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ABSTRACT

We generalize the supermembrane solution of D = 11 supergravity by permitting the
4-form G to be either self-dual or anti-self-dual in the eight dimensions transverse
to the membrane. After analyzing the supergravity field equations directly, and also
discussing necessary conditions for unbroken supersymmetry, we focus on two specific,
related solutions. The self-dual solution is not asymptotically flat. The anti-self-dual
solution is asymptotically flat, has finite mass per unit area and saturates the same
mass=charge Bogomolnyi bound as the usual supermembrane. Nevertheless, neither
solution preserves any supersymmetry. Both solutions involve the octonionic structure
constants but, perhaps surprisingly, they are unrelated to the octonionic instanton
2-form F , for which TrF ∧ F is neither self-dual nor anti-self-dual.
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1 Introduction

The eleven-dimensional supermembrane [1] is one of the cornerstones of M-theory

[2, 3, 4]. The usual supermembrane solution of D = 11 supergravity [5] has sym-

metry P3 × SO(8) and preserves half of the spacetime supersymmetry. The only

non-vanishing components of the 4-form GMNPQ (M,N, . . . = 0, 1, . . . , 10) are the

G012m (m,n, . . . = 3, 4, . . . , 10). In this paper we introduce generalizations of this

solution which are obtained by permitting the 4-form Gmnpq to be non-vanishing and

either self-dual or anti-self-dual in the eight dimensions transverse to the membrane.

WithGmnpq non-zero, the SO(8) transverse symmetry of the usual supermembrane

solution is necessarily broken to some subgroup (since no SO(8)-invariant fourth-rank

antisymmetric tensors exist). There are many possible choices for Gmnpq, each with

their own symmetry properties. Here we investigate in detail two particularly natural

choices involving a certain constant SO(7)-invariant tensor which is related to the

algebra of octonions. As a result, both solutions have symmetry P3×SO(7). The self-

dual solution is not asymptotically flat. The anti-self-dual solution is asymptotically

flat, has finite mass per unit area and saturates the same mass=charge Bogomolnyi

bound as the usual supermembrane. Nevertheless, neither solution preserves any

supersymmetry and neither is free of curvature singularities. Although both solutions

implicitly involve the octonionic structure constants, perhaps surprisingly, neither is

related to the octonionic SO(7) instanton 2-form F [7, 8, 9], for which TrF ∧ F is

neither self-dual nor anti-self-dual.

2 The eleven-dimensional supermembrane

The bosonic sector of eleven-dimensional supergravity is described by the action

I11 =
1

2κ2

∫
d11x
√
−g

(
R−

1

2 · 4!
GMNPQG

MNPQ
)
−

1

12κ2

∫
C ∧G ∧G, (2.1)
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where gMN (M,N = 0, 1, . . . , 10) is the metric, C3 is a three-form gauge field with

four-form field-strength G4 = dC3, and ∗ denotes Hodge duality. The equations of

motion are

RMN −
1

2
gMNR =

1

12

(
GMPQRGN

PQR −
1

8
gMNGPQRSG

PQRS
)
, (2.2)

and

d ∗G = −
1

2
G ∧G. (2.3)

It was shown in [5] that the supergravity action I11 admits a fundamental membrane

solution preserving half the spacetime supersymmetries. The solution for a single

membrane invariant under P3×SO(8), where P3 is the d = 3 Poincaré group, is given

by

ds2 = e2C/3ηµνdx
µdxν + e−C/3δmndy

mdyn, (2.4)

and

C012 = ∓eC , (2.5)

with

e−C = 1 +K/y6, (2.6)

where µ, ν = 0, 1, 2 are indices in the “membrane” directions, m,n = 1, 2, . . . , 8 are

indices in the eight-dimensional space transverse to the membrane, y is the radial

coordinate in this transverse space, and K is a constant.

