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1. Introduction

U -duality has played an important role for understanding nonperturbative aspects of

string theory [1,2]. This role is not just restricted to establishing the relationships between

different theories, but also to constructing new vacua in string theory. The most dramatic

example of this is F -theory [3], which is based on the SL(2,ZZ) U -duality group of type IIB

theory. The dilaton is allowed to jump according to SL(2,ZZ), and the presence of seven-

branes in the theory (which are direct generalizations of so called stringy cosmic strings

[4]) ensures the existence of well-defined vacua. The jumps are encoded in a manifold that

has a fibered structure where the fiber is the geometrization of the duality group. It has

been shown recently [5] that this type of argument can be applied not just to the type IIB

theory, but to other theories as well, and in particular to N = 2 theories in eight and seven

dimensions. The structure of the moduli spaces, given by SL(2,ZZ) × SL(3,ZZ)\SL(2)×

SL(3)/SO(2)×SO(3) and SL(5,ZZ)\SL(5)/SO(5) respectively, leads to arguments in favor

of new higher-dimensional theories formulated on U -manifolds admitting T 2 × T 3 and T 5

fibers. Putting aside the practical questions on construction of new vacua, in the following

we try to understand the relation between supersymmetry and the fibration structure of

the resulting U -manifolds.

We concentrate on the eight-dimensional case with the duality group SL(2,ZZ) ×

SL(3,ZZ). While the first factor is well-understood, there is not much known about the solu-

tions that respect the second. The five-dimensional piece of the moduli space parametrizes

a three-torus at constant volume; that is, a supersymmetric three-cycle [6,7] in the re-

sulting U -threefold (see also [8,9]). As a first step in understanding this, we construct a

family of fivebrane solutions that transform consistently with SL(3,ZZ). This family lives

on a three-dimensional base that is topologically S3, but each individual member is of real

codimension two on the base (in agreement with the naive expectation that a fivebrane

solution in eight dimensions should depend on only two transverse coordinates). In partic-

ular, the solutions all take the form of overlapping fivebranes, each individually preserving

half of the supersymmetries, but together preserving only a quarter. This is in agreement

with the expectation that intersecting branes break additional supersymmetries. As a re-

sult, this leaves us with a D = 3 N = 2 theory upon compactification on a S2 × S3 base

consistent with a full SL(2,ZZ)× SL(3,ZZ) solution.

While the overlapping fivebranes are constructed based on first order supersymmetry

equations, it turns out that these exact same equations are in perfect correspondence with
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the conditions for the resulting U -manifold to admit a special lagrangian T 3 fibration.

This should in fact come as no surprise, as SL(3)/SO(3) is (at least locally) the moduli

space of T 3. Based on this connection with T 3 fibered Calabi-Yau 3-folds, we give an

explicit realization of mirror symmetry based on T -duality on the fibers. This picture is

particularly nice, as it is manifest how the complex structure and Kähler deformations are

interchanged in the mirror pairs.

In the next section we give an overview of U -scalars and the role of solvable Lie al-

gebras in their classification. Then in section 3 we specialize to eight dimensions and

the construction of the SL(3,ZZ) based overlapping fivebrane solutions. This discussion is

simplified by the use of first order Killing spinor equations. At this point we also indi-

cate the straightforward SL(n,ZZ) generalization. In section 4 we connect the U -manifold

discussion with Tn fibered Calabi-Yau manifolds by demonstrating the correspondence of

the first order equations with the special lagrangian conditions. This then enables us to

consider the action of T -duality in generating mirror pairs. Finally, we conclude with some

comments on global issues that are still not completely understood.

2. U-duality and scalar manifolds

We consider supersymmetric theories whose moduli spaces are given by homogeneous

coset manifolds UD/HD, where UD is a non-compact Lie group and HD is a maximal

compact subgroup. The moduli spaces in these theories are exact since supersymmetry

protects again quantum corrections. The properties of the moduli space have been used to

construct a large class of new vacua, in particular by introducing (D− 3) branes carrying

scalar charges. It has also been shown that they realize compact fibered manifolds, where

the fiber captures the symmetries of the moduli space.

Our main focus is on maximal supersymmetric theories in eight and seven dimensions.

Restricting to cosets of the type SL(n)/SO(n), it is easy to notice that the scalar manifold

M can be seen as originating from an “internal” Tn torus. Indeed, when the other fields

are set to zero (note that these should respect U since it is the symmetry of the full

theory), all the solutions can be understood from pure gravity in n dimensions higher,

provided that the volume of the torus is kept fixed. As it turns out, these internal tori

can always be realized as special lagrangian submanifolds of a larger U -manifold, and

extended supersymmetric theories provide a natural environment for these. Although the

construction developed in this paper is best suited for the case when the dimension of the
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cycle is half that of the manifold, this does not need to be the case — numerous examples

of elliptically fibered n-folds have been discussed in F -theory literature. One may also

consider T 3 fibrations in the manifolds of G2 holonomy, but these will not be addressed

here.

