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Abstract.

The short-range longitudinal and transverse wakefields of a point charge
in the SBLC linac are obtained using a modal summation technique. Sim-
ple functional fits to these wakes are given, which can be used as Green
functions in beam dynamics simulations of bunches. These results, how-
ever, are valid only after the beam has traversed a critical number of cells
Nerit- Using time domain computations with Gaussian bunches we have
obtained results that are consistent with Ny varying as aa?/(Lo,), with
a the iris radius and L the period length of the structure, o, the bunch
length and o a constant on the order of 1. For the loss per cell to reach
to within a few percent of the asymptotic value o ~ 0.5 — 1.0.

Introduction

In the S-Band Linear Collider (SBLC) project [1] long trains of short, intense
bunches of electrons and positrons are each accelerated through 16 km of
linac to 250 GeV before colliding at the interaction point. Good luminosity
requires that both the longitudinal and transverse emittance growth in the
linacs be kept small. Important among the effects that can cause emittance
growth are the interactions of the bunches with the short range and the long
range wakefields of the linac structure. The long range wakefields, which can
cause the multi-bunch projected emittance to grow, will be suppressed in the
SBLC by having the iris tips coated with lossy material [2]. The short range
wakefields, however, can still increase the single bunch energy spread and single
bunch projected emittance of the beam.



The SBLC linac structure is a cylindrically symmetric, disk-loaded, constant
gradient structure consisting of 180 cells, whose geometry varies gradually from
beginning to end of the structure. The SBLC longitudinal bunch distribution
is Gaussian with an rms length o, that is very short compared to the iris
radius a: o, = 300 um, a is typically 1.2 cm and o,/a ~ .025. Therefore, the
beam samples primarily the high frequency impedance of the structure. It is
known that for a single cavity with infinitely long beam tubes the longitudinal
high frequency impedance varies with frequency as w™'/2, implying that the
longitudinal wakefield of a very short Gaussian bunch varies as o;1/2 [3].
For an infinitely periodic structure the longitudinal high frequency impedance
(real part) varies as w™3/2, implying that the wakefield per cell of a very short
bunch approaches a constant value as ¢, — 0 [4, 5, 6]. For a structure
consisting of a finite number of repeating cells with infinitely long beam tubes
the wake of the first cell is given by the single cell wakefield and the wake per
cell asymptotically approaches that of the periodic case as the beam moves
toward the end of the structure. For a Gaussian bunch the number of cells
needed for the periodic solution to be valid, N4, is given by [4, 5)

aa?

Ncri = y
‘= I (1)

with L the structure period length and « a constant of proportionality on the
order of one.

In the first part of this report we use a frequency domain approach to obtain
the short-range longitudinal (monopole) and transverse (dipole) wakefields
generated by an ultra-relativistic point charge in the SBLC linac structure.
These functions can then, in turn, be used as Green functions for studying
the single bunch, wakefield induced effects in the SBLC linac. They are the
asymptotic wakefields, in that, for a given bunch length, they are only valid
after the beam has traversed N..; cells of structure. Note that it is difficult
to obtain the wakefields appropriate for the short SBLC bunches through ei-
ther a frequency or a time domain approach, since they must be accurate to
very high frequencies. The wakefields in the SBLC linac have already been
obtained using a time domain approach, for Gaussian bunches down to the
nominal bunch length ¢, = 300 pm [7] using a dedicated window technique
[8]. Nevertheless, we believe that it is still useful to perform the calculations
of the present report, since for beam dynamics studies the wakefields must be
known to a fraction, say at least 1/4, of the nominal bunch length o,. Note
that similar calculations have been performed before for the SLAC linac struc-
ture [9], which has a similar geometry to the SBLC linac, and for the NLC
linac structure, [10] which is an X-band structure. In the second part of this
report we use the MAFIA time domain module T2 [11] to test the validity of
Eq. 1, and to find «, in order that we can estimate the number of cells that
are needed for our asymptotic solutions to be valid.
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The Calculation Method