In order that the above membrane provide a solution at y = 0, it was necessary

to introduce an explicit source term. The source is a supermembrane sigma-model

action

S3 = T3

∫
d3ξ

(
−

1

2

√
−γγij∂iX

M∂jX
NgMN +

1

2

√
−γ ∓

1

3!
εijk∂iX

M∂jX
N∂kX

PCMNP

)
(2.7)
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where T3 is the membrane tension, ξi are the coordinates on the membrane worldvol-

ume and γij is the worldvolume metric. The net effect of the sigma-model source term

is to add a delta-function to the right-hand side of the pure supergravity equations

of motion and for the ansatz given above (and with Xµ = ξµ, Xm = constant) they

then reduce to the single equation

δmn∂m∂ne
−C = −2κ2T3δ

8(y). (2.8)

This fixes the constant K = κ2T3/3Ω7, where Ω7 is the volume of the unit seven-

sphere. Although this takes care of the delta function at y = 0, the solution can be

analytically continued to the region r = 0 where r is a Schwarzschild-like coordinate

defined by r6 = y6 +K [10, 11] and the solution still exhibits a curvature singularity

at r = 0. This singularity contrasts with the fivebrane soliton solution [12] which is

everywhere nonsingular. The mass per unit area of the membraneM3 is equal to its

tension:

M3 = T3. (2.9)

This elementary solution of the supergravity equations coupled to a supermembrane

source carries a Noether “electric” charge

Q =
1
√

2κ

∫
S7

(∗G+
1

2
C ∧G) =

√
2κT3. (2.10)

Hence the solution saturates the Bogomol’nyi bound

√
2κM3 ≥ Q. (2.11)

This follows from the preservation of half the supersymmetries, although the converse

is not true [13] (as we shall rediscover in section 6). It is also intimately linked with

the worldvolume kappa symmetry of the fundamental supermembrane [1].
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3 Membrane solutions with (anti-)self-dual 4-forms

We now wish to generalize the membrane solution of section 2 by allowing for a

non-vanishing Gmnpq. We make the same ansatz (2.4) for the metric and (2.5) for the

components C012 but we allow the function C and the transverse components Cmnp to

be as yet unspecified functions of the transverse coordinates ym. (The “mixed” com-

ponents of CMNP are zero.) The 012mnpqr components of (2.3) are then equivalent

to

∂m[eC(Gmnpq ∓
1

4!
εmnpqrstuGrstu)] = 0, (3.1)

while the remaining components give

δmn∂m∂ne
−C = ∓

1

2.4!
Gmnpq ∗Gmnpq. (3.2)

Transverse indices are now understood to be raised and lowered with the flat metric

δmn and ∗ denotes the Hodge dual in eight-dimensional Euclidean space. Turning to

the Einstein equations (2.2), we find that the µν components are satisfied if

δmn∂m∂ne
−C = −

1

2.4!
GmnpqG

mnpq (3.3)

while the only additional content of the mn components is the vanishing of the eight-

dimensional stress tensor:

GmpqrGn
pqr −

1

8
δmnGpqrsG

pqrs = 0. (3.4)

We now observe that equations (3.1) and (3.4) are satisfied automatically when

the 4-form G is self-dual or anti-self-dual in the eight dimensions transverse to the

membrane. Furthermore, the remaining equations (3.2) and (3.3) then coincide. So

we conclude that the complete set of supergravity field equations is satisfied for any

3-form Cmnp whose field strength obeys

Gmnpq = ±
1

4!
εmnpqrstuGrstu, (3.5)
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provided the function C, which determines the remaining fields through (2.4) and

(2.5), is a solution of the single equation (3.3). Concrete examples of such solutions

are given in section 6.

4 Supersymmetry

The fact that a bosonic field configuration is annihilated by one or more supersym-

metries is usually assumed to imply that it must also satisfy the equations of motion,

although the converse is not true. Having discussed the structure of the equations of

motion in the last section, we will now examine the complementary issue of super-

symmetry. Once again, we consider a general field configuration given by (2.4) and

(2.5) with C and Cmnp functions only of the coordinates ym.

The full D = 11 supergravity theory involves the bosonic action I11 in (2.1)

coupled to a gravitino field ψM . Under a supersymmetry transformation with local

parameter ζ , the variation of the gravitino is

δψM = ∇Mζ −
1

288
GPQRS(ΓM

PQRS − 8δPMΓQRS)ζ. (4.1)

In the standard fashion, it suffices to consider bosonic field configurations which are

supersymmetric in the sense that the above variation vanishes for one or more choice

of ζ .

Corresponding to the metric ansatz (2.4), we can decompose the supersymmetry

parameter in the form ζ = ε ⊗ ξ and the D = 11 curved space gamma-matrices can

be written

Γµ = eC/3(γµ ⊗ γ9), Γm = e−C/6(1⊗ γm), (4.2)

where γµ and γm are gamma-matrices for flat D = 3 Minkowski space and D = 8

Euclidean space respectively, and γ9 is the eight-dimensional chirality operator. Using
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this decomposition in conjunction with (2.4) and (2.5) we find

δψµ = ∂µζ −
1

6
eC/2∂mC(γµ ⊗ γmγ9)ζ

±
1

6
eC/2∂mC(γµ ⊗ γm)ζ −

1

288
eCGmnpq(γµ ⊗ γmnpqγ9)ζ (4.3)

and

δψm = ∂mζ −
1

12
∂nC(1⊗ γmn)ζ

∓
1

6
∂mC(1⊗ γ9)ζ ±

1

12
∂nC(1⊗ γmnγ9)ζ

+
1

24
eC/2Gmnpq(1⊗ γnpq)ζ −

1

288
eC/2Gpqrs(1⊗ γmγpqrs)ζ (4.4)

In each of these equations, the term in the first line on the right-hand side comes

from the spin-connection, while the remaining terms come from the decomposition of

the antisymmetric tensor fields.

In order to arrange that all components of the gravitino have zero variation, we

cancel terms with the same gamma-matrix structure by setting

ζ = eC/6(ε⊗ ξ±), γ9ξ
± = ±ξ±, (4.5)

with ε and ξ± constant. The condition for a supersymmetric field configuration then

reduces to a single equation in the transverse space:

Gmnpqγnpqξ
± = 0. (4.6)

(Related equations made their appearance in the physically different context of finding

Calabi-Yau fourfold compactifications of D = 11 supergravity down to D = 3 [22].)

We emphasize that we have assumed nothing so far about Cmnp or its field strength

Gmnpq. Note that if Gmnpq = 0 we recover the fundamental membrane solution of

section 2, and (4.6) then gives no additional restriction on ξ±, implying that half of

the spacetime supersymmetries ofD = 11 supergravity are preserved. In the case with
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Gmnpq non-zero, we would like to understand how the condition for supersymmetry

(assuming (4.5)) fits together with our analysis of the equations of motion; or in other

words, whether (4.6) can be satisfied when Gmnpq is self-dual or anti-self-dual.

It is natural to expect that there are no spinors ξ± which satisfy (4.6) when

∗G = ∓G. This is because the sign specifying the chirality of the spinor in the

condition for unbroken supersymmetry is correlated with the sign appearing in the

ansatz (2.5). But from section 3 we know that the sign in (2.5) is in turn correlated

with the sign in (3.5) if we are to have a solution of the field equations. A spinor

ξ± which satisfied (4.6) with ∗G = ∓G would therefore imply the existence of a

supersymmetric field configuration which did not satisfy the equations of motion,

which runs counter to conventional wisdom. Indeed, it can be shown directly from

(4.6) that no such configurations are possible.

To establish this, we first note that for any commuting spinors ξ± with γ9ξ
± =

±ξ±, the tensors

X±mnpq = ξ±Tγmnpqξ
± (4.7)

are self-dual and anti-self-dual:

X±mnpq = ±
1

4!
εmnpqrstuX±rstu. (4.8)

Now on squaring (4.6) and performing some gamma-matrix algebra we find

2(ξ±)2GmnpqGmnpq = 3GmnpqGmnrsX
±
pqrs. (4.9)

But it is also easy to show that ∗G = ∓G and ∗X± = ±X± together imply that the

expression on the right-hand side must vanish, and hence that Gmnpq = 0.

In conclusion, we have shown that for a non-zero field-strength G which is self-

dual or anti-self-dual, the only unbroken supersymmetries allowed by (4.6) are given

by spinors with positive or negative chirality respectively. Whether there actually are
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any such unbroken supersymmetries of this type is then a question which depends on

the detailed structure of G.

5 Octonions and related tensors

We now turn from the general considerations of the previous sections to discuss some

specific solutions. Although no configuration with non-zeroG can be SO(8)-invariant,

we can find solutions with SO(7) symmetry by making use of a certain tensor cmnpq

which is related to the algebra of octonions. We will begin by introducing this tensor

from a slightly different point of view, however.

Choosing any commuting, positive-chirality spinor η and normalizing it so that

ηTη = 1, we define

cmnpq = ηTγmnpqη. (5.1)

As we mentioned in the last section, this tensor is self-dual, obeying

cmnpq =
1

4!
εmnpqrstucrstu. (5.2)

Some other useful identities are

cmnprc
mnqs = 12δ[pr]

[qs] − 4cpr
qs, cmnprc

mnps = 42δr
s, cmnpqc

mnpq = 336, (5.3)

which can also be deduced using standard properties of gamma-matrices.

It is immediate from its definition that the tensor cmnpq is invariant under a max-

imal subgroup SO(7) ⊂ SO(8) with respect to which the positive-chirality spinors

decompose as 8→ 7⊕1, with η belonging to the singlet. The eight-dimensional vector

and negative-chirality spinor representations remain irreducible under this subgroup.

Any two choices of the fixed spinor η are equivalent, in that they correspond to

conjugate SO(7) embeddings in SO(8).
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To explain the relationship to octonions, we introduce the totally antisymmetric

octonionic structure constants cabc by means of the multiplication rule

oaob = −δab + cabcoc, (5.4)

where oa are unit imaginary octonions with a, b, . . . = 1, 2, . . . , 7. With suitable

choices of bases, the connection between cmnpq and cabc is simply

cabc8 = cabc, cabcd =
1

3!
εabcdefgcefg. (5.5)

The description in terms of octonions is attractive from many points of view. It

has one disadvantage, however, in that it makes manifest only a G2 subgroup (the

octonion automorphism group) of the full SO(7) symmetry of cmnpq.

6 An octonionic membrane

Using the tensor cmnpq introduced in the last section, we can construct both self-dual

and anti-self-dual solutions of the supergravity field equations which are invariant

under P3 × SO(7).

To find a self-dual G we write

Cmnp =
1

a
cmnpqy

q, (6.1)

where a is a constant, and hence

Gmnpq =
1

a
cmnpq (6.2)

is manifestly self-dual. To find an anti-self-dual G we write

Cmnp =
a7

y8
cmnpqy

q (6.3)

and hence

Gmnpq = −
a7

y10
(y2cmnpq + 8y[mcnpq]ry

r), (6.4)
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whose anti-self-duality follows from the self-duality of cmnpq. (In general, cmnpq self-

dual and hmn symmetric and traceless implies cr[mnphq]r is anti-self-dual.)

In the self-dual case, substituting into (3.3) we find

1

y7

∂

∂y
(y7 ∂

∂y
e−C) = −

7

a2
(6.5)

and hence

e−C = 1 +
K

y6
−

7y2

16a2
, (6.6)

which yields a metric which is not asymptotically flat. In the anti-self-dual case, we

find

1

y7

∂

∂y
(y7 ∂

∂y
e−C) = −

7a14

y16
(6.7)

and hence

e−C = 1 +
K

y6
−

a14

16y14
, (6.8)

which yields a metric which is asymptotically flat. Note the minus signs in both (6.6)

and (6.8) which imply that the metric (2.4) is singular at the zeros of e−C . In each

case there is exactly one such zero at y = y0 > 0. These zeros actually give rise to

curvature singularities.

It is not difficult to read off the mass and charge of the new asymptotically flat,

anti-self-dual solution and we find the same results as for the usual supermembrane,

in spite of the non-vanishing of Gmnpq, essentially because the coefficient of the y−6

term in (6.8) remains unchanged. The bound (2.11) is therefore still saturated by

this new solution.

From section 4, we know that the only possible unbroken supersymmetries for

∗G = ±G involve spinors ξ±. For the specific Gmnpq appearing in both (6.6) and

(6.8), we find that none of the supersymmetry survives. This may seem surprising

in view of the fact that the anti-self-dual solution saturates the same Bogomolnyi

bound between the mass and charge (2.11) as the usual supermembrane, however the
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relation between supersymmetry and the Bogomolnyi bound is a subtle one [13] and

can break down in the presence of singularities.

By replacing cmnpq with other constant tensors it is clear that we can obtain a vari-

ety of similar solutions with invariance groups such as SU(4)×U(1) or SO(4)×SO(4)

[7]. We do not expect any improvement in the singularity structure of these solu-

tions, however. Furthermore, the SO(7)-invariant choice cmnpq is particularly natural

in conjunction with the isotropic metric ansatz (2.4), since this is the unique max-

imal subgroup under which the vector representation of SO(8) remains irreducible.

For any other subgroup, the condition that the metric should depend only on the

radial transverse coordinate would be much less compelling. Allowing more general

transverse behaviour also opens up many other possibilities of course, and we note in

particular that Gmnpq is anti-self-dual whenever

Cmnp = cmnpk∂kf(yi), δmn∂m∂nf = 0. (6.9)

Our octonionic anti-self-dual solution utilizes the maximally symmetric harmonic

function. Once again, we would not expect any less symmetric solution to have a

more desirable singularity structure.

We should also mention that having obtained a new membrane solution in D = 11,

it follows by simultaneous dimensional reduction that we can obtain a new type IIA

string solution in D = 10 [6, 5].

7 Not the octonionic instanton

The octonionic structure constants have appeared before in many different physical

contexts [14, 7, 15, 8, 9, 16, 18, 17, 19, 20, 21, 25]. In particular, octonionic string

soliton [18] and octonionic membrane soliton [20, 21] solutions of the heterotic string

have been found which make use of the SO(7) octonionic instanton [7, 8, 9] in eight
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dimensions and the G2 octonionic instanton [20, 21] in seven dimensions respectively.

In the Horava-Witten [23] approach to deriving the D = 10 E8 × E8 heterotic string

by compactifying M-theory on S1/Z2, the equation

G ∼ TrF 2 −
1

2
trR2 (7.1)

appears on one of the boundaries, where F is the Yang-Mills field strength of one

of the E8’s. One might therefore have expected that our solution would be related

to the SO(7)-invariant octonionic instanton where the tensor cmnpq also makes its

appearance in the equation

Fmn =
1

2
cmnpqF

pq. (7.2)

Indeed, for instanton size ρ one finds [8, 9]

TrF[mnFpq] =
3ρ2 + y2

(ρ2 + y2)3
cmnpq +

4(4ρ2 + y2)

(ρ2 + y2)4
y[mcnpq]ry

r (7.3)

which has a similar tensor structure as (6.4). However, it is not difficult to verify that

this expression is neither self-dual nor anti-self-dual and does not provide a solution

for Gmnpq. In this respect we differ from the authors of [25] who claim that TrF ∧ F

is self-dual.

Another way in which our supermembrane solution differs from the octonionic

string and membrane solutions of [18, 20, 21] is that the string has infinite mass per

unit length and the membrane has infinite mass per unit area, whereas our anti-self-

dual solution has the same finite mass per unit area as the usual supermembrane

[5].

8 Conclusions

Although the octonionic instanton 4-form TrF 2 is neither self-dual nor anti-self-dual,

we have not entirely given up on the possibility that Yang-Mills instantons may
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provide a solution to the D = 11 supergravity equations. There are M-theoretic cor-

rections to the D = 11 supergravity Lagrangian arising from a sigma-model Lorentz

anomaly on the worldvolume of the fivebrane [27]. The 3-form field equation gets

modified to

d ∗G = −
1

2
G ∧G+ (2π)4βX8, (8.1)

where β is related to the fivebrane tension T6 by T6 = 1/(2π)3β and where

X8 =
1

(2π)4
[−

1

768
(trR2)2 +

1

192
trR4]. (8.2)

Indeed, our original motivation for generalizing the supermembrane solution was to

search for solutions involving eight-dimensional Yang-Mills instantons in the dimen-

sions transverse to the membrane whose finite instanton size would smear out the

singularity at r = 0 of the usual supermembrane solution [5]. We also expected that

the (R2)2 and R4 M-theoretic corrections (8.1), together with corresponding correc-

tions to the Einstein equations demanded by supersymmetry [28], would also play a

role. One’s first inclination might be to look for solutions of this kind which preserve

the SO(8) symmetry of the usual supermembrane solution. Indeed, SO(8) Yang-Mills

instantons do exist [24] for which F 2 is in fact self-dual. However TrF 2 necessarily

vanishes since there are no SO(8)-invariant antisymmetric tensors of rank 4. TrF 4

is non-zero, however, and indeed these instantons played a role in smoothing out [26]

the singularity of the SO(32) heterotic string soliton solution [29] by incorporating

the one-loop TrF 4 corrections to the Lagrangian.

We intend to return elsewhere to this original goal of finding non-singular super-

symmetric solutions involving the M-theoretic corrections. In this paper, however,

we were diverted into finding singular, non-supersymmetric solutions for which the

X8 corrections vanish, but which may nevertheless prove to be of interest in their own

right.
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