
ar
X

iv
:h

ep
-p

h/
97

04
40

6v
2 

 2
3 

D
ec

 1
99

8

hep-ph/9704406 CERN-TH/97-80
NTZ 12/97

Restricted conformal invariance in QCD and its predictive power

for virtual two-photon processes

D. Müller
TH Division, CERN, 1211 Geneva 23, Switzerland ∗

(23.12.98)

Abstract

The conformal algebra provides powerful constraints, which guarantee that

renormalized conformally covariant operators exist in the hypothetical confor-

mal limit of the theory, where the β-function vanishes. Thus, in this limit also

the conformally covariant operator product expansion on the light cone holds

true. This operator product expansion has predictive power for two-photon

processes in the generalized Bjorken region. Only the Wilson coefficients and

the anomalous dimensions that are known from deep inelastic scattering are

required for the prediction of all other two-photon processes in terms of the

process-dependent off-diagonal expectation values of conformal operators. It

is checked that the next-to-leading order calculations for the flavour non-

singlet meson transition form factors are consistent with the corrections to

the corresponding Wilson coefficients in deep inelasitic scattering.
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I. INTRODUCTION

In a massless theory, conformal symmetry has the ability to provide powerful predictions
for physical quantities. However, conformal symmetry is broken on the quantum level due
to the renormalization. This breaking is controlled by the conformal Ward identities (CWI)
of dilatation and special conformal symmetry. It is often possible to redefine the conformal
representation, implying that in the physical sector of the theory the conformal symmetry
is only broken by the renormalization of the running coupling constant, which provides a
symmetry-breaking term proportional to the β-function. If there exists a non-trivial (non-
perturbative) fixed-point such that the β-function vanishes, conformal invariance holds true.
This is the so-called hypothetical conformal limit of the theory.

For instance, the Crewther relation [1] (also derived in [2]) is based on conformal invari-
ance. The value of the Bjorken sum rule K and the isovector part R′ of the cross-section
ratio σ(e+e− → hadrons)/σ(e+e− → µ+µ−) are computed in QCD up to the order α3

s

[3,4]. Assuming conformal invariance for the axial vector-vector-vector (AVV) correlator,
Crewther proved that the relation 3S = KR′ holds true; S is the anomalous constant, which
is, corresponding to the Adler–Bardeen theorem, given by its one-loop value. Since the
vector current and the flavour non-singlet axial-vector current are conserved, the CWI for
the AVV correlator tells us that conformal invariance can be broken only by the β-function
[5]. This is actually the case for the available α3

s order [6] (see also [7]– [8]).
It has been known for a long time that the conformal symmetry provides powerful con-

straints for the Wilson coefficients of the operator product expansion (OPE) for two local
currents. This provides an improved OPE, which was called conformally covariant OPE
and was studied in a number of papers, starting in the seventies with the work of Ferrara,
Gatto and Grillo [9–13]. Employing the conformal Ward identities for the Green functions
of composite operators, the conformal symmetry breaking in the interacting scalar theory
was studied by Ferrara, Grillo and Parisi [14]. Making a non-trivial assumption about the
form of the conformal Ward identities, the authors found that for a non-trivial fixed-point
of the β-function the conformally covariant OPE holds true if the original scale dimensions,
given by the canonical dimensions, are shifted by the anomalous dimensions.

Brodsky, Frishman, Lepage and Sachradja employed the conformally covariant expansion
for a non-local operator, appearing in the definition of the pion distribution amplitude, to
predict the evolution of this amplitude correctly at leading order (LO) [15] (see also [13]).
Note that this requires a generalization of the OPE and an assumption about the conformal
properties of this non-local operator. With this application a puzzle of the conformal in-
variance in gauge field theories sets up beyond the leading order. The next-to-leading order
(NLO) prediction for the eigenfunctions of the pion evolution kernel in the conformal limit
contradicts the NLO calculation of the non-singlet evolution kernel in the modified minimal
subtraction (MS) scheme [16–19]. Brodsky, Damgaard, Frishman and Lepage have shown
that this breakdown of conformal symmetry is renormalization-scheme-dependent and that,
in the special case of the ϕ3

(6)-theory in six dimensions, conformal symmetry is preserved in
the Pauli–Villars regularization at the considered order [20]. However, in QCD the confor-
mal symmetry predictions could not be restored by a renormalization group transformation.
Later, the breaking of conformal covariance for local conformal composite operators, ap-
pearing in the expansion of the considered non-local operator, was analysed by the CWI
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and conformal constraints. It was found that the symmetry breaking in the MS scheme (i)
destroys the irreducible representation of the conformal algebra at leading order and (ii) that
the conformal symmetry-breaking at this order provides the eigenfunctions of the computed
evolution kernels in NLO [21,22], also for QCD.

In this paper we do not reanalyse this issue in terms of a modified conformal OPE, which
may be done in a straightforward manner by employing the CWI. Here we deal with the
conformally covariant OPE for two local currents that have a well-known behaviour under
conformal transformations in the interacting theory. Neglecting the conformal symmetry-
breaking terms that are proportional to the β-function allows us to give a first application
to QCD processes.