In the SBLC linac cavity the iris radii and the cavity radii change gradually
as one moves from the beginning to the end of the structure. With the change
being so gradual—0.2% change in iris radius per cell—we believe we can locally
approximate the structure by a periodic one. To obtain the wakefields for an
entire SBLC cavity we first find the wakes for 5 purely periodic models, with
cell dimensions that approximate 5 representative cells along the SBLC cavity.
(See Fig. 1. The shape of a real SBLC cell is the same, except that the iris
and one upper corner are rounded.) The wakes of the 5 models are then
averaged to give us the wakefields representing the entire SBLC structure.
These functions can, in turn, be used as Green functions to find the induced
voltage or transverse kick over a distribution of particles. However, since the
wake functions are derived using periodic models the results are valid only if the
bunch length is not too short, such that the transient effects at the beginning
of the structure are small and can be ignored, a subject to be discussed in a
later section of this report.

To obtain the longitudinal wakefield of each of the 5 periodic models we
proceed as follows [9]: We use the computer program KN7C [12] to obtain
the synchronous frequencies and loss factors of the first few hundred monopole
modes, which give us the low-frequency impedance. We approximate the high
frequency contribution using the so-called Sessler-Vainsteyn optical resonator
model [12, 13], a model that has been shown to work well, for example, for
the SLC [9] and the NLC [10] structures. The real part of the impedance
(assuming t/L is small) becomes [10]

N 27033, v +1
R.(w) = > mhnd(w — w,) + LC (0 F 20+ 9)

n=1

-O(w — wy) w>0

(2)
with k, the loss factor (in units of V/pC/m) and w, the frequency of the
n'™ mode, Zy & 377 Q, jo; = 2.41 the first zero of the Bessel function Jo,
¢ = 0.824, v = 4a*w/(cL(?), with ¢ the speed of light and L = VL(L — t);
©(z) = 0 for x < 0, 1 for z > 0. Fourier transforming R,(w) we obtain the
longitudinal wakefield:

¢%Lsv
4a?

Wns ZociH L > U +1

¢ w2l Juy (v+2/v +2)? cos( Jdv . (3)

N
W.(s) = > 2kncos
n=1
with vy = 4a’wy/(cL(?).
The transverse (dipole) wakefield is obtained in the analogous manner, but
using the computer program TRANSVRS [14] to obtain the dipole mode fre-

quencies and loss factors. We first obtain the longitudinal dipole wakefield
W (s) using an equation very similar to Eq. 3, except using the transverse
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FIGURE 1: The model of one cell of linac structure that is used in the
calculations. For the average cell in the SBLC structure (cell 90) we take
a=1.35cm, b=4.00 cm, ¢t = .59 cm, and L = 3.50 cm.

mode frequencies and loss factors, and replacing jo; by j11 = 3.83, the first zero
of the first order Bessel function J;. Then, following the Panofsky-Wenzel the-
orem [15] we obtain the transverse dipole wakefield: W,(s) = f§ WV (s") ds".

The Wakefields

The SBLC linac operates at a frequency of 3.0 GHz and at a phase advance
of 27 /3 per cell; therefore, the cell length is L = 3.33 cm. The irises, which
are rounded, have a thickness f = 5.3 mm. The minimum iris radius varies
linearly from @ = 1.60 cm near the beginning of the structure to ¢ = 1.10 cm
near the end; the outer cavity radius b varies from 4.06 cm to 3.93 cm, from
the beginning to the end of the structure. For the average cell a = 1.35 cm
and b = 4.00 cm. (Note that the dimensions are similar to those of the
SLAC linac structure, an 84 cell structure that is also constant gradient, but
which operates at 2.856 GHz, and for which the average cell dimensions are
a=116cm, b=4.13cm, L = 3.50 cm, ¢t = 5.9 mm.) For our 5 representative,
periodic models we have taken as cell dimensions those of cells 1, 45, 90, 135,
and 180 of the SBLC structure, with a set to the minimum corresponding iris
radius, i.e. set to, respectively, 1.1 cm, 1.225 cm, 1.35 cm, 1.475 cm, and
1.6 cm.

In the longitudinal case we have found, for each of the 5 representative
structures, w, and k, for all modes up to 75 GHz (about 250 modes) using the
computer program KN7C. Comparing, at the higher frequencies, the binned
modal contribution to the Sessler-Vainsteyn part of Eq. 2 we find good agree-
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ment, to within 10%. Then substituting into Eq. 3 we obtain the wakefields
shown in Fig. 2 (the solid curves). The values at the origin, which should
equal [5] W,(0) = Zyc/(ma?) (= 198 V/pC/m for cell 90 dimensions), are 4-
5% low, indicating some calculation error. Note that if we compare the modal
sum contribution to the wake, say, of cell 90 to the total of modal sum plus
analytic extension we find that at the s = 0 the modal sum is 64% of the
wakefield, at s = 150 um 84%, and at s = 300 um 93%. We see that, had we
wanted to obtain W;(0) to 95% accuracy from the modal sum alone, we would
have needed to find the modes over (0.36/0.05)> = 52 times the frequency
range that we did, since at high frequencies R, ~ w?®?; this is something that
we could not accurately have done. The average of the 5 representative wakes
(with the wakes of cell 1 and 180 weighted by half) is given by the dashed
curve in Fig. 2. Finally, a fit to the average wake, given by

W, =200.(V/pC/m) - exp [—0.77(s/mm)%] , (4)

is shown by the dots in Fig. 2.
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FIGURE 2: The longitudinal wakefield of representative cells in the SBLC
structure (solid curves). The dashed curve represents the average, and the
dotted curve the model fit, Eq. 4.

To obtain the transverse wakefield of the 5 representative, periodic models
we have calculated modes up to 68 GHz (about 350 modes), using the computer
program TRANSVRS. Comparing, at the higher frequencies, the binned modal



contribution to the Sessler-Vainsteyn part of the impedance we again find
good agreement. The transverse wakefields for the 5 geometries are shown in
Fig. 3 (the solid curves). In this case the slope at the origin should equal [10]
W!(0) = 2Zgc/(ma?) (= 2.17 V/pC/mm?/m for cell 90); our numerical results
agree to within 2% in all cases. Note that for cell 90 dimensions the modal
sum is 67% of the wakefield at s = 150 ym and 74% at s = 300 yum. The
average wake is given by the dashed curve in Fig. 3. A fit to the average wake,
given by

W, = 4.10(V/pC/mm/m) - [1 - (1 + 1.15[s/mm]%) exp (—1.15[s/mm]%)]

(5)
is indicated by the dots.

5 [ T T T T T T T T T T T T l T T T T T T T H ]
—~ 4F ]
= [ ]

~ L Cell 0
£ L ]
o 5 St ]
Q" - /./ —
N o[ Lo i
< r //'/ = 90 ]
» o L |
= - e .
V= /) ]
B/ .
- Z -
W i
O 1 1 1 1 I 1 1 1 -l I 11 1 i 1 1 | | i 1 l 1 iy 1 1 ]
0 1 2 3 4 5

s/mm

FIGURE 3: The transverse (dipole) wakefield of representative cells in the
SBLC structure (solid curves). The dashed curve gives the average, the dotted
curve gives the model fit of Eq. 5.

Determining N

Consider first the wakefields obtained for the periodic models in the previous
section (the solid curves in Figs. 2 and 3). These are asymptotic wakefields;
for a finite structure they do not apply until the beam has traversed a suffi-
cient number of cells N,.;;. To test the validity of Eq. 1 for N, and to find



@, at least for the longitudinal case, we have performed a series of MAFIA
time domain calculations to obtain the wakefield of short Gaussian bunches
of various lengths in structures consisting of a finite number of cells with in-
finitely long beam tubes. Although the SBLC structure is a constant gradient
structure, for simplicity, we use only identical cells, with the dimensions of
cell 144 in the real structure, for which ¢ = 1.20 cm. The bunch lengths vary
from 0, = 0.1 mm, 0.3 mm, 0.5 mm, and then in 0.25 mm steps up to 4 mm;
the number of cells vary from N, = 1 to 10. For the short bunch lengths of
interest it is difficult to obtain accurate results since the number of time steps
and mesh points that need to be traversed becomes very large. For example,
for 0, = 0.1 mm and N,.; = 10 we used a mesh size of 0,/13 and a total
number of 65 x 10° mesh points for good accuracy.
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FIGURE 4: The loss factor obtained by MAFIA for a Gaussian bunch in
a structure consisting of a finite number of cells connected to infinite beam
tubes, as function of bunch length. Curves are given for structures having
from 1 to 10 cells. Also shown are the loss factor according to the diffraction
model, Eq. 6, and that for the periodic structure (the dashes).

Fig. 4 shows the results. Plotted are the voltage loss per charge per cell,
ktot, as function of bunch length, for various length structures. Also shown by
the dashes, for comparison, are the loss for a very short Gaussian bunch in a



single cell cavity, given by the Lawson diffraction model [3}:

['(1/4)Zsc [ g
kg = — 2220C [ 9
tot 475/2¢ o, (6)
with ['(1/4) = 3.63 and g¢ the cavity gap (i.e. L —t), and for that using the
wake of a periodic structure (calculated by the modal method) in

32

L 00 -
kO:—~/ dsW,(s)e #T .
tot 2\/7_razo SW(S)C’ (7)

From Fig. 4 we see that the MAFIA results are bounded by the two asymp-
totic curves. For bunch lengths larger than about 2 mm the loss per cell is
independent of the number of cells. For shorter bunches we note that the
single cell results approach the single cell asymptotes, as the bunch length
decreases. Also, for a given bunch length, as the number of cells increases, the
loss per cell asymptotically approaches the periodic structure curve, however,
with a slight [8% at o, = 0.5 mm, 6% at o, = 1.0 mm]| systematic offset. The
agreement is quite good. We believe that the discrepancy is partly due to the
slight (~ 5%) error in the modal calculation (discussed above), and, for shorter
bunch lengths, partly due to the fact that the MAFIA results slightly overes-
timate the asymptotic solution since they represent the average of all cells in
the finite structure (see below). Note that for bunch lengths o, < 0.3 mm, 10
cells do not seem to be sufficient for the loss to reach the asymptotic value.
Also note that for a finite number of cells, as the bunch length becomes ever
shorter the loss again varies as o 1/2.

To determine N,; we first calculate the differential loss factor for each cell
from the MAFIA data, x,, defined as the total loss factor for an Ny cell
structure minus that of an N, — 1 cell structure, which we then convert into
a function of cell number through cubic spline interpolation (see Fig. 5). In
Fig. 5 we note that for 0, = 0.1 mm the curve decreases throughout the range;
for the longer bunch lengths it is rather constant throughout the range. For
the intermediate bunch lengths, however, k, begins by decreasing gradually,
and then levels off for high cell number. Upon careful inspection one notices
that for these curves there is also a slight (~ 3%) dip before the curve reaches
the final, asymptotic value. Note that, as mentioned before, for the shorter
bunch lengths (0.1 — 0.5 mm) and long structures, due to the great number of
mesh points and time steps needed, it is difficult to obtain accurate values of
ki, and it is even more difficult to obtain accurate values of ,. For example,
if we want , for cell 10 to be accurate to 2% we need the kq, calculations of
the 9- and the 10-cell structures to be accurate to .2%. In Fig. 6 numerical
errors probably account for the slight anomalies that we see in the high end
of the curves for short bunches; nevertheless, the general trend of these curves
is still correct.
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FIGURE 5: The differential loss factor of cell Ny, &,, for various bunch
lengths, as obtained by MAFIA (the points at integer values of N,e;), made
into continuous functions by splining.

From Fig. 5 we see that k, as function of N, approaches the asymptote only
gradually; therefore, what we take as N, ¢.e. the number of cells needed for
reaching the asymptote, will depend strongly on the criterion that we use. Let
us consider 3 different criteria that result in a «, that is within a few percent
of the asymptotic value: (1) the point in the curve, before the dip, where
Kn reaches the same value as the asymptote, (2) the dip position, and (3) the
position (after the dip) where the curve reaches to 98% of its asymptotic value.
The o, = 0.1 and 0.3 curves, as well as those for which o, > 2.0 mm, are not
included; as asymptote we take the value of k, at N, = 8. The results are
shown in Fig. 6, with case 1 given by the x’s, case 2 by the diamonds, and
case 3 by the +’s. Fitting the data to a power law (N, as a function of ¢,) we
obtain as exponent —1.06 in the first case and —0.85 in the others. However,
given the accuracy of the calculation, we can say that the results are consistent
with the —1 power dependence of Eq. 1. As for the coefficient «, when fitting
to Eq. 1 we obtain 0.5, 0.7, and 1.0 for cases 1, 2, and 3, respectively. In
summary, to obtain an average loss at the end of a finite length, repeating
structure that is within a few percent of the average loss in the truly periodic
structure the critical number of cells needed appear to be given by Eq. 1, with
a~0.5-1.0.
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FIGURE 6: The critical number of cells as function of bunch length (the
plotting symbols). N is obtained from Fig. 5 following 3 different criteria:
(1) the point in the curves, before the dip, where «, reaches the same value
as the asymptotic value (x’s), (2) the dip position (diamonds), and (3) the
position (after the dip) where the curves reach to 98% of their asymptotic
value (+’s). Also shown are the fits to Eq. 1, taking, respectively, o = 0.5,
0.7, 1.0 (the curves).

Comparisons

Let us first consider a Gaussian bunch with ¢, = 500 um. For our 10-cell
example structure (remember a = 1.2 ¢cm) this bunch needs to traverse N.; ~
4 — 8 cells to reach to within a few percent of the asymptotic loss factor.
Therefore, the initial transient effect should be small. According to the modal
calculation the asymptotic value is 2.4 V/pC/cell, which is 9% less than the
average loss factor, and 1.5% less than the differential loss factor, as obtained
by MAFIA. In Ref. [7] Drevlak obtains the wakefields of Gaussian bunches in
15-cell models of the SBLC structure (in this case the irises are rounded) by
direct time domain integration, also using MAFIA. For a constant impedance
structure with the dimensions of cell 90 (¢ = 1.35 c¢m) he finds that k;,; =
2.23 V/pC/cell; the result using the modal wake of the cell 90 model is 12%
less. For a constant gradient model of the SBLC linac cavity Drevlak obtains
kit = 2.30 V/pC/cell; the modal result, using the wake of Eq. 4, gives 13%
less.
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Consider now the nominal SBLC bunch length o, = 300 pum. In this case
(since @ &~ 1.6 cm at the beginning of the structure) we estimate that N,.;
13 — 26 cells, which is still small compared to the total number of cells in
the SBLC linac cavity. For his constant gradient model Drevlak gets k,,; =
2.63 V/pC/cell, and the modal result is 15% less. Finally, for the dipole
case, Drevlak obtains an average dipole kick of 0.0135 V /pC/mm/cell, and
the modal result, using the wake of Eq. 5, is 32% less.

Although there appears to be reasonable agreement between our results and
those obtained by MAFIA for our 10-cell, ¢ = 1.2 cm, model, the agreement
is not so good when comparing with Drevlak’s results, particularly in the
transverse case. It is not clear where this disagreement comes from. It is
probably not all explained by the initial transients. Other possible sources of
error in our modal wakes: (i) As mentioned before, we expect the wakes for our
9 periodic models to each contain errors, but none much larger than about 5%.
(ii) The effect of using flat instead of rounded irises in our model will introduce
an error; however, since the minimum iris radius was kept the same this will
give a larger (not smaller) wakefield, by a few percent. (iii) We approximate a
constant gradient structure locally by a periodic structure; however, with the
very gradual variation in iris radius of the real structure (only 0.2% variation
per cell) we expect this effect also to be small. More study is needed.
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