclf}lz/ZIQ - G. The structure function for germanium is

do

Th Y — v 2 do
N(k,E) = 2Jic )2 §|S(G)| )

i whereb(E) is constant in time.

S(G) = [1 + €m0z The average value of is then
X [1 + eiﬂ'(h+k) + eiﬂ'(h+l) + €i7r(k+l)]' (4)

Note that in (3) the coherent conversion of axions occurs b0 = Z Wt E)[AR(;, E) + b(E)]At. 8)

only for a particular axion energy given the position of

the sunk and reciprocal lattice vectas. However, the We can add and subtract the constant quanf§(E))

detector has a finite energy resolution; for the detector ino the second factor in Eq. (8). Any time independent

Sierra Grande itis 1 keV FWHM at 10 keV. We take this contributions multiplied by¥ (z, E) in Eq. (8) and summed

into account by smoothingy (k, E) with a Gaussian of the over time will vanish. Accordingly, taking the limit as

appropriate width. Finally, we take the relevant part of theAr — 0, we obtain

energy spectrum, in this case from the threshold energy of r

4 up to 8 keV (which is just below the x rays at 10 keV), (V) = /\[ W2(t,E) dt . (9)

and calculate the total rate of conversion in windows of 0
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FIG. 1. A typical axion-photon conversion ratB(¢,E) for various energy bands. The experimental energy resolution
FWHM = 1.0 keV at 10 keV was used. The time scale is from 0.0 to 1.0 days for each graph. Rilef®) was calculated
for .y, = 1078 GeVv!.

The expected uncertainty iy, (Ay)> = (x?) — (x)?,
can be shown to be

case). The likelihood function is then constructed:

—(e — ()?
Uex 2(Axi)? }

To an excellent approximatiofA y;)? is dominated by
the background.

As a test, typical results for the likelihood function
for the casesA = 0 (no axions) andA = 0.003 were
calculated for the DEMOS detector for one year. The

L) = (14)

(Ax)* = ZWZ(L,E) [n()*) = (())*],  (10)

where the square bracket §an(z;))?, which in Poisson
statistics ign(t;)). Accordingly,

(Ax)* = ZWZ(II,E) (n(t)). (11)  correlation function analysis is sensitive to the presence
By (7) we have voosl
0.003
(Ax)* = Z W2(t;, E){ALR (1, E) — (R(E))]
0.001 [ ]’
+ MR(E)) + b(E)}Ar, (12) -0.000 | 1
< -0.001 [ ‘
which in the limitAz — 0 becomes o002} - L=
T T -0.003 | s
(Ay)?* = Af W3(t,E)dt + RT(E)] W2(t,E) drt . -0.004 |
0 0 -0.005
(13) 0008 |
The quantityR7(z, E) is the average total counting rate, © 10 20 30 40 S 60 70 80 90
including both axion conversions and background. ¢

The data are separately analyzed in energy b5,

FIG. 2. Values ofA calculated from the 707 days of data as a
fixed by the detector resolution (FWHM 1 keV in this

function of the azimuthal anglé. The error bars aréo.
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