The paper is organized as follows. For the convenience of the reader, in Section II we
shortly review the conformal algebra and the irreducible representations that are needed,
as well as the derivation of the conformally covariant OPE. Using conformal constraints,
coming from the conformal algebra and the CWI, it will be proved in Section III that there
exists a renormalization scheme in which the conformal covariance of composite operators
holds true in the conformal limit. This allows the construction of the conformally covariant
OPE in the interacting theory. In Section IV we employ this conformally covariant OPE
to predict the scattering amplitude for two-photon processes in the light-cone-dominated
region [23] covering the kinematics of deeply virtual Compton scattering (DVCS), which has
recently been proposed to open a new window for the exploration of the nucleon contents
[24–26]. Included are two well-known special cases, which have been measured: deep inelas-
tic scattering (DIS) and one-meson production at large momentum transfer in two-photon
collision [27–30]. In Section V we show that the existing NLO corrections for the flavour
non-singlet meson transition form factors, computed in the MS scheme, coincide with the
prediction of the conformally covariant OPE. Finally, the knowledge of the higher-order
corrections to the Bjorken sum rule allows us to point out phenomenological consequences
for the pion transition form factor.

II. CONFORMAL ALGEBRA AND THE CONFORMALLY COVARIANT OPE

A. Field theoretical conformal representations

The conformal group is the maximal extension of the Poincaré group that leaves the light
cone invariant; it is thus of physical interest for light-cone-dominated as well as for high-
energy processes. Beside the well-known Poincaré transformations, the conformal group
consists of dilatations: xα → ρxα and special conformal transformations: xα → (xα +
cαx2)/(1 + 2cx + c2x2). The latter is composed of an inversion xα → xα/x2, a translation
xα → xα + cα, and a further inversion. The conformal factor 1/(1 + 2cx+ c2x2) is singular
on the cone and so the special conformal transformations are not well defined as global
transformations in the Minkowski space. Moreover, it is possible to transform non-causal
connected regions into one another, which violates the principle of causality. To apply the
conformal group to the quantum field theory in Minkowski space, it is sufficient in future
studies to restrict ourselves to infinitesimal special conformal transformations: this avoids
both of the mentioned problems. In the following we consider field theories (of polynomial
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form) with space-time dimensions larger than 2, which are conformally invariant on the
classical level.

For space-time dimension n, the algebra of the conformal group is isomorphic to the
algebra SO(n, 2) and consists, besides of the algebra of the Poincaré generators Mαβ and
Pα:

[Mαβ ,Mγδ] = i (−gαγMβδ + gαδMβγ + gβγMαδ − gβδMαγ) , (2.1)

[Mαβ , Pγ] = i (−gαγPβ + gβγPα) , [Pα, Pβ] = 0,

of the following commutation relations for the dilatation generator D and for the generator
Kα of special conformal transformations:

[D,Kα] = iKα, [Kα, Pβ] = −2i (gαβD +Mαβ) , [Kα, Kβ] = 0, (2.2)

[D,Pα] = −iPα, [Mαβ , Kγ] = i (gβγKα − gαγKβ) , [D,Mαβ] = 0.

The field theoretical representations with finite components have been classified on the
basis of the induced representation theory [31]. In the following we deal with irreducible
representations of the conformal algebra, where the action of the special conformal generator
Kλ on a basis field φ(x) vanishes at the point xα = 0:

[φ(x),Mαβ ]|x=0 = Σαβφ(0), [φ(x), D]|x=0 = idφφ(0), [φ(x), Kα]|x=0 = 0. (2.3)

Here φ = ϕ, ψ,Aµ may be a scalar field ϕ, a fermionic field ψ or a gauge field Aµ with
scale dimension dφ. Conformal invariance in the classical theory requires that the fields are
massless and that the scale dimensions are equal to the canonical dimensions dcan

φ of the
fields. The representation of the Lorentz group is:

Σαβϕ = 0, Σαβψ =
i

4
[γα, γβ]ψ, ΣαβAµ = i (gµαAβ − gµβAα) . (2.4)

The theory of induced representation now provides the action of the generators at an arbi-
trary space-time point:

[φ(x), Pα] = i∂αφ(x), [φ(x),Mαβ ] = (i [xα∂β − xβ∂α] + Σαβ)φ(x), (2.5)

[φ(x), D] = i(dφ + x∂)φ(x), [φ(x), Kα] = i
(

2xα(dφ + x∂) − 2iΣαβx
β − x2∂α

)

φ(x).

B. Conformally covariant operators

Parton distribution functions and hadron distribution amplitudes are defined as expecta-
tion values of composite light-ray operators. Their moments are expressed in terms of local
operators. In the following, the local conformal two-particle operators are considered. For
these operators the conformal symmetry at tree level yields that the operators do not mix
under renormalization at LO and so they are essential in solving the evolution equations in
the non-forward case. For the leading twist operators it is sufficient to consider the collinear
conformal algebra, which is isomorphic to SU(1, 1) ≡ SO(2, 1). The four generators are
obtained by projection onto the light cone:
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P+ = ñαP
α, K− = ñ⋆αK

α, D, M−+ = ñ⋆αM
αβ ñβ, (2.6)

where ñ, ñ⋆ are light-cone vectors with the normalization ññ⋆ = 1. They generate the
projective transformation onto the line and satisfy the commutation relation [coming from
the algebra (2.2)]:

[M−+, K−] = [D,K−] = iK−, [K−, P+] = −2i(D +M−+), (2.7)

[M−+, P+] = [D,P+] = −iP+, [M−+, D] = 0.

