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Abstract

Using a sample of e+e� annihilation events collected with the L3 detector at
the Z resonance corresponding to an integrated luminosity of 137 pb�1, we have
searched for anomalous production of 
X �nal states where X represents stable,
weakly interacting particles and the photon energy is greater than 15 GeV. The
sample of events found is consistent with Standard Model expectations. Upper
limits are set on Z
 couplings, the � neutrino magnetic moment, and the branching
ratio for Z! 
X.
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Introduction

Production of single{photon events in e+e� annihilation at the Z resonance is sensitive to
new physics. Processes contributing to the invisible width �inv of the Z may be detected by
counting single{photon events which arise from Z decay into stable, weakly interacting particles
accompanied by a photon from initial{state radiation [1{3]. Near the Z resonance, photon
energies associated with initial{state radiation are predominantly less than a few GeV. Single{
photon events, in which the photon couples directly to the Z or is produced by a radiative
transition in the �nal state, are also expected from substructure in the gauge boson [4{7] or
lepton sectors [9], supersymmetry [10,11], and other new physics scenarios [12,13]. In contrast
to Z decay into invisible particles accompanied by a photon from initial{state radiation, the
energy carried by these photons is typically a signi�cant fraction of the beam energy. Moreover,
the distribution of these photons in polar angle is not as forward{backward{peaked as that of
photons from initial{state radiation.

We have carried out a search for new physics manifest as a direct coupling between the
photon and the Z or a radiative transition in the �nal state by studying energetic single photon
events (E
 > 15 GeV) in the data collected with the L3 detector [14] at LEP corresponding to
an integrated luminosity of 137 pb�1. The number of hadronic Z decays to which this sample
corresponds is 3.3�106. The energetic single{photon candidates are described in terms of their
distributions in energy and polar angle and compared with expectations from Standard Model
processes. We �nd the data and the Standard Model to be in good agreement. These results
are then used to set limits on Z
 couplings and the � neutrino magnetic moment [15] and on
the branching ratio for Z! 
X where X refers to stable, weakly interacting particles.

Event Selection

The L3 detector triggered on energetic single{photon events using the logical OR combination
of the BGO electromagnetic energy triggers, described in detail in [16].

The experimental signature is an energetic, electromagnetic shower and an otherwise \empty"
detector as de�ned below. In addition to possible new physics processes, events with this sig-
nature can occur due to (a) neutrino pair production accompanied by initial{state radiation,
(b) QED events, e.g. e+e� ! e+e�
(
) , in which all �nal{state particles but the photon are
outside the active volume of the detector, and (c) out{of{time cosmics. The number of events
from process (a) can be reduced by taking advantage of the fact that initial{state radiation
tends to be emitted along the beam direction and/or has energy which is typically of the order
of �Z . Events from process (b) can be eliminated by requiring the photon energy and produc-
tion angle to be large enough so that by momentum conservation at least one other �nal{state
particle is well within the active detector volume. Applying cuts on the shape of the shower is
e�ective for reducing the contribution from cosmics. In order to suppress contributions from
processes (a){(c) while retaining good acceptance, the following requirements were applied to
the most energetic cluster found in the electromagnetic calorimeter:

� Its energy must be greater than 15 GeV and its polar angle must lie in the range
20� < � < 34.5�, 44.5� < � < 135.5�, or 145.5� < � < 160�.

� The transverse shape of the cluster must be consistent with a photon originating from
the interaction point.
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Apart from the energetic electromagnetic cluster selected by the above cuts, the detector was
required to be \empty" as de�ned by the following criteria. There are no additional clusters
present in the electromagnetic calorimeter with the deposit in the most energetic crystal ex-
ceeding approximately 100 MeV. The energy detected in the other calorimeters is attributable
to noise or shower leakage from the electromagnetic calorimeter. There are no tracks in the
central tracking chamber or the muon chamber. Any scintillator hit either lies directly behind
the most energetic electromagnetic cluster and is in time with the beam crossing or is consistent
with random noise. The \empty" detector cuts rejected beam{gas interactions, hadronic and
charged leptonic decays of the Z, and QED events with two or more �nal{state particles within
the acceptance. Cosmics were further suppressed by the cuts involving the scintillator counters
and muon chambers.

We evaluated the selection e�ciency using detector{simulated e+e� ! ���
(
) events, ran-
dom trigger events, and large{angle e+e� ! e+e� events. The trigger e�ciency was measured
by simulation following a procedure similar to the one used to measure our trigger e�ciency
for low{energy single{photon events [2]. The average trigger and selection e�ciency combined
was found to be 82% for simulated ���
(
) events passing the �ducial cuts on energy and angle
listed above for the most energetic deposit in the electromagnetic calorimeter. The e�ciency is
independent of photon energy for the range of interest and is constant to within �5% in polar
angle.

A total of 14 events were found by our selection. The distributions of the photon energy
and the cosine of its polar angle are shown in Figure 1. Also shown are the Standard Model
expectations from production of neutrino pairs accompanied by initial{state radiation, radiative
Bhabha events, and e+e� ! 

(
). The contribution from cosmics is negligible. The e+e� !
���
(
) events were generated with the NNGSTR program [17], the TEEG program [18] was
used to generate e+e� ! e+e�
 events, and e+e� ! 

(
) events were generated using a
modi�ed version of the program based on [19]. The response of the L3 detector to the generated
events was modelled using the GEANT library [20]. The simulated data were subjected to the
same reconstruction and event selection as the real data.

The observed distributions are consistent with Standard Model predictions. The total num-
ber of events expected from the Standard Model is 14.1. If one instead requires that the photon
energy be greater than half the beam energy, 2 events are selected from the data and 2.4 events
are expected from the Standard Model in the ���
 channel.

Limits on new physics

We present limits on ZZ
 couplings, the � neutrino magnetic moment, and the branching ratio
for Z! 
X. The upper limit on BR(Z! 
X) may be recast as a limit on any process mediated
by on{shell Z exchange and resulting in an energetic single photon �nal state.

The total uncertainty arising from �nite Monte Carlo statistics, the method used to measure
the trigger e�ciency, and other sources was estimated to be 6%; it was taken into account in
the limit calculations. In the case of one free parameter, the number of events expected from
new physics was determined as a function of the parameter, and then the upper limit on the
parameter was calculated from the limit on the number of excess events statistically allowed by
the data. Poisson statistics were assumed for the observed number of events and the expected
Standard Model background. For calculating the limits in the case of two free parameters, a
maximum likelihood �t to the number of observed events was carried out. The two{dimensional
limit contours at the 95% C.L. correspond to a log likelihood 3 units below the maximum. The
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e�ect of initial state radiation on cross sections was taken into account. Unless otherwise stated,
interference between Standard Model and new physics amplitudes was neglected.

ZZ
 Couplings

Self{couplings of the electroweak gauge bosons are a prominent feature of the Standard Model,
and several extensions have been proposed [4, 7, 8] which imply couplings also between the
neutral gauge bosons. Taking the ZZ
 coupling in particular, the most general vertex function
invariant under Lorentz and electromagnetic gauge transformations can be described in terms
of four independent dimensionless form factors, denoted by hZ

i
, i = 1; 2; 3; 4. The contributions

involving h
Z
1 and h

Z
2 are CP{violating while those involving the other pair of form factors are

CP{conserving. All four form factors are zero at the tree level in the Standard Model. At the
one{loop level, hZ1 and h

Z
2 are zero while the CP{conserving form factors are nonzero but too

small to be seen. Thus observation of ZZ
 couplings would be a clear signal of physics beyond
the Standard Model.

The single{photon topology from ZZ
 couplings is obtained in the case that the photon is
real and the �nal{state Z decays into neutrinos. ZZ
 couplings would be manifest in the photon
energy spectrum as an enhancement which becomes visible at E
 � 15 GeV and increases
monotonically with energy until near the kinematic limit. This is illustrated by the dotted
histogram in Figure 2 where we have taken just one of the form factors describing the ZZ


vertex to be nonzero. We have followed [6] in adopting the parameterization h
Z
i
= h

Z
i0=(1 +

s=�2
Z)

ni with n1 = n3 = 3 and n2 = n4 = 4; �Z = 500 GeV was used for the calculation shown
in Figure 2.

In order to calculate the number of events expected in the presence of ZZ
 couplings, we
convoluted generator{level event samples [21] with our �ducial cuts, selection e�ciencies, trigger
e�ciencies, and integrated luminosities in order to derive the expected number of observed
events as a function of anomalous couplings parameters. The interference between the Standard
Model amplitudes and anomalous coupling amplitudes was taken into account. To obtain more
stringent limits, we further required E
 >

1

2
Ebeam.

Figure 3 shows the 95% C.L. upper limit contours on the pair of CP{conserving form
factors for �Z = 500 GeV assuming the CP{violating form factors to be zero; the corresponding
limits on the pair of respective CP{violating form factors are practically the same. Our limits
are not very sensitive to the choice of �Z for �Z � mZ. It should be noted that though
there is strong interference between the two CP{conserving anomalous couplings and between
the two CP{violating couplings, the interference between CP{violating and CP{conserving
couplings is negligible. We also show the limits obtained by D0 [22] and the region of parameter
space allowed by unitarity. The di�erence in orientation between our limit and the Tevatron
contours [22, 23] results from the fact that the dimension{8 couplings (hZ2 , h

Z
4 ) have a stronger

energy dependence than the dimension{6 couplings (hZ1 , h
Z
3 ) and the Tevatron e�ective center{

of{mass energy is higher than that of LEP.

�� Magnetic Moment

Whether or not the � neutrino has a magnetic moment �� is relevant to determining its basic
nature and its magnitude can be used to appraise the possibility that a massive � neutrino is
an important component of dark matter [12].

At the Z resonance, the dominant mechanism for the production of single{photon events via
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the magnetic moment interaction of the � neutrino is radiation of a photon from the �nal{state
neutrino or anti{neutrino. The dashed histogram in Figure 2 shows how the expected photon
energy spectrum would be modi�ed by a tau neutrino magnetic moment of 5� 10�6 �B. Since
the photon is on{shell, the production rate depends on the magnetic moment form factor at
q
2=0. The magnetic moment of only the �� is considered here because existing limits on the
magnetic moments of �e and �� preclude the possibility of observing them at LEP.

The procedure followed to set limits on the magnetic moment is similar to that followed for
ZZ
 couplings. Assuming lepton universality in Z decay to neutrinos, the limit on the magnetic
moment of the � neutrino is

�� < 3:3� 10�6�B 90% C:L:

This bound applies to both direct and transition magnetic moments.
Other upper limits on the tau neutrino magnetic moment are 4�10�6�B (90% C.L.) at

q
2
� (30GeV)2 from PEP and PETRA experiments [24]; 2.7�10�6�B (95% C.L.) at q2 = m

2
Z

from measurements of the Z invisible width at LEP [25]; and 5:4�10�7�B (90% C.L.) at q2 = 0
from a beam{dump experiment obtained with assumptions on the Ds production cross section
and its branching ratio into ��� [26] .

Upper Limits on the Branching Ratio for Z! 
X

Limits on processes giving rise to single{photon events may be characterized in terms of limits
on Z branching ratios in the case that the process is mediated by an on{shell Z. Examples of
such processes are the two already described, Z decay into the neutralinos ~��1 and ~��2 followed
by the decay of ~��2 into ~��1 and a photon, and Z decay to an axion and a photon.

We have obtained upper limits on Z decay into energetic single{photon states assuming that
the angular distribution of the photons is isotropic. In order to make it possible to read from
a single plot limits on both the cases (i) the photons are broadly distributed in energy and (ii)
the photon energy distribution emphasizes the upper end of the kinematically allowed range,
we have calculated the upper limit as a function of the minimum photon energy Emin.

Figure 4 shows the upper limit at the 95% C.L. on Z! 
X where the energy of the photon
is greater than Emin. The branching ratio limit ranges to a few parts per million for lower
values of Emin to one part in a million above �30 GeV. The limits are not a smooth function of
Emin because of small event statistics and that the limit has been calculated in steps of 2 GeV
for Emin.

Acknowledgements

We wish to express our gratitude to the CERN accelerator divisions for the excellent perfor-
mance of the LEP machine. We acknowledge with appreciation the e�ort of all engineers,
technicians and support sta� who have participated in the construction and maintenance of
this experiment.

References

[1] A.D. Dolgov, L.B. Okun and V.I. Zakharov, Nucl. Phys. B41 (1972) 197;
E. Ma and J. Okada, Phys. Rev. Lett. 41 (1978) 287;

5



K.J. Gaemers, R. Gastmans and F.M. Renard, Phys. Rev. D19 (1979) 1605;
G. Barbiellini, B. Richter and J. Siegrist, Phys. Lett. B 106 (1981) 414.

[2] L3 Collaboration, B. Adeva et al., Phys. Lett. B 275 (1991) 209;
L3 Collaboration, O. Adriani et al., Phys. Lett. B 292 (1992) 463.

[3] ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B 313 (1993) 520;
OPAL Collaboration, R. Akers et al., Z. Phys. C 65 (1995) 47.

[4] F.M. Renard, Nucl. Phys. B196 (1982) 93;
A. Barroso, F. Boudjema, J. Cole, and N. Dombey, Z. Phys. C28 (1985) 149.

[5] D.W. Dusedeau and J. Wudka, Phys. Lett. B 180 (1986) 290.

[6] U. Baur and E.L. Berger, Phys. Rev. D47 (1993) 4889.

[7] D. Choudhury and S.D. Rindani, Phys. Lett. B 335 (1994) 198.

[8] D. Chang, W.{Y. Keung, and P. Pal, Phys. Rev. D51 (1995) 1326.

[9] F. Boudjema et al., Phys. Lett. B 240 (1990) 485.

[10] R. Barbieri et al., CERN Yellow Report 89-08, Vol. 2, (1989) 121.

[11] D.A. Dicus, S. Nandi, and J. Woodside, Phys. Lett. B 258 (1991) 231;
J. Lopez, D. Nanopoulos, and A. Zichichi, Phys. Rev. Lett. 77 (1996) 5168.

[12] T.M. Gould and I.Z. Rothstein, Phys. Lett. B 333 (1994) 545.

[13] J.E. Kim and U.W. Lee, Phys. Lett. B233 (1989) 496.

[14] L3 Collab., B. Adeva et al :, Nucl. Inst. Meth. A289 (1990) 35;
L3 Collab., M. Chemarin et al :, Nucl. Inst. Meth. A349 (1994) 345;
L3 Collab., M. Acciarri et al :, Nucl. Inst. Meth. A351 (1994) 300
L3 Collab., A. Adam et al :, Nucl.Inst. Meth. A383 (1996) 342.

[15] L3 Collab., M. Acciarri et al., Phys. Lett. B 346 (1995) 190;
L3 Collab., O. Adriani et al., Phys. Lett. B 297 (1992) 469.
The limits on Z
 couplings and the � neutrino magnetic moment reported in these refer-
ences are superseded by those presented in this paper.

[16] R. Bizzarri et al., Nucl. Inst. Meth. A317 (1992) 463.

[17] R.Miquel, C. Mana and M. Martinez, Z. Phys. C48 (1990) 309;
F.A. Berends et al., Nucl. Phys. B301 (1988) 583.

[18] D. Karlen, Nucl. Phys. B289 (1987) 23.

[19] F.A. Behrends and R. Kleiss, Nucl. Phys. B186 (1981) 22.

[20] R. Brun et al., \GEANT 3", CERN DD/EE/84-1 (Revised), September 1987.
The GHEISHA program (H. Fesefeldt, RWTH Aachen Report PITHA 85/02 (1985)) is
used to simulate hadronic interactions.

6



[21] The program for generating ���
 �nal states in the presence of anomalous Z
 couplings
was provided by Ulrich Baur.

[22] D0 Collaboration, S. Abachi et al., Phys. Rev. Lett. 78 (1997) 3640.

[23] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 74 (1995) 1941.

[24] H. Grotch and R. Robinett, Z. Phys. C 39 (1988) 553.

[25] R. Escribano and E. Masso, Phys. Lett. B 395 (1997) 369.

[26] A.M. Cooper{Sarkar et al., Phys. Lett. B 280 (1992) 153.

7



The L3 Collaboration:

M.Acciarri,28 O.Adriani,17 M.Aguilar-Benitez,27 S.Ahlen,11 J.Alcaraz,27 G.Alemanni,23 J.Allaby,18 A.Aloisio,30

G.Alverson,12 M.G.Alviggi,30 G.Ambrosi,20 H.Anderhub,50 V.P.Andreev,39 T.Angelescu,13 F.Anselmo,9 A.Are�ev,29

T.Azemoon,3 T.Aziz,10 P.Bagnaia,38 L.Baksay,45 R.C.Ball,3 S.Banerjee,10 Sw.Banerjee,10 K.Banicz,47 A.Barczyk,50;48

R.Barill�ere,18 L.Barone,38 P.Bartalini,35 A.Baschirotto,28 M.Basile,9 R.Battiston,35 A.Bay,23 F.Becattini,17 U.Becker,16

F.Behner,50 J.Berdugo,27 P.Berges,16 B.Bertucci,35 B.L.Betev,50 S.Bhattacharya,10 M.Biasini,18 A.Biland,50

G.M.Bilei35 J.J.Blaising,4 S.C.Blyth,36 G.J.Bobbink,2 R.Bock,1 A.B�ohm,1 L.Boldizsar,14 B.Borgia,38 D.Bourilkov,50

M.Bourquin,20 D.Boutigny,4 S.Braccini,20 J.G.Branson,41 V.Brigljevic,50 I.C.Brock,36 A.Bu�ni,17 A.Buijs,46

J.D.Burger,16 W.J.Burger,20 J.Busenitz,45 X.D.Cai,16 M.Campanelli,50 M.Capell,16 G.Cara Romeo,9 G.Carlino,30

A.M.Cartacci,17 J.Casaus,27 G.Castellini,17 F.Cavallari,38 N.Cavallo,30 C.Cecchi,20 M.Cerrada,27 F.Cesaroni,24

M.Chamizo,27 Y.H.Chang,52 U.K.Chaturvedi,19 S.V.Chekanov,32 M.Chemarin,26 A.Chen,52 G.Chen,7 G.M.Chen,7

H.F.Chen,21 H.S.Chen,7 M.Chen,16 G.Chiefari,30 C.Y.Chien,5 L.Cifarelli,40 F.Cindolo,9 C.Civinini,17 I.Clare,16

R.Clare,16 H.O.Cohn,33 G.Coignet,4 A.P.Colijn,2 N.Colino,27 V.Commichau,1 S.Costantini,8 F.Cotorobai,13

B.de la Cruz,27 A.Csilling,14 T.S.Dai,16 R.D'Alessandro,17 R.de Asmundis,30 A.Degr�e,4 K.Deiters,48 P.Denes,37

F.DeNotaristefani,38 D.DiBitonto,45 M.Diemoz,38 D.van Dierendonck,2 F.Di Lodovico,50 C.Dionisi,38 M.Dittmar,50

A.Dominguez,41 A.Doria,30 M.T.Dova,19;] E.Drago,30 D.Duchesneau,4 P.Duinker,2 I.Duran,42 S.Dutta,10 S.Easo,35

Yu.Efremenko,33 H.El Mamouni,26 A.Engler,36 F.J.Eppling,16 F.C.Ern�e,2 J.P.Ernenwein,26 P.Extermann,20 M.Fabre,48

R.Faccini,38 S.Falciano,38 A.Favara,17 J.Fay,26 O.Fedin,39 M.Felcini,50 B.Fenyi,45 T.Ferguson,36 F.Ferroni,38

H.Fesefeldt,1 E.Fiandrini,35 J.H.Field,20 F.Filthaut,36 P.H.Fisher,16 I.Fisk,41 G.Forconi,16 L.Fredj,20 K.Freudenreich,50

C.Furetta,28 Yu.Galaktionov,29;16 S.N.Ganguli,10 P.Garcia-Abia,49 S.S.Gau,12 S.Gentile,38 J.Gerald,5

N.Gheordanescu,13 S.Giagu,38 S.Goldfarb,23 J.Goldstein,11 Z.F.Gong,21 A.Gougas,5 G.Gratta,34 M.W.Gruenewald,8

V.K.Gupta,37 A.Gurtu,10 L.J.Gutay,47 B.Hartmann,1 A.Hasan,31 D.Hatzifotiadou,9 T.Hebbeker,8 A.Herv�e,18

W.C.van Hoek,32 H.Hofer,50 S.J.Hong,44 H.Hoorani,36 S.R.Hou,52 G.Hu,5 V.Innocente,18 K.Jenkes,1 B.N.Jin,7

L.W.Jones,3 P.de Jong,18 I.Josa-Mutuberria,27 A.Kasser,23 R.A.Khan,19 D.Kamrad,49 Yu.Kamyshkov,33

J.S.Kapustinsky,25 Y.Karyotakis,4 M.Kaur,19;} M.N.Kienzle-Focacci,20 D.Kim,38 D.H.Kim,44 J.K.Kim,44 S.C.Kim,44

Y.G.Kim,44 W.W.Kinnison,25 A.Kirkby,34 D.Kirkby,34 J.Kirkby,18 D.Kiss,14 W.Kittel,32 A.Klimentov,16;29

A.C.K�onig,32 A.Kopp,49 I.Korolko,29 V.Koutsenko,16;29 R.W.Kraemer,36 W.Krenz,1 A.Kunin,16;29

P.Ladron de Guevara,27 G.Landi,17 C.Lapoint,16 K.Lassila-Perini,50 P.Laurikainen,22 M.Lebeau,18 A.Lebedev,16

P.Lebrun,26 P.Lecomte,50 P.Lecoq,18 P.Le Coultre,50 H.J.Lee,8 C.Leggett,3 J.M.Le Go�,18 R.Leiste,49 E.Leonardi,38

P.Levtchenko,39 C.Li,21 C.H.Lin,52 W.T.Lin,52 F.L.Linde,2;18 L.Lista,30 Z.A.Liu,7 W.Lohmann,49 E.Longo,38 W.Lu,34

Y.S.Lu,7 K.L�ubelsmeyer,1 C.Luci,38 D.Luckey,16 L.Luminari,38 W.Lustermann,48 W.G.Ma,21 M.Maity,10

G.Majumder,10 L.Malgeri,38 A.Malinin,29 C.Ma~na,27 D.Mangeol,32 S.Mangla,10 P.Marchesini,50 A.Marin,11

J.P.Martin,26 F.Marzano,38 G.G.G.Massaro,2 D.McNally,18 S.Mele,30 L.Merola,30 M.Meschini,17 W.J.Metzger,32

M.von der Mey,1 Y.Mi,23 A.Mihul,13 A.J.W.van Mil,32 G.Mirabelli,38 J.Mnich,18 P.Molnar,8 B.Monteleoni,17

R.Moore,3 S.Morganti,38 T.Moulik,10 R.Mount,34 S.M�uller,1 F.Muheim,20 A.J.M.Muijs,2 S.Nahn,16 M.Napolitano,30

F.Nessi-Tedaldi,50 H.Newman,34 T.Niessen,1 A.Nippe,1 A.Nisati,38 H.Nowak,49 Y.D.Oh,44 H.Opitz,1 G.Organtini,38

R.Ostonen,22 C.Palomares,27 D.Pandoulas,1 S.Paoletti,38 P.Paolucci,30 H.K.Park,36 I.H.Park,44 G.Pascale,38

G.Passaleva,18 S.Patricelli,30 T.Paul,12 M.Pauluzzi,35 C.Paus,18 F.Pauss,50 D.Peach,18 Y.J.Pei,1 S.Pensotti,28

D.Perret-Gallix,4 B.Petersen,32 S.Petrak,8 A.Pevsner,5 D.Piccolo,30 M.Pieri,17 P.A.Pirou�e,37 E.Pistolesi,28

V.Plyaskin,29 M.Pohl,50 V.Pojidaev,29;17 H.Postema,16 N.Produit,20 D.Proko�ev,39 G.Rahal-Callot,50 N.Raja,10

P.G.Rancoita,28 M.Rattaggi,28 G.Raven,41 P.Razis,31K.Read,33 D.Ren,50 M.Rescigno,38 S.Reucroft,12 T.van Rhee,46

S.Riemann,49 K.Riles,3 O.Rind,3 A.Robohm,50 J.Rodin,16 B.P.Roe,3 L.Romero,27 S.Rosier-Lees,4 Ph.Rosselet,23

W.van Rossum,46 S.Roth,1 J.A.Rubio,18 D.Ruschmeier,8 H.Rykaczewski,50 J.Salicio,18 E.Sanchez,27 M.P.Sanders,32

M.E.Sarakinos,22 S.Sarkar,10 M.Sassowsky,1 G.Sauvage,4 C.Sch�afer,1 V.Schegelsky,39 S.Schmidt-Kaerst,1 D.Schmitz,1

P.Schmitz,1 M.Schneegans,4 N.Scholz,50 H.Schopper,51 D.J.Schotanus,32 J.Schwenke,1 G.Schwering,1 C.Sciacca,30

D.Sciarrino,20 L.Servoli,35 S.Shevchenko,34 N.Shivarov,43 V.Shoutko,29 J.Shukla,25 E.Shumilov,29 A.Shvorob,34

T.Siedenburg,1 D.Son,44 A.Sopczak,49 V.Soulimov,30 B.Smith,16 P.Spillantini,17 M.Steuer,16 D.P.Stickland,37

H.Stone,37 B.Stoyanov,43 A.Straessner,1 K.Strauch,15 K.Sudhakar,10 G.Sultanov,19 L.Z.Sun,21 G.F.Susinno,20

H.Suter,50 J.D.Swain,19 X.W.Tang,7 L.Tauscher,6 L.Taylor,12 Samuel C.C.Ting,16 S.M.Ting,16 M.Tonutti,1

S.C.Tonwar,10 J.T�oth,14 C.Tully,37 H.Tuchscherer,45 K.L.Tung,7Y.Uchida,16 J.Ulbricht,50 U.Uwer,18 E.Valente,38

R.T.Van de Walle,32 G.Vesztergombi,14 I.Vetlitsky,29 G.Viertel,50 M.Vivargent,4 R.V�olkert,49 H.Vogel,36 H.Vogt,49

I.Vorobiev,18;29 A.A.Vorobyov,39 A.Vorvolakos,31 M.Wadhwa,6 W.Wallra�,1 J.C.Wang,16 X.L.Wang,21 Z.M.Wang,21

A.Weber,1 F.Wittgenstein,18 S.X.Wu,19 S.Wynho�,1J.Xu,11 Z.Z.Xu,21 B.Z.Yang,21 C.G.Yang,7 X.Y.Yao,7 J.B.Ye,21

S.C.Yeh,52 J.M.You,36 An.Zalite,39 Yu.Zalite,39 P.Zemp,50 Y.Zeng,1 Z.Zhang,7 Z.P.Zhang,21 B.Zhou,11 Y.Zhou,3

G.Y.Zhu,7 R.Y.Zhu,34 A.Zichichi,9;18;19 F.Ziegler.49

8



1 I. Physikalisches Institut, RWTH, D-52056 Aachen, FRGx

III. Physikalisches Institut, RWTH, D-52056 Aachen, FRGx

2 National Institute for High Energy Physics, NIKHEF, and University of Amsterdam, NL-1009 DB Amsterdam,

The Netherlands

3 University of Michigan, Ann Arbor, MI 48109, USA

4 Laboratoire d'Annecy-le-Vieux de Physique des Particules, LAPP,IN2P3-CNRS, BP 110, F-74941

Annecy-le-Vieux CEDEX, France

5 Johns Hopkins University, Baltimore, MD 21218, USA

6 Institute of Physics, University of Basel, CH-4056 Basel, Switzerland

7 Institute of High Energy Physics, IHEP, 100039 Beijing, China4

8 Humboldt University, D-10099 Berlin, FRGx

9 University of Bologna and INFN-Sezione di Bologna, I-40126 Bologna, Italy

10 Tata Institute of Fundamental Research, Bombay 400 005, India

11 Boston University, Boston, MA 02215, USA

12 Northeastern University, Boston, MA 02115, USA

13 Institute of Atomic Physics and University of Bucharest, R-76900 Bucharest, Romania

14 Central Research Institute for Physics of the Hungarian Academy of Sciences, H-1525 Budapest 114, Hungaryz

15 Harvard University, Cambridge, MA 02139, USA

16 Massachusetts Institute of Technology, Cambridge, MA 02139, USA

17 INFN Sezione di Firenze and University of Florence, I-50125 Florence, Italy

18 European Laboratory for Particle Physics, CERN, CH-1211 Geneva 23, Switzerland

19 World Laboratory, FBLJA Project, CH-1211 Geneva 23, Switzerland

20 University of Geneva, CH-1211 Geneva 4, Switzerland

21 Chinese University of Science and Technology, USTC, Hefei, Anhui 230 029, China4

22 SEFT, Research Institute for High Energy Physics, P.O. Box 9, SF-00014 Helsinki, Finland

23 University of Lausanne, CH-1015 Lausanne, Switzerland

24 INFN-Sezione di Lecce and Universit�a Degli Studi di Lecce, I-73100 Lecce, Italy

25 Los Alamos National Laboratory, Los Alamos, NM 87544, USA

26 Institut de Physique Nucl�eaire de Lyon, IN2P3-CNRS,Universit�e Claude Bernard, F-69622 Villeurbanne, France

27 Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, E-28040 Madrid, Spain[
28 INFN-Sezione di Milano, I-20133 Milan, Italy

29 Institute of Theoretical and Experimental Physics, ITEP, Moscow, Russia

30 INFN-Sezione di Napoli and University of Naples, I-80125 Naples, Italy

31 Department of Natural Sciences, University of Cyprus, Nicosia, Cyprus

32 University of Nijmegen and NIKHEF, NL-6525 ED Nijmegen, The Netherlands

33 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

34 California Institute of Technology, Pasadena, CA 91125, USA

35 INFN-Sezione di Perugia and Universit�a Degli Studi di Perugia, I-06100 Perugia, Italy

36 Carnegie Mellon University, Pittsburgh, PA 15213, USA

37 Princeton University, Princeton, NJ 08544, USA

38 INFN-Sezione di Roma and University of Rome, \La Sapienza", I-00185 Rome, Italy

39 Nuclear Physics Institute, St. Petersburg, Russia

40 University and INFN, Salerno, I-84100 Salerno, Italy

41 University of California, San Diego, CA 92093, USA

42 Dept. de Fisica de Particulas Elementales, Univ. de Santiago, E-15706 Santiago de Compostela, Spain

43 Bulgarian Academy of Sciences, Central Lab. of Mechatronics and Instrumentation, BU-1113 So�a, Bulgaria

44 Center for High Energy Physics, Korea Adv. Inst. of Sciences and Technology, 305-701 Taejon, Republic of

Korea

45 University of Alabama, Tuscaloosa, AL 35486, USA

46 Utrecht University and NIKHEF, NL-3584 CB Utrecht, The Netherlands

47 Purdue University, West Lafayette, IN 47907, USA

48 Paul Scherrer Institut, PSI, CH-5232 Villigen, Switzerland

49 DESY-Institut f�ur Hochenergiephysik, D-15738 Zeuthen, FRG

50 Eidgen�ossische Technische Hochschule, ETH Z�urich, CH-8093 Z�urich, Switzerland

51 University of Hamburg, D-22761 Hamburg, FRG

52 High Energy Physics Group, Taiwan, China

x Supported by the German Bundesministerium f�ur Bildung, Wissenschaft, Forschung und Technologie

z Supported by the Hungarian OTKA fund under contract numbers T14459 and T24011.

[ Supported also by the Comisi�on Interministerial de Ciencia y Technolog�ia

] Also supported by CONICET and Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina

} Also supported by Panjab University, Chandigarh-160014, India

4 Supported by the National Natural Science Foundation of China.

9



0

2

4

6

20 30 40

a) L3

Eγ (GeV)

E
ve

nt
s/

2 
G

eV

ννγ MC-

e+e-γ MC
γ γ γ MC
Data

0

2

4

6

-0.5 0 0.5
cos θγ

E
ve

nt
s/

0.
27

b) L3

Figure 1: a) Distribution in energy of single{photon candidate events together with expectations
based on Monte Carlo simulation of Standard Model processes. b) The cos�
 spectrum of the
single{photon candidates and Standard Model expectations.
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Figure 2: The energy spectra of single{photon events expected in our search from (a) the
Standard Model only (solid histogram), (b) the Standard Model modi�ed to give the � neutrino
a magnetic moment of the magnitude indicated (dashed histogram), and (c) the Standard Model
extended to include an anomalous ZZ
 coupling (dotted histogram). See text for additional
description of models. The points show the energy spectrum of the single{photon candidates
found in the search.
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Figure 3: Upper limits at the 95% C.L. on the ZZ
 coupling parameters hZ30 and h
Z
40 obtained

by L3 and by D0 [22] for �Z = 500 GeV. The Standard Model prediction is indicated by the
dot. The region of parameter space allowed by unitarity is shaded.
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Figure 4: Upper limit at the 95% C.L. on the branching ratio for Z decay to invisible particles
and a photon with energy greater than Emin. The limit has been calculated in steps of 2 GeV
for Emin.
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