The concept of solvable algebras Solv(U/H) that associate the scalars of the coset

to group generators [10,11] has proven to be useful in analyzing the properties of U -

scalars. This identification of coset manifolds with the group manifolds of solvable Lie

algebras leads to replacing some of the notion of geometry of cosets by algebraic ones. In

particular, this allows one to count the precise number of translational symmetries. As

a matter of fact, the translational symmetries of UD/HD in D dimensions are classified

by UD+1, and, somewhat surprisingly, one finds that only half of the RR scalars have

them (the NSNS vs. RR division is classified by O(9−D, 9−D)). The scalar manifolds

appearing in the toroidal compactifications with maximal supersymmetry are non-compact

homogeneous spaces of maximal rank 11−D, and the associated solvable algebras have a

special structure. It is of special importance that the type IIB theory in ten dimensions

and N = 2 theories in eight and seven have these two special features. Even though most

of our results are obtained explicitly for SL(3,ZZ), the generalization to the SL(5,ZZ) case

is straightforward.

Specializing to the SL(3,ZZ) case, one would like to understand the structure of the

moduli space, and in particular its mapping on the base for the fivebranes. The study

of the SL(2,ZZ) case [4] reveals the special importance of the orbifold points and the

uncontractable cycles on the moduli space. Much remains to be done in the study of global

properties of the SL(3,ZZ) case. But by focusing on local issues below, we nevertheless

gain at least a partial understanding of the fibration structure of the U -manifold, and

furthermore develop new insight on Calabi-Yau mirror symmetry.

3. Fivebranes on S3

As a starting point for constructing the fivebrane solutions, we begin with a description

of the effective action for the scalar fields. While the eight-dimensional N = 2 theory

contains a total of seven scalars, we only consider the explicit action for the five scalars

corresponding to the SL(3, IR)/SO(3) coset. These five scalars may be represented in
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terms of a vielbein, Vai, with determinant 1. Here a is a SO(3) index, while i is a SL(3)

index. Since V is essentially a coset representative, we define

(∂µV V
−1)ab = P (ab)

µ +Q[ab]
µ , (3.1)

where Pµ is symmetric in the SO(3) indices, and is used in constructing the kinetic term

for the scalars. Qµ is antisymmetric and is a composite SO(3) connection. Due to the

SO(3) invariance, it is clear that V contains only five scalar degrees of freedom.

In terms of the vielbein V , the eight-dimensional effective action for the scalar fields

coupled to gravity may then be written as

L =
1

2κ2

√
−g[R− TrPµP

µ + · · ·], (3.2)

and gives rise to the following equations of motion:

DµPµ = 0

Rµν = TrPµPν ,
(3.3)

where D is the Lorentz and SO(3) covariant derivative, so that

DµPν = ∇µPν + [Qµ, Pν]. (3.4)

In principle, we are interested in fivebrane solutions that solve the above equations

of motion. However, in contrast with the SU(1, 1)/U(1) F -theory with a complex moduli

space, since the SL(3, IR)/SO(3) space is odd-dimensional, complex geometry no longer

plays a dominant role in constructing the solutions. This is a rather crucial difference

between the SL(3,ZZ) U -dual solutions and the SL(2,ZZ) solutions, and forces us to develop

new methods in the present case.

With five scalars coupled to gravity, the second order equations of motion are rather

cumbersome to examine. Fortunately we may use supersymmetry as a guide, and examine

the first order Killing spinor equations. Recall that a single fivebrane solution may be

constructed based on preserving exactly half of the eight-dimensional supersymmetries.

Furthermore, by now many cases of overlapping branes are well understood from a super-

symmetric point of view. The rest of this section details the construction of overlapping

fivebranes, and their relation to half-supersymmetry projections.
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The supersymmetry of the theory given by (3.2) may be obtained in several man-

ners. A direct compactification of type IIB theory to eight dimensions will give an ex-

plicit parametrization of the vielbein V along with its supersymmetry properties. For

completeness this reduction is presented in the Appendix. On the other hand, making

use of T duality, we may equally well relate the action to M -theory compactified on a

3-torus, in which case the SL(3, IR)/SO(3) coset is directly related to the symmetries

of the compactification T 3. We will have more to say about this later. In either case,

the eight-dimensional fermions are pseudo-Majorana, and transform as a doublet under

SO(3). Using T a to denote representation matrices for the spinor representation of SO(3),

the resulting supersymmetry transformations on the fermions are given by

δχa = −1
2γ

µP abµ T bε

δψµ = Dµε ≡ [∇µ +
1

4
Qabµ T

ab]ε.
(3.5)

Note that the spin-1/2 fermions, χa, carry an additional vector index a of SO(3).

A basic fivebrane solution, preserving exactly half of the supersymmetries, may be

obtained by demanding the vanishing of δχ and δψµ on a set of Killing spinors, ε, such

that Pε = 0. For a fivebrane with transverse directions x1 and x2, the 1
2 -SUSY projection

takes the form

P = 1
2 (1 + γ12T 12). (3.6)

Here γ1 and γ2 denote γ-matrices with tangent space indices. From the form of this

projection, it is clear that we have related the rotational SO(2) symmetry in the x1-x2

plane with a SO(2) subgroup of the SO(3) automorphism group. This is a general property

of D− 3 branes constructed with scalars varying over a two-dimensional base. In fact, the

projection (3.6) and its resulting supersymmetry properties is the basis for constructing the

SL(2,ZZ) solution of F -theory [4]. In that case the situation is quite clear, as parallel seven-

branes (all satisfying the identical projection P ) may be combined to give an elliptically

fibered K3 surface.

In the SL(3)/SO(3) case, however, we see that each fivebrane picks out a specific

embedding of SO(2) within SO(3), with considerable freedom on how this embedding may

be done. Thus, making full use of SO(3) invariance, the 1
2 -SUSY projection generalizes to

P = 1
2(1 + γ12Λ1aΛ2bT

ab), (3.7)
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where Λab(x) is a SO(3) rotation matrix, allowing for different fivebrane orientations at

different points on the base.

While a single fivebrane preserves half of the supersymmetries, it is well known that

solutions with less supersymmetries may be constructed by overlapping multiple branes.

From a supersymmetry point of view, this corresponds to finding a set of commuting

projections, P(i), each of the form (3.7), so that the only remaining supersymmetries are

those preserved by the complete set of P(i). For the case at hand, it is easy to see that,

with a two dimensional base, it is impossible to construct solutions based on more than

one projection. Equivalently, this indicates that supersymmetric parallel fivebranes must

have identical SO(2) orientations within SO(3), resulting in a solution preserving exactly

half of the supersymmetries.

The full U -symmetry of the fivebrane construction is brought out only when the base

is enlarged to three dimensions. In this case, we may overlap two fivebranes, constructed

with e.g. the individual (commuting) projections

P(1) = 1
2(1 + γ12T 12)

P(2) = 1
2(1 + γ23T 23).

(3.8)

Note that we have made a rigid identification between the two SO(3)’s in this case; as

we see later, this cannot be the most general solution, but nevertheless serves as a useful

example. While a third projection, P(3) = 1
2(1+γ13T 13), may be constructed, its addition

does not kill any more supersymmetries. This is easily seen since P(3) may be expressed

as P(3) = P(1)P(2) + (1 − P(1))(1 − P(2)), and hence gives no further content than the

combination of P(1) and P(2) alone.

As an example of the above construction, we now turn to an explicit parametrization

of the SL(3)/SO(3) vielbein Vai in terms of five scalars. Using SO(3) invariance, we may

write V in the upper triangular form

V = eΦ1/
√

3

 1 a b
0 e−(

√
3Φ1−Φ2)/2 ce−(

√
3Φ1−Φ2)/2

0 0 e−(
√

3Φ1+Φ2)/2

 , (3.9)

where Φ1 and Φ2 are the two dilatonic scalars. This parametrization is motivated by the

structure of the SL(3) generators, in particular with the dilatons corresponding to the

Cartan generators λ3 and λ8.
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At this stage it is instructive to see the explicit form of the Lagrangian. Defining the

SL(3) roots

α1 =

√
3

2
Φ1 −

1
2Φ2

α2 = Φ2,

(3.10)

we find

L =
1

2κ2

√
−g[R− 1

3(∂α1)
2 − 1

3 (∂α2)
2 − 1

3(∂α12)
2

− 1
2e

2α1(∂a)2 − 1
2e

2α2(∂c)2 − 1
2e

2α12(∂b− c∂a)2],
(3.11)

where α12 ≡ α1 + α2 was introduced for convenience and to highlight the nature of the

SL(3) symmetry. From here we see that only scalars a and b possess translational invari-

ance, as expected.

In contrast to the parallel fivebrane solution of [4], here it is not possible to separate

the behavior of the gravity fields from that of the scalars. One may anticipate that this is

the case since the external metric of a D − 3 brane contains a deficit angle. Hence when

several branes are overlapped they would necessarily be affected by the presence of the

others which share only part of the transverse directions. A natural choice for the metric

on the base is given by

ds2 = e2φ1(x)dx2
1 + e2φ2(x)dx2

2 + e2φ3(x)dx2
3. (3.12)

We note that making this choice has essentially forced us to consider only “rigid” fivebranes

— those with a globally fixed orientation between the two SO(3)’s.

Demanding that the supersymmetry variations (3.5) vanish for Killing spinors satis-

fying (3.8), we end up with a set of first order equations taking the form

∂1a = −eφ1−φ2−φ3∂2e
φ3−α1

∂2a = e−φ1+φ2+φ3∂1e
−φ3−α1

∂1b− c∂1a = −eφ1+φ2−φ3∂3e
−φ2−α12

∂3b = e−φ1+φ2+φ3∂1e
−φ2−α12

∂2c = −eφ1+φ2−φ3∂3e
−φ1−α2

∂3c = e−φ1−φ2+φ3∂2e
φ1−α2 ,

(3.13)

in addition to the conditions

∂3a = ∂2b− c∂2a = ∂1c = 0, (3.14)
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and
∂i[φ1 + 2

3α1 + 1
3α2] = 0 i = 2, 3

∂1[φ2 + 1
3α1 −

1
3α2] = 0

∂3[φ2 −
1
3α1 + 1

3α2] = 0

∂i[φ3 + 1
3α1 + 2

3α2] = 0 i = 1, 2.

(3.15)

While superficially these equations may appear quite formidable, they actually have a very

simple structure dictated by SL(3)/SO(3) symmetry considerations. In (3.13) the three

sets of equations, for non-dilatonic scalars a, b, and c respectively, are essentially gener-

alized Cauchy-Riemann-like equations, corresponding to individual fivebranes built out of

the pairs of fields (a, e−α1), (b, e−α12), and (c, e−α2). Of course α12 is not independent, so

the equations do not separate, but are quite subtlely intertwined. This is simply a result of

SL(3) not being large enough to allow two independent SL(2) fivebranes. Alternatively we

note that there are two possibilities for preserving a quarter of the supersymmetries, these

being K3 × K3 or CY3, corresponding to SL(2) × SL(2) or SL(3) brane configurations

respectively.

Before turning to overlapping brane solutions, we note that the ansatz gives three

SL(2)/SO(2) special cases, obtained by setting either b = c = 0, a = b = 0 or a = c = 0.

For example, in the first case, we would find the Cauchy-Riemann equation

∂ia(x1, x2) = −εij∂je
−α1(x1,x2), (3.16)

which is solved by complex analytic functions τ(z) where τ = a+ ie−α1 and z = x1 + ix2.

Thus in this case we have essentially reproduced the SL(2) solution of [4]. One key

difference, though, is that by picking a “rigid” fivebrane orientation, the present ansatz

gives rise to the non-modular invariant relation between the metric and scalar fields, φ1 =

φ2 = −α1/2 = α2 (or φ = log τ2 in the notation of [4]), indicating that the global properties

are not fully addressed in this “rigid” ansatz. In principle this issue is solved by picking a

more flexible ansatz allowing more freedom in the fivebrane orientation. It is this point that

allows considerably more freedom in the solutions, giving rise to a much richer structure

of T 3 fibered CY3’s than the corresponding case of K3.

As anticipated, we observe that the metric fields φµ do not separate from the dilatons

in the fivebrane ansatz. Using the relation between metric fields and dilatons, (3.15), as a

hint, we may further restrict the solution by introducing the three quantities

φa(x1, x2) φb(x1, x3) φc(x2, x3), (3.17)
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so that the metric ansatz now takes the new form

φ1 = −1
2 (φa + φb) φ2 = −1

2 (φa + φc) φ3 = −1
2 (φb + φc). (3.18)

To remain consistent with (3.15), the dilatons then must have the form

α1 = 1
2 (2φa + φb − φc)

α2 = 1
2 (−φa + φb + 2φc).

(3.19)

The beauty behind this choice of fields is that the Cauchy-Riemann-like equations, (3.13),

now take the simplified form

∂1a = −eφc−φb∂2e
−φa

∂2a = ∂1e
−φa

∂1b− c∂1a = −e−φa∂3e
−φb

∂3b = e−φc∂1e
−φb

∂2c = − ∂3e
−φc

∂3c = eφa−φb∂2e
−φc ,

(3.20)

indicating the connection between a, b, c and φa, φb, φc respectively. This clearly shows

the relation between the individual fivebranes, their transverse directions, and its effect

on the metric fields through (3.18). For example, the fivebrane corresponding to (a, φa) is

transverse in x1 and x2, and does not affect the metric component φ3 in the longitudinal x3

direction. Viewed in terms of a three-dimensional base, this picture is one of overlapping

fivebranes living on one-dimensional lines on the base.

In order to consider the overlapping solution of two fivebranes, we set both c = 0 and

φc = 0. As a result, (3.20) gives rise to the second-order equations

(∂2
1 + e−φb∂2

2)e−φa = 0

(∂2
1 + e−φa∂2

3)e−φb = 0,
(3.21)

which is an overlapping brane solution with x1 being the common transverse direction in the

solution. However, in addition to these transverse laplacians, we also have the consistency

requirement that ∂3e
−φb∂2e

−φa = 0, so that either φa or φb must be a function of x1

only. Taking the latter case, the resulting fivebrane solution is described by the functions
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φa(x1, x2) and φb(x1), and corresponds to an overlapping fivebrane and smeared fivebrane

solution.

While it appears that the “rigid” ansatz only leads to a solution with smeared out

branes, it is anticipated that a more general SO(3) ansatz would allow true overlapped

fivebrane solutions. On the other hand, from a more general point of view, the solution

may be viewed as a mapping of the three-dimensional base into the five-dimensional moduli

space. While this space is locally SL(3)/SO(3), it is in fact an orbifold since points

must be identified under action of the SL(3,ZZ) U -duality. It is thus the pullback of the

orbifold singularities that may be related to the fivebrane configuration on the base. In

particular, singular lines, with codimension two on the base, are then identified with the

SL(3) fivebranes.

While the above discussion has focused on SL(3) solutions, we note that cosmic-

string-type solutions can be easily generalized to other extended supersymmetric theories

despite the fact that writing down explicit first-order equations for the scalars generalizing

(3.13), (3.14) and (3.15) may seem terribly involved. Let us recall the decomposition of

the solvable Lie algebra for U/H (Solv(U/H) ∼ TMscalars):

Solv(U/H) = H⊕ Φ+(U), (3.22)

where H is the Cartan piece, while Φ+(U) is the positive part of the root space of U . We

have seen that the “dilatonic” (exponentiated) scalars in the Cartan subalgebra in turn

appear in combinations corresponding to the positive roots of the duality group. Bear-

ing in mind that only the primitive roots of the duality group correspond to independent

“dilatons”, we now see that in each case the number of pairs (ai, e
αi) used to build indi-

vidual solutions is equal to the number of positive roots of the duality group. The nested

structure of the further decomposition of (3.22) allows for more simplifications in analyzing

the solutions. For example, for the D = 8 SL(3)× SL(2) case, the Cartan piece is three-

dimensional, and we find that Φ+(U) = Φ+(E2)⊕D
+
2 where Φ+(E2) is the one-dimensional

root space of the nine-dimensional U -duality group (corresponding to the RR scalar in type

IIB), and D+
2 is the weight space of the SL(3)×SL(2) irreducible representation to which

the nine-dimensional vectors are assigned (corresponding to the three-dimensional abelian

ideal, or in other words, the scalars with translational symmetries).
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4. T 3 fibrations and Calabi-Yau manifolds

In the previous section we have constructed a class of overlapping fivebrane solutions

with varying SL(3)/SO(3) scalars. We now show that these solutions have a natural

interpretation in terms of a T 3 fibered Calabi-Yau manifold. In particular, this fivebrane

solution provides a simple system where such T 3 fibrations may be studied in detail.

We begin by recalling that the SL(2) F -theory solution may be described in terms

of a K3 fibration where a T 2 of constant volume but varying shape is fibered over a

S2 base. In particular, this solution is given in terms of a function τ(z) that maps z, the

complex coordinate on the sphere, to τ , the modular parameter of T 2. Locally, any analytic

map τ(z) solves the equations of motion and preserves exactly half of the supersymmetry.

However it is the global properties that give rise to the intricacies of the solution. In

particular, exactly 24 strings are required to give c1(m(S2)) = 2, leading to a fibered K3

surface (where m defines a map from the base S2 into the moduli space).

In the present case, since SL(3)/SO(3) is locally the moduli space for T 3 at constant

volume, there is a similar picture of the fivebrane solution in terms of a T 3 fibration.

As we have shown in the previous section, an overlapping fivebrane solution preserving

one quarter of the supersymmetry naturally lives on a three-dimensional base (which is

expected to be topologically S3 [8]). Since the mapping is from an odd-dimensional base to

a five-dimensional moduli space, unlike the SL(2) case, there are no natural set of complex

coordinates to work with. On the other hand, for the complete space to correspond to a

Calabi-Yau 3-fold, there must exist a choice of complex structure relating pairs of real

coordinates. While the fivebrane ansatz, (3.13), appears to give three sets of Cauchy-

Riemann conditions, suggesting an intertwined set of complex coordinates on the base

(x1 + ix2, x2 + ix3 and x3 + ix1), we find that this is in fact not a natural choice. Instead,

the choice that is consistent with a T 3 fibration is to pair each of the real coordinates on

the base with a corresponding coordinate on the internal T 3. We now demonstrate this in

some detail.

Working with real geometry, we denote the coordinates on the base as xµ, µ = 1, 2, 3.

Since the internal space is T 3, we introduce a set of three periodic internal coordinates,

ξi = ξi + 1 with i = 1, 2, 3. Combining the metric (3.12) on the base with the SL(3)

invariant form of the metric on T 3, a natural choice for the six-dimensional metric is

simply

ds2 = e2φµ(x)(dxµ)2 + dξiMij(x)dξ
j, (4.1)
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and defines a T 3 fibration over S3. Note that this metric is block diagonal between the

base and internal space, so that it describes T 3 fibers that are always perpendicular to the

base.

In order to better understand the T 3 fibration, it is essential to show that the manifold

defined in this manner is in fact complex. As mentioned above, we seek a complex structure

relating internal and base coordinates in pairs, so that at least locally the line element

becomes

ds2 = dzµdzµ. (4.2)

Comparing this with (4.1), and using the definitionM = V TV , we see that natural complex

coordinates are then of the form

zµ = eφµxµ + iδµaVaiξ
i, (4.3)

corresponding to a complex structure given by

JMN =

[
0 −e−φµδµaVai

V −1
ib δbνe

φν 0

]
. (4.4)

Note that this choice of complex structure involves some arbitrariness in pairing up the

coset and base SO(3) symmetries; the particular form was chosen above to agree with the

fivebrane ansatz (3.13).

Since J is a function of xµ and hence varies over the base, it is important to check that

it is actually integrable. This check is easily performed by examining the Nijenhuis tensor

corresponding to J . Since the Nijenhuis tensor is constructed in terms of first derivatives

of J , we find a set of first order equations as an integrability condition on the complex

structure. Remarkably these conditions are a subset of (3.13), so that in fact the complex

structure is integrable for the fivebranes constructed in the previous section.

Using the complex structure (4.4), we are now able to connect the real parametrization

of the fibered space with complex geometry. In particular, the Kähler form,

kMN ≡ gMPJ
P
N =

[
0 −eφµδµaVai

V Tjaδνae
φν 0

]
, (4.5)

may be determined to be covariantly constant for fivebranes solving (3.13). In fact, verifi-

cation that ∇MkNP = 0 requires full use of all 15 conditions of the supersymmetric ansatz,

(3.13), (3.14) and (3.15).
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Finally, to show that the fibered space is a Calabi-Yau 3-fold (at least locally), we

need to verify that (4.1) is not only Kähler, but also Ricci flat. Since the Ricci tensor in-

volves second derivatives, the calculation is somewhat more tedious. Nevertheless, explicit

verification shows that the overlapping fivebrane solution indeed gives a Ricci flat Kähler

metric (4.1).

So far we have only considered the local properties of this fibered space. The global

properties will clearly be related to the mapping of the S3 base into the 5-dimensional

moduli space of T 3, the latter being the orbifold SL(3,ZZ)\SL(3, IR)/SO(3). While some

of the periods are obvious (e.g. the 1-cycles a→ a+1, b→ b+1 and c→ c+1; b→ b+a)

the overall picture is not so straightforward. Nevertheless, we expect the T 3 fibers to

degenerate on singular lines on S3, corresponding to the loci of the fivebranes. These

global issues are currently under investigation1.

Writing down the metric (4.1) and complex structure (4.4) in fact provides an explicit

construction of a T 3 fibration of CY3 [6,7,8]. We recall that, for such a fibration, the

T 3 must in fact be a special Lagrangian submanifold, which essentially means that the

pullback of the Kähler form must vanish, and the pullback of the holomorphic Calabi-Yau

form must give the real volume form on T 3. For the fivebrane solution, the first condition

is trivially satisfied since kij , the restriction of the Kähler form (4.5) to T 3, is automatically

vanishing. For the Calabi-Yau form, we appeal to (4.3) to write

Ω = i
∏
µ

(eφµdxµ + iδµaVaidξ
i), (4.6)

which is by construction holomorphic with respect to the complex structure (4.4), and

squares to the six-dimensional volume form. One may also verify that Ω is closed, provided

the complex structure is integrable. When restricted to the T 3 fiber, the Calabi-Yau form

simply becomes Ωijk = εabcVaiVbjVck = detV εijk, which is indeed the expected result

(since detV = 1).

In retrospect, this correspondence is not surprising at all, since the fivebrane solution

was explicitly constructed based on supersymmetry requirements of the eight-dimensional

1 There seems to be an appropriate generalization of the usual SL(2; ZZ) fundamental domain;

in this SL(3,ZZ) case it would be given by −1/2 ≤ a, b, c,≤ 1/2 and |~λ2| ≥ |~λ1| ≥ 1, where the

period vectors are given by ~λ1 = (a, exp(−α1), 0) and ~λ2 = (b, c exp(−α1), exp(−α12)). It is the

boundaries of this domain and their intersections that give rise to various fixed lines in the moduli

space.
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theory. Viewed from a M -theory point of view, the SL(3,ZZ) part of the U -duality group is

exactly the symmetry of the eleven dimensional theory compactified to eight dimensions on

T 3. Thus while in the type IIB picture the T 3 is not physical, in M -theory it is certainly

present. Constructing a SL(3) solution preserving a quarter of the supersymmetries is

equivalent in theM -theory picture to a compactification to five-dimensions on a Calabi-Yau

three-fold. Of course it is important to realize that the complete U -manifold involves not

just the SL(3,ZZ), but also the SL(2,ZZ) part of the U -duality group, where the SL(2,ZZ)

is rather obscure in the M-theory language.

Mirror symmetry as T -duality

An implicit formulation of the mirror space to a Calabi-Yau manifold was found

in [7], where it was argued that every Calabi-Yau that has a mirror necessarily has a

supersymmetric T 3 fibration. Moreover, the mirror symmetry turns out to be just T -

duality on the T 3 fibers. Thus all the U -manifolds appearing here should have mirrors, as

they are constructed explicitly as T 3 fibrations.

We already saw that supersymmetry “knows” about the fibered structure on the U -

manifold. As it turns out, it also “knows” about the mirror U -manifold: T -duality on the

fibers is nothing but a discrete symmetry of the coset representative

T : V → (V −1)T , (4.7)

corresponding to T -duality on all three abelian cycles of T 3. The way the fibration metric

is written in (4.1) makes T -duality on the fibers particularly simple. Since the metric

is of diagonal form, the duality on the internal part does not generate any torsion, and

hence its action is given by M → M−1. This is guaranteed to be the correct T -duality

from the M -theory point of view since in that case M is exactly the internal Kaluza-Klein

metric. From a string theory point of view, this inversion precisely corresponds to the

interchange of winding and momenta modes for all three compact dimensions2. Note,

however, that while (4.7) is contained in the O(3, 3; ZZ) T -duality group appropriate to a

string compactification, it is not part of SL(3,ZZ). Thus the inversion of the vielbein is

2 More precisely, the string interpretation is obtained only upon further compactification of

M -theory on S1.

14



a unique discrete symmetry of the scalar manifold M, and lies outside of the U -duality

group3.

It is interesting to study the behavior of the fibration under T -duality. Suppressing

all indices, we may rewrite the complex structure (4.4) and Kähler form (4.5) in the block

form

J =

[
0 −j−1

j 0

]
k =

[
0 −κT

κ 0

]
, (4.8)

where j = V −1 · eφ and κ = V T · eφ. Here eφ denotes the diagonal matrix of metric factors

on the base, eφ = diag(eφ1 , eφ2 , eφ3). In this form, it immediately follows that the action

of T -duality, (4.7), interchanges κ with j,

T : κ↔ j, (4.9)

with corresponding interchange between J and k. As a result, this gives an explicit real-

ization of Calabi-Yau mirror symmetry, where deformations of complex structure, δj, and

Kähler class, δκ, are interchanged between the original manifold and its mirror. While

this has been a local statement, the picture nevertheless continues to hold in general, since

any globally well defined δj on the S3 base may equally well apply to δκ and vice versa.

Of course, the T 3 fibration structure is crucial, as it is the discrete freedom of choice for

the vielbein, (4.7), which corresponds to the choice between two mirror U -manifolds.

5. Comments and conclusions

Starting from an attempt to construct U -branes transforming non-trivially under

SL(3,ZZ), we have ended up with an explicit local description of T 3 fibered Calabi-Yau

3-folds. The first order equations resulting from the Killing spinor equations correspond in

the Calabi-Yau picture to the special lagrangian conditions. By explicit construction, the

complex coordinates of the Calabi-Yau 3-fold are built from the coordinates on the base

each paired with a coordinate on the T 3 fiber. This may be contrasted with the SL(2,ZZ)

“stringy cosmic string” construction of [4], where K3 is described in terms of complex tori

3 A simple way to see this is to note that if the scalar matrix M and its inverse were related

under SL(3,ZZ), this relation would have the form M−1 = ΩTMΩ where Ω is a SL(3,ZZ) matrix.

Since Ω has integer coefficients, it cannot vary continuously as the five scalars are varied. Thus

every entry in M−1 must be able to be written as some linear combination of the terms already

present inM . However a simple calculation of the inverse shows that this is not in general possible.
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fibered over CP 1. Since the two sets of complex coordinates used in [4] and here are not

related by an analytic map, our construction simply corresponds to a different choice of the

complex structure. However (as pointed out in [7]) this description of K3 may be related

to the present case by a rotation of complex structure. In fact, it is the (hyper-Kähler)

K3 case that is special; general mirror pairs of Calabi-Yau n-folds presumably involve Tn

fibrations, giving a complex structure of the form (4.4) without any freedom of rotation of

complex structure.

Another notable difference in the construction of an elliptically fibered K3 from the

one presented here is that, as mentioned before, the K3 case only involves parallel branes.

One way to see this is that for the SL(2) case there is a unique supersymmetry projection

operator, the analogue of (3.7), which transforms as a singlet under the SO(2) automor-

phism group, resulting in a unique configuration preserving half of the supersymmetries.

In the more general case, the freedom to pick different SO(n) orientations for the branes

leads to many possibilities for “closing” the manifold. We observe that each additional

overlapping brane reduces the supersymmetry by a half, so that the seven dimensional

SL(5,ZZ) case preserves only a sixteenth of the supersymmetry, and involves even fancier

intersections of branes with different orientations4. Once again this shows that K3 is a

somewhat degenerate case, as it is the only one where the D − 3 branes are completely

parallel. It is of some interest to better understand the relation between the distribution

of branes on the base and the global properties of the manifold such as the number of

deformations of complex structure and Kähler class.

One may speculate that, even with a complicated overlapping fivebrane configuration,

it would nevertheless be possible to study individual branes within the solution, each given

by a single “dilaton-axion” pair (ai, e
−αi) with a specific SO(2) orientation on the base in

the notation of section 3. Moreover, one would hope to evaluate the energy per volume

for the individual branes in this fashion and obtain a relation analogous to the elliptically

fibered case [12], where for the base B:

c1(B) = −
1

12

∑
Naδ2(Da), (5.1)

4 In general, SL(n) solutions are expected to preserve anywhere from 1/2 to 1/2n−1 supersym-

metries, with the latter corresponding to true SL(n) solutions that do not factorize into separate

pieces. For example, with SL(5) we would have a family of manifolds of the form K3 × T 6,

CY3 × T
4, CY4 × T

2 and finally CY5.
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which plays an important role in F -theory constructions. Physically speaking, this is what

one expects from the fivebranes on S3. Indeed, the effect of the branes on the curvature

seems to be localized, but the complicated global features such as the deficit angle of

the solutions do not allow an analysis of an isolated solution. Further exploration of the

properties of the moduli space should hopefully lead to progress in this direction.

We reiterate that much remains to be done to achieve a better understanding of

the global features of the U -brane configurations. Nevertheless, the profound relation

between supersymmetry and geometry as well as the remarkable emerging picture of mirror

symmetry makes this study worthwhile.
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Appendix A.

In this appendix we make an explicit connection between the U -scalars in eight di-

mensions and the original type IIB theory. Starting in ten dimensions, while the type IIB

theory contains a 4-form potential with self-dual field strength, and hence does not admit

a conventional Lagrangian formulation, for our purposes the 4-form potential may be ig-

nored, as it does not give rise to any scalars in eight dimensions. As a result, it is sufficient

to focus on the truncated type IIB Lagrangian, written in natural string coordinates as

[13]

LD=10 =
√
−G(10)e−2Φ(10)

[RG(10) + 4(∂MΦ(10))2 −
1

2 · 3!
(H

(1)
MNP )2

− eΦ
(10)

(
1

2
(∂M`)

2 +
1

2 · 3!
(H

(2)
MNP − `H

(1)
MNP )2)],

(A.1)

with H(i) = dB(i). In this form, there is a clear division between the NSNS fields,

{G(10), B(1),Φ(10)}, and the RR fields {B(2), `} (ignoring the RR 4-form potential).

For the type IIB theory in ten dimensions, we may consider the fermions as pairs of

Majorana-Weyl spinors, transforming as a doublet under SO(2). In this case, introducing
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the Pauli matrices σi acting on the SO(2) index, the supersymmetries may be written as

δΛ = 1
2 [ΓM∂MΦ(10) − 1

12H
(1)
MNPΓMNPσ3]η

+ 1
2e

Φ(10)

[ΓM∂M`iσ
2 + 1

12(H(2) − `H(1))MNPΓMNPσ1]η

δΨM = [∇− 1
8H

(1)
MNPΓNPσ3]η

− 1
8e

Φ(10)

[ΓN∂N`iσ
2 + 1

6 (H(2) − `H(1))NPQΓNPQσ1]ΓMη,

(A.2)

again with a clear split between the NSNS and RR fields.

Upon T 2 reduction to eight dimensions, both H(1) and H(2) give rise to scalars.

Combined with Φ(10), ` and the three scalars parametrizing T 2, this gives a total of seven

eight-dimensional scalars. Since we are only interested in the scalar sector, dimensional

reduction is especially straightforward. In order to end up in an eight-dimensional Einstein

frame, we take

GMN =

[
e2φ/3gµν

Gij

]
, (A.3)

where the T 2 metric is

Gij =
e−σ

τ2

[
1 τ1
τ1 |τ |2

]
, (A.4)

and the eight-dimensional dilaton is given by

φ = Φ(10) + 1
2σ. (A.5)

Finally, defining B
(k)
ij = b(k)εij , we end up with

LD=8 =
√
−g[R−

1

2

|∂µτ |2

τ2
2

−
2

3
(∂µφ)2 −

1

2
(∂µσ)2

−
1

2
e2σ(∂µb

(1))2 −
1

2
e2φ−σ(∂µ`)

2 −
1

2
e2φ+σ(∂µb

(2) − `∂µb
(1))2],

(A.6)

which may be compared with (3.11). As a result, we identify the SL(3) scalars as

{a, b, c} = {b(1), b(2), `} {α1, α2} = {σ, φ− 1
2σ}, (A.7)

and the SL(2) scalars as simply the complex structure of the T 2, namely {τ1, τ2}.

Working out the supersymmetry of (A.6) is somewhat more involved. Upon dimen-

sional reduction, the eight-dimensional dilatino (λ) is shifted according to

λ = eφ/6(Λ− 1
2ΓiΨi), (A.8)
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where the exponential factor accounts for transforming from the string to the Einstein

frame. This latter transformation also shifts the gravitino so that

ψµ = e−φ/6Ψµ −
1
3γµλ. (A.9)

The resulting eight-dimensional gravitino variation becomes

δψµ =[∇µ −
i

4

∂µτ1
τ2

γ9]ε

−
1

4
[eσ∂µb

(1)(γ9iσ3) + eφ−
1
2σ∂µ`(iσ

2) + eφ+ 1
2σ(∂µb

(2) − `∂µb
(1))(γ9iσ1)]ε,

(A.10)

where ε = e−φ/6η and (γ9)2 = 1 is the chirality operator in eight dimensions (γ9 ≡

iγ0γ1 · · ·γ7). In performing the reduction of (A.2), we have made use of the fact that

the ten-dimensional spinors have definite chirality, Γ11η = η. Comparing (A.10) to (3.5)

(making use of the SL(3) interpretation (A.7)), we find the SO(3) generators

T a = {σ2,−γ9σ1, γ9σ3}, (A.11)

resulting in

δψµ = [∇µ −
i

4

∂µτ1
τ2

γ9 +
1

4
Qabµ T

ab]ε. (A.12)

For the remaining spin- 1
2 fields, the dilatino may be combined with the “internal” compo-

nents of the gravitino, Ψ8 and Ψ9, in the combination

χa =


σ2(−1

3λ+ 1
2e
φ/6ΓiΨi + 1

3e
φ/6(Γ8Ψ8 − Γ9Ψ9))

γ9σ1(−1
3λ−

1
2e
φ/6ΓiΨi + 1

3e
φ/6(Γ8Ψ8 − Γ9Ψ9))

−γ9σ3( 2
3λ + 1

3e
φ/6(Γ8Ψ8 − Γ9Ψ9))

 , (A.13)

with resulting variation

δχa = −
1

2
γµP abµ T bε−

1

6
γµ[

∂µτ2
τ2
− i

∂µτ1
τ2

γ9]T aε. (A.14)

The supersymmetry variations (A.12) and (A.14) indicate the form of the additional SL(2)

contributions that were ignored in (3.5). The above dimensional reduction demonstrates

the explicit correspondence between the type IIB fields and the U -scalars of the eight

dimensional theory.

Finally, we note that the U -duality group in D dimensions has a convenient type IIB-

inspired decomposition [11] that makes the original ten-dimensional SL(2)U symmetry

apparent:

Er+1 → SL(2, IR)U ⊗GL(r, IR), (A.15)

where r stands for the number of compact dimensions. Note that only the first factor in

(A.15) mixes RR and NSNS states; GL(r, IR) is just the isometry group of the classical

moduli space of the T r torus.
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