Acting with the step-up operator P+ on φ(0) generates an infinite-dimensional representa-
tion, the so-called conformal tower {φ(0), P+φ(0), P 2

+φ(0), . . .}. The operator K− acts as
a step-down one, and annihilates the lowest member φ(0), i.e. K−φ(0) = 0. As for D
and M−+, they are diagonal operators, which give the scale dimension and the spin of the
members, respectively. The spectrum of the Casimir operator

C =
1

2
P+K− − 1

4
(D +M−+)2 − i

2
(D +M−+) (2.8)

is j(j + 1), where j is the conformal spin.
Conformal composite operators can be constructed by different methods [32–34], for

instance by decomposition of the direct product of two towers {φi(0), P+φi(0), . . .} into
irreducible representations. The Clebsch-Gordon coefficients are given by the coefficients of

the Jacobi polynomials P
(ν1− 1

2
,ν2−

1

2)
k ,

Okl(ν1, ν2) = (iñ∂+)lφ1(0)ΓP
(ν1− 1

2
,ν2−

1

2)
k

(

ñ∂−
ñ∂+

)

φ2(0), l ≥ k, νi = dφi
+ sφi

− 1/2, (2.9)

where ∂ν± =
→

∂ν ±
←

∂ν and Γ contains the spin and, eventually, further global group theoretical
structures. To ensure gauge invariance in a given gauge field theory, the partial derivatives
have to be replaced by the covariant ones, which does not spoil the conformal properties of
the operator. The index νi is determined by both the scale dimension and the spin of the
corresponding field φi. The action of the collinear conformal generators are given by:

[Okl(ν1, ν2), P+] = Okl+1(ν1, ν2)

[Okl(ν1, ν2), K−] = 2(k − l)(k + l + ν1 + ν2)Okl−1(ν1, ν2), (2.10)

[Okl(ν1, ν2), D] = i(d1 + d2 + l)Okl(ν1, ν2),

[Okl(ν1, ν2),M−+] = i(s1 + s2 + l)Okl(ν1, ν2),

where (d1 + d2 + l) and (s1 + s2 + l) are the dimension and the spin, respectively, of the
operator Okl(ν1, ν2). The lowest member in each tower is Okk(ν1, ν2).

In the following we often consider conformal operators in the ϕ3
(6) theory, where the field

has the canonical dimension dϕ = 2, and in QCD for the non-singlet channel, where the
quark fields have dψ = 3/2 and s = 1/2, so that in both cases ν1 = ν2 = 3/2. Since ν1 = ν2,
the Jacobi polynomials can be expressed by the Gegenbauer polynomials Cν

k :

P
(ν− 1

2
,ν− 1

2)
k (x) =

(ν + 1/2)k
(2ν)k

Cν
k (x), (2.11)

where (a)n = Γ(a+ n)/Γ(a) is the Pochhammer symbol.
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C. Conformally covariant OPE

Here we refer to the work of Ferrara, Gatto and Grillo [9–11]. The construction of the
conformally covariant OPE is based on the behaviour of the conformal operators under in-
finitesimal conformal transformations, which is characterized by their scaling dimension and
their conformal spin. To simplify the notation, only the scalar case will be considered. In
Subsection IIIC the derivation reviewed here will be applied to the product of two elec-
tromagnetic currents. We restrict ourselves to leading twist and assume that the following
symmetrized and traceless conformal operators with scale dimension lk + l− k = d1 + d2 + l
form a complete basis:

Oα1...αl,k(x) = S
{α}

i(l−k)∂αk+1
. . . ∂αl

Oα1...αk
(x) − traces. (2.12)

Here S
{α}

denotes symmetrization with respect to α1, . . . , αl. As in the case of the collinear

conformal representation, which is obtained by contraction with the light-cone vector ñ,
the operator Oα1...αk

(0) is the lowest member of the corresponding conformal tower. For
dimensional reasons, the product of the currents A and B are expanded on the light cone
as:

A(x)B(0) =
∞
∑

k=0

(

1

x2

)

lA+lB−lk+k

2
∞
∑

l=k

C̃kl(−i)(l+1)xα1 . . . xαlOα1...αl,k(0), (2.13)

where C̃kl are the Wilson coefficients. Furthermore, lA and lB denote the scale dimensions
of the currents A and B, respectively.

One way to construct the conformally covariant OPE is to act with Kλ on both sides of
the OPE (2.13) (see [10]) and compare the two results for the leading twist contributions.
Taking into account the action of Kλ on the currents

[A(x)B(0), Kλ] = i
(

2xλ(lA + x∂) − x2∂λ
)

A(x)B(0) (2.14)

and on the composite operators (2.12),

S
{α,λ}

[Oα1...αl,k(0), Kλ] = 2(k − l)(lk + l − 1) S
{α,λ}

Oα1...αl−1,k(0)gλαl
(2.15)

results, after comparison of the obtained expressions, into a recurrence relation for the
Wilson coefficients:

C̃kl+1 =
(lA − lB + lk − k)/2 + l

(l − k + 1)(lk + l)
C̃kl ⇒ C̃kl =

([lA − lB + lk + k]/2)l−k
(l − k)!(lk + k)l−k

C̃kk. (2.16)

Inserting this solution in the OPE (2.13) allows the summation with respect to l and provides
the conformally covariant OPE that is written here in the following representation:

A(x)B(0) =
∞
∑

k=0

C̃k

(

1

x2

)

lA+lB−lk+k

2

(−i)(k+1)xα1 . . . xαk × (2.17)

∫ 1

0
du u(lA−lB+k+lk)/2−1(1 − u)(lB−lA+k+lk)/2−1Oα1...αk

(ux),

6



where C̃k = C̃kk.
Let us recall the assumptions used to derive this conformally covariant OPE (2.17).

Besides the completeness of the operator basis, it was essential that Kλ annihilates the
currents A,B and the conformal operators at the point xα = 0:

[A(x), Kλ]|x=0 = [B(x), Kλ]|x=0 = 0, (2.18)

S
{α,λ}

[Oα1...αk
(x), Kλ]|x=0 = 0. (2.19)

The transformation laws under the infinitesimal conformal transformation (2.15), analogous
to those in (2.10), result in a special arrangement of the operators. This causes the predictive
power of the conformally covariant OPE, namely that the corresponding Wilson coefficients
are already fixed and only the coefficients C̃k are unknown and have to be computed explic-
itly, which can be done by forming forward matrix elements. In this case the u-dependence
of the operators can be dropped and the conformal OPE is reduced to the common OPE
for the forward case that is familiar from deep inelastic scattering (DIS).

III. CONFORMALLY COVARIANT RENORMALIZATION SCHEME

Generally, the conformal invariance of classical field theories is broken at the quantum
level owing to the renormalization of the fields and the coupling constant1. However, the
symmetry breaking by the renormalization of the fields can be absorbed into the redef-
inition of the conformal representation, i.e. the scale dimension given originally by the
canonical dimension is shifted by the anomalous dimension of the corresponding field. The
renormalization of the coupling constant cannot be implemented in the original irreducible
representation. However, in a scalar theory, Zaikov explored the possibility to extend the
conformal representation of Green functions to a non-decomposable irreducible representa-
tion that includes the β-function [35]. In the following, it is simply assumed that there
exists a non-trivial fixed-point such that the β-function vanishes; formally, we speak from
the conformal limit and set β to zero.

The conformal properties of composite operators will also be spoiled by the renormal-
ization. To study this symmetry breaking we employ the CWI [36], which was derived, for
gauge field theories, in the canonical quantization [37] and in the path integral formulation
[38]. Using the latter approach the CWI needed for conformal composite operators was writ-
ten down in the dimensional regularization [21,22]. To have a convenient form for the Ward
identities, we introduce a few shorthand notations. The symbol [O] means renormalization
of the operator O in the MS-scheme. For simplicity we assume that the composite operators
are closed under renormalization. Because of Poincaré invariance the Z-matrix is triangular
(a detailed discussion on this point can be found, for instance, in [20]):

1In gauge field theories, the conformal invariance is also broken by the renormalization of the

gauge-fixing parameter as well as explicitly by the gauge-fixing and ghost terms in the action. In

the Abelian theory, this breaking can be formally written as a Becchi–Rouet–Stora–Tyutin (BRST)

transformation, so that it does not appear in the physical sector of the theory. In the following we

assume that this breaking is also absent in the physical sector of QCD.

7



[Okl] =
k
∑

k′=0

Zkk′Ok′l. (3.1)

Furthermore, X = φ(x1) . . . φ(xn) is a monomial of elementary fields and 〈A〉 denotes the
vacuum expectation value of the time-ordered product TA exp i[S]. Then the conformal
Ward identities for the renormalized composite operators [Okl](ν1, ν2) finally read2:

iD〈[Okl]X〉 =
k
∑

k′=0

[(l + dcan
1 + dcan

2 )δkk′ + γkk′] 〈[Ok′l]X〉 +
β

g
〈[Okl∆

β ]X〉 + · · · ,

iK−〈[Okl]X〉 = −i
k
∑

k′=0

[2(k − l)(k + l + ν1 + ν2)δkk′ + γckk′(l)] 〈[Ok′l−1]X〉 + (3.2)

β

g
〈[Okl∆

β
−]X〉 + · · · .

Here D and K are differential operators, which act on each field in the monomial X as in
Eq. (2.5), e.g.:

iD〈[Okl]φ1(x)φ2(y)〉 = −(d1 + d2 + x∂x + y∂y)〈[Okl]φ1(x)φ2(y)〉, (3.3)

where the scale dimensions are shifted by the anomalous dimensions of the field, di = dcan
i +γi.

The operators ∆β and ∆β
− = ñ⋆µ∆β

µ arise from the conformal symmetry breaking in the
action due to the renormalization of the coupling constant. Actually, they are given by the
trace anomaly of the energy–momentum tensor [39–42] and will be written here in terms of
the renormalized Lagrangian L(x) [37,38]:

[∆β] = i
∫

dnx g
∂

∂g
L(x), [∆β

λ] = i
∫

dnx 2xλ g
∂

∂g
L(x). (3.4)

The ellipses in the CWI denote Green functions with operator insertions caused by the gauge-
fixing and ghost terms. Such contributions should be absent in physical matrix elements.
The expression γkk′ is the anomalous-dimension matrix of the operators and γckk′(l) denotes
the special-conformal anomaly matrix, which breaks the covariance of the operators under
infinitesimal special conformal transformations. Such transformations break the Poincaré
invariance (Kα does not commute with Mβγ and Pβ) and therefore the spin l dependence
appears.

A. Leading order analysis

It is well known that the anomalous-dimension matrix of conformal two-particle opera-
tors is diagonal to LO: γ

(0)
kk′ = γ

(0)
k δkk′. However, in a general renormalization scheme the

2These CWI do not rely on any assumptions about the conformal symmetry breaking and they

differ from the ones used in a previous study in Ref. [14] by the triangularity of the anomalous

matrices.
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irreducible conformal representation is already broken by an off-diagonal special-conformal
anomaly matrix. Using the dimensional regularization and the MS prescription the results
for the φ3

(6) theory read, in matrix notation [21]:

γ̂c(0)(l) = −b̂(l)γ̂(0), b̂(l) = {bkk′(l)} , γ̂(0) =
{

γ
(0)
k δkk′

}

, (3.5)

where

bkk′(l) =

{

2(l + k′ + 3)δkk′ − 2(2k′ + 3) if k − k′ ≥ 0 and even

0 otherwise.
(3.6)

Regularization of the “gluon” propagator via Pauli–Villars provides a different breaking of
the special conformal transformation:

γ̂c(0)(l) = −γ̂(0)b̂(l). (3.7)

However, this breaking can easily be absorbed in a redefinition of the local operator by chang-
ing the index3 ν → ν − αs

4π
γ

(0)
k and it coincides with the prediction of conformal symmetry

[20].
For the conformal flavour non-singlet quark operators in QCD the symmetry breaking is

even more complicated [22] due to the covariant derivatives:

γ̂c(0)(l) = −b̂(l)γ̂(0) + ŵ, (3.8)

where the non-vanishing elements of wkk′ (for k − k′ > 0 and k − k′ even) are

wkk′ = −4CF (2k′ + 3)(k − k′)(k + k′ + 3)

×
[

Akk′ − ψ(k + 1) + ψ(0)

(k′ + 1)(k′ + 2)
+

2Akk′

(k − k′)(k + k′ + 3)

]

, (3.9)

Akk′ = ψ

(

k + k′ + 4

2

)

− ψ

(

k − k′

2

)

+ 2ψ (k − k′) − ψ (k + 2) − ψ(1),

with ψ (z) = d
dz

ln Γ(z). It turns out that the appearance of the matrix ŵ explains the
difference between the conformal symmetry prediction for the eigenfunctions of the pion
evolution kernel and the explicit NLO calculation.

Normalization conditions, which are given implicitly in the MS scheme, are a matter of
convenience, and changing them does not affect physical quantities. Thus we can look for a
scheme in which conformal covariance is restored. Such a scheme can be obtained by a finite
renormalization; at LO we define the renormalized conformally covariant operators as:

Oco
kl = [Okl] −

αs
2π

k−2
∑

k′=0

γ
c(0)
kk′ (l)

2(k′ − k)(k′ + k + ν1 + ν2)
[Ok′l] + . . . , (3.10)

= Okl +
αs
2π

γ
(0)
k

2ǫ
Okl −

αs
2π

k−2
∑

k′=0

γ
c(0)
kk′ (l)

2(k′ − k)(k′ + k + ν1 + ν2)
Ok′l + . . . ,

3 Here αs denotes of course an appropriate definition of the coupling constant in the scalar theory.

Note that only at one-loop order the conformal symmetry prediction for the eigenfunctions of the

evolution kernel coincides with the shift of the index ν for the operator.
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where 1/ǫ is the usual ǫ-pole in dimensional regularization, which fulfil the CWI:

iD〈Oco
klX〉 =

[

l + dcan
1 + dcan

2 +
αs
2π
γ

(0)
k

]

〈Oco
klX〉 + · · · , (3.11)

iK−〈Oco
klX〉 = −i

[

2(k − l)(k + l + ν1 + ν2) +
αs
2π
γ
c(0)
kk (l)

]

〈Oco
kl−1X〉 + · · · .

For the scalar theory as well as for QCD we find from Eqs. (3.5) – (3.8) that γ
c(0)
kk (l) =

2(k − l)γ
(0)
k . Thus, in both equations of the CWI (3.11) the conformal symmetry breaking

by the anomalous dimension is absorbed into the shift of the canonical dimension of the
operators l + dcan

1 + dcan
2 → l + dcan

1 + dcan
2 + γk. In this way the irreducible conformal

representation is restored for the renormalized operator at LO. So as conformal covariance
at tree level is sufficient for a diagonal anomalous-dimension matrix at LO, the one-loop
renormalized conformal operators do not mix under renormalization in NLO, of course, up
to a term proportional to β0.

B. Restoration of conformal covariance

Before we use conformal constraints to extend the analysis to the full conformal theory,
let us show that the property γ

c(0)
kk (k) = 0 holds true generally. To make the discussion

transparent, let us first consider the scalar theory in which γ̂c(l) is defined in the MS scheme
as [21]

γ̂c(l) = −2γϕb̂(l) + 2[Ẑ [1], b̂(l)] + Ẑ⋆[1](l), (3.12)

where the counterterm Ẑ⋆ = Ẑ⋆[1]/ǫ+ Ẑ⋆[2]/ǫ2 + . . . has to be computed from the renormal-
ization of the operator product

[Okl][∆
β
−] = [Okl∆

β
−] + i

k
∑

k′=0

Z⋆
kk′(l)[Ok′l]. (3.13)

From the properties of b̂(l) and Ẑ it follows that γckk(k) = Z
⋆[1]
kk (k). The latter is determined

by the UV-divergent part of
∫

dnx (ñ⋆x)ϕ3(x)Okk. Since Okk is a polynomial of order k in the
derivatives and the UV divergence is concentrated in xα = 0, it is clear that ñ⋆x annihilates
one derivative, so that a polynomial of order k − 1 remains. Thus, no counterterm Okk is
needed and therefore γckk(k) = Ẑ

⋆[1]
kk (k) = 0. In gauge field theories the definition of Ẑ⋆ is

modified by a term containing the functional derivative with respect to the gauge field [22]:
∫

dnx (ñ∗x)Aµ
δ

δAµ
[Okk]. Obviously, we can use the same arguments as above, and this term

also does not induce a contribution to γckk(k).
The proof that conformal covariance can be restored in the conformal limit will be

achieved in the following manner. First we notice that the anomalous-dimension matrix will
be diagonalized by a finite renormalization group transformation,

iD〈Oco
klX〉 = (l + dcan

1 + dcan
2 + γk) 〈Oco

klX〉 + · · · . (3.14)

Then we show, with the help of conformal constraints, that this implies
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iK−〈Oco
klX〉 = −2i(k − l)[k + l + ν1 + ν2 + γk]〈Oco

kl−1X〉 + · · · . (3.15)

To calculate the r.h.s. of Eq. (3.15) we solve the conformal constraints in the following
Subsection. In a second Subsection we consider the flavour-singlet channel in QCD, where
an additional mixing problem between quark and gluon operators appears. Here, we only
take into account the algebraic properties of the constraints and the triangularity of the
matrices to show that Eq. (3.14) implies Eq. (3.15).

1. Solution of the conformal constraints

A constraint for the anomalous-dimension matrix, which allows the off-diagonal part to
be computed in terms of the special-conformal anomaly matrix, is implied by the commutator
relation

[D,K−] = iK−. (3.16)

Applying this identity to the Green functions and using the CWI provides immediately a
commutator relation for the anomalous-dimension matrix and the special-conformal anomaly
matrix. For completeness, we give the exact result, which includes the full β-dependence
[21,22] in the dimensional regularization for the MS prescription4:

[

â(l) + γ̂c(l) + 2
β

g
b̂(l), γ̂

]

= 0, akk′(l) = 2(k − l)(k + l + ν1 + ν2)δkk′. (3.17)

Since the matrix â is diagonal, a recurrence relation follows for the off-diagonal part γ̂ND of
the anomalous-dimension matrix (β is now consequently set to zero):

γNDkk′ = −
{

Gγ̂D
}

kk′
−
{

Gγ̂ND
}

kk′
. (3.18)

Here γ̂D = {γkδkk′} denotes the diagonal part of the anomalous-dimension matrix and the
operator G is defined by

GÂ :=











[γ̂c(l),Â]
kk′

2(k−k′)(k+k′+ν1+ν2)
if k − k′ > 0

0 otherwise.
(3.19)

The solution of Eq. (3.18) can be formally written as

γ̂ND = − G
1̂ + G

γ̂D = −Gγ̂D + G2γ̂D − · · · . (3.20)

4The derivation is tricky and all details for the scalar theory in dimensional regularization are

given in [21]. The calculation for the Abelian gauge field theory is analogous and as expected leads

to no explicit gauge dependence in the commutator relation. Since γ̂ is a physical quantity we can

assume that, at least for β = 0, this constraint holds also true in QCD.
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The composite operators, which do not mix under renormalization, are obtained by a
finite renormalization

Oco
kl =

k
∑

k′=0

B−1
kk′[Ok′l]. (3.21)

The matrix B̂ = {Bkk′} can be calculated from

γ̂D = B̂−1γ̂B̂ =⇒
[

B̂, γ̂D
]

= γ̂NDB̂, (3.22)

where the diagonal matrix γ̂D consists of the eigenvalues of the triangular anomalous-
dimension matrix. The solution of this equation is

B̂ =
1̂

1̂ − Lγ̂ND
= 1̂ + Lγ̂ND + L

(

γ̂NDLγ̂ND
)

+ · · · , (3.23)

where the operator L is defined by

LÂ :=







− Akk′

γk−γk′
if k − k′ > 0

0 otherwise.
(3.24)

The off-diagonal matrix γ̂ND is given in terms of γ̂c, implying that the transformation matrix
B̂ can also be expressed by the special-conformal anomaly matrix. From Eqs. (3.20) and
(3.23) one finds, after some algebra, that the diagonal anomalous-dimension matrix cancels
out (see Appendix A):

B̂ =
1̂

1̂ + J γ̂c
= 1̂ − J γ̂c + J (γ̂cJ γ̂c) − · · · , (3.25)

where the operator J is defined by

J Â :=







Akk′

2(k−k′)(k+k′+ν1+ν2)
if k − k′ > 0

0 otherwise.
(3.26)

Note that in the forward case all operators Okl with l > k vanish. Thus, the renormal-
ization group transformation (3.21) does not affect the minimal subtraction prescription in
the forward case: Oco

kk = [Okk].
Now we are almost able to prove that the operators Oco

kl are conformally covariant. For
this purpose we need the spin dependence of the special-conformal anomaly matrix, which
is constrained by the commutator relation:

[K−,P+] = −2i(D + M−+). (3.27)

Applying this relation to the Green functions and using the CWI (3.2) provides

γ̂c(l + 1) − γ̂c(l) = −2γ̂. (3.28)

The solution of this recurrence relation gives the spin dependence of the special-conformal
anomaly matrix
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γckk′(l) = γckk′(k) + 2(k − l)γkk′, and for k = k′ : γckk(l) = 2(k − l)γk, (3.29)

where the last equation follows from the above shown property γckk(k) = 0. The special
conformal anomaly of the operators Oco

kl are given by B̂−1 [â(l) + γ̂c(l)] B̂ and using the
corresponding definitions and the property (3.29), a straightforward calculation given in the
Appendix A provides

{

B̂−1 [â(l) + γ̂c(l)] B̂
}

kk′
= 2(k − l)(k + l + ν1 + ν2 + γk)δkk′, (3.30)

which is equivalent to (3.15).

2. Additional mixing problem in the QCD singlet channel

The leading twist operators appearing in the singlet channel can be written in the fol-
lowing conformally covariant manner, where for even parity we have:

qOkl = ∂l+ψ̄ ñαγ
αC

3

2

k

(

ñD−
ñ∂+

)

ψ, l ≥ k ≥ 0, (3.31)

gOkl = ∂l−1
+ ñαFαβC

5

2

k−1

(

ñD−
ñ∂+

)

F βγñγ , l ≥ k ≥ 1, (3.32)

while for odd parity:

qRkl = ∂l+ψ̄ ñαγ
αγ5C

3

2

k

(

ñD−
ñ∂+

)

ψ, l ≥ k ≥ 0, (3.33)

gRkl = ∂l−1
+ ñαF̃αβC

5

2

k−1

(

ñD−
ñ∂+

)

F βγñγ , l ≥ k ≥ 1. (3.34)

Here flavour and colour indices are suppressed for simplicity, Dν
− =

→

Dν −
←

Dν are the covariant

derivatives, Fαβ and F̃αβ = ǫαβγδF
γδ/2 are the field strength and the dual-field strength

tensor, respectively. Since the dimension of the field strength tensor is 2 and its spin is 1 the
index of the Gegenbauer polynomials for the gluon operators is ν = 5/2. All these operators
have spin l + 1 and canonical dimension l + 3, as well as the same behaviour under special
conformal transformations at tree level.

The following discussion is valid for operators of even and odd parity. The quark and
gluon operators will mix, and the anomalous-dimension matrix of the operators can therefore
be written in the following compact notation:

γ̂ =

(

qqγ̂ qgγ̂
gq̂γ gĝγ

)

, (3.35)

where the entries ijγ̂ for i, j = {q, g} are triangular matrices. At LO these entries are diagonal
and the remaining mixing problem has to be solved by explicit diagonalization of the 2 × 2
matrix.

With the previous assumption about the unphysical part in the CWI, the generalization
of the conformal constraint (3.17) for β = 0 is a purely algebraic task:
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[(

â(l) 0

0 â(l)

)

+

(

qqγ̂c(l) qgγ̂c(l)
gq̂γc(l) gĝγc(l)

)

,

(

qqγ̂ qgγ̂
gq̂γ gĝγ

)]

= 0, (3.36)

where akk′(l) = 2(k − l)(k + l + 3)δkk′. Now we introduce the matrix

B̂ =

(

qqB̂ qgB̂
gqB̂ ggB̂

)

, (3.37)

implying that the anomalous-dimension matrices of the operators

qOco
kl =

k
∑

k′=0

(

qqB−1
kk′[

qOk′l] + qgB−1
kk′[

gOk′l]
)

, gOco
kl =

k
∑

k′=0

(

gqB−1
kk′[

qOk′l] + ggB−1
kk′[

gOk′l]
)

(3.38)

consist only of diagonal entries

γ̂D = B̂−1γ̂B̂ =

(

qqγ̂D qgγ̂D

gq̂γD gĝγD

)

, (3.39)

where ijγ
D
kk′ = ijγkδkk′. Applying the transformation (3.39) to the conformal constraint (3.36)

tells us that

R̂(l) = B̂−1

[(

â(l) 0

0 â(l)

)

+

(

qqγ̂c(l) qgγ̂c(l)
gq̂γc(l) gĝγc(l)

)]

B̂ (3.40)

possesses only diagonal entries. Taking into account the property â(l+1)− â(l) = −2(l+3)1̂
and the analogous equation to Eq. (3.28) it follows that

R̂(l + 1) − R̂(l) = −2(l + 3)

(

1̂ 0

0 1̂

)

− 2

(

qqγ̂D qgγ̂D

gq̂γD gĝγD

)

. (3.41)

The solution of this recurrence relation together with the propertyRkk(k) = 0 for i, j = {q, g}
gives the following term in the r.h.s. of the special conformal Ward identity:

Rkk′(l) = 2(k − l)

(

k + l + 3 + qqγk
qgγk

gqγk k + l + 3 + ggγk

)

δkk′, (3.42)

which shows that the lowest member of each tower will be annihilated by the action of K−
in the conformal limit of the theory.

To restore the conformal covariance completely, the remaining mixing problem that is
well known from the forward case has to be solved by introducing the eigenvectors:

+O
co
kl = qOco

kl + C+
k

gOco
kl ,

−O
co
kl = gOco

kl + C−k
qOco

kl . (3.43)

These operators have completely diagonal anomalous dimension and special conformal
anomaly matrices:

γ̂ =

(

+γ̂D 0

0 −̂γD

)

, γ̂c = 2(k − l)

(

+γ̂D 0

0 −̂γD

)

. (3.44)
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C. Conformally covariant OPE in the interacting theory

In the previous Subsection it has been proved that there exists, in the hypothetical
conformal limit of the theory, a renormalization scheme in which the conformal covariance
of the renormalized operators is ensured. This scheme is related to any other one by a
finite renormalization of the composite operators, where, however, in the forward case the
normalization of these operators remains unchanged. In the OPE the renormalized operators
are normalized at the factorization scale. These normalization conditions are arbitrary and
the physical quantities, which are defined in terms of the product of two currents, are
independent of these conditions. Now we choose such normalization conditions that ensure
the covariance of the renormalized conformal operators.

Because of the covariance, the operators in different towers do not mix under dilatations,
and the dilatation invariance requires the form of the OPE given in Eq. (2.13), where the
scaling dimension of the renormalized currents and of the renormalized conformal operators
is now li = lcani + γi for i = {A,B} and lk = dcan

1 + dcan
2 + k + γk, respectively. Furthermore,

the renormalized conformal operators transform under infinitesimal special conformal trans-
formations formally as in Eq. (2.15), so that the lowest member of each conformal tower
will be annihilated by Kλ. Hence, we can apply the same algebraic steps as previously; the
result will be the same formal expression as (2.17) also for the interacting theory, however,
with shifted scale dimensions:

A(x)B(0) =
∞
∑

k=0

C̃k(µ)
(

1

x2

)(lA+lB−d
can
1
−dcan

2
−γk)/2

(−i)(k+1)xα1 . . . xαk × (3.45)

∫ 1

0
du u(lA−lB)/2(1 − u)(lB−lA)/2[u(1 − u)](d

can
1

+dcan
2

+γk)/2+k−1Oco
α1...αk

(ux)µ.

In the conformal factorization scheme, the Wilson coefficients and the composite operators
satisfy simple renormalization group equations:

µ
∂

∂µ
C̃k(µ) = (γk − γA − γB)C̃k(µ), (3.46)

µ
∂

∂µ
Oco
α1...αk

(0)µ = −γkOco
α1...αk

(0)µ. (3.47)

The conformally covariant OPE for the product of two electromagnetic currents in QCD
should be constructed at leading twist-2 in an analogous way. However, to avoid techni-
cal complications due to the Lorentz structure and the gauge-invariant decomposition, we
consider here only two independent contributions, namely the trace Jµ(x)J

µ(0) and the an-
tisymmetric twist-2 part {Jµ(x)Jν(0)}asy proportional to the ǫ-tensor. The neglected twist-3
contributions induce in certain cases non-power-suppressed contributions as for the struc-
ture function g2 in polarized DIS. In both cases considered, the Lorentz structure does not
affect the derivation of the conformal OPE, and we can proceed in principle as in the scalar
theory. Of course, the conformal OPE is separately valid for the flavour non-singlet and
singlet channel. The appearing mixing problem in the singlet channel can be resolved easily,
as discussed above, by introducing appropriate linear combinations of quark and gluon oper-
ators, which will be considered as independent. Hence, in the conformal limit, each Wilson
coefficient that appears can be written in the same form as given in (3.45):
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{

Jµ(x)J
µ(0)

{Jµ(x)Jν(0)}asy

}

=
∞
∑

k=0

∑

i

{

xα1 iC̃k(µ)

iǫ α1

µνλ xλ iẼk(µ)

}

(

1

x2

)2− 1

2
iγk

× (3.48)

(−i)k+1xα2 . . . xαk+1
∫ 1

0
du [u(1− u)]k+1+ 1

2
iγk







iO
co
α1...αk+1

(ux)
iRco
α1...αk+1

(ux)







,

where the index i = {NS,+,−} denotes the quark operators in the non-singlet channel
as well as the eigenvectors introduced in the singlet channel. Note that the anomalous
dimensions iγk are different for even and odd parity operators.

To compute the Wilson coefficients one would choose, for practical purposes, the simplest
normalization conditions. Then the conformal covariance of the OPE is not manifest and
the operators will mix under renormalization. However, putting together the solution of the
more complicated renormalization group equation and the Wilson coefficients provides the
same scheme-independent result as the conformally covariant OPE. This fact will be used
below for a consistency check of the available non-forward and forward QCD calculations
for the product of two electromagnetic currents in NLO.

IV. CONFORMAL PREDICTION FOR TWO-PHOTON PROCESSES

IN THE LIGHT-CONE-DOMINATED REGION

In the following we consider two-photon processes, where at least one of the photons is
far off-shell, so that the momentum transfer is large, which means that the distance between
the photons is light-like. Such processes are the deeply virtual Compton scattering, which
is widely discussed at present [24–26]:

γ∗(q1) + H(P1) → γ∗(q2) + H(P2), (4.1)

and the production of some hadronic final states by photon–photon collision, e.g. the crossed
process to the DVCS:

γ∗(q1) + γ∗(q2) → H(P1) + H(P2). (4.2)

We pay special attention to meson transition form factors γ∗ + γ∗ → M. Note that also
the production of two jets in the light-cone-dominated region was already considered in
the beginning of the 80’s by Chase [43,44]. Both processes (4.1) and (4.2) were previously
studied in the framework of the non-local light-cone expansion by Geyer, Robaschik and
collaborators at leading order [45,23]. Here we employ the conformally covariant OPE to
predict the leading twist-2 contributions of these non-forward processes restricted to the
conformal limit in terms of the off-diagonal expectation values of composite operators.

A. General formalism

The scattering amplitude for two-photon processes is given by the time-ordered product
of two electromagnetic currents sandwiched between the corresponding hadronic states. To
be more general, we define the scattering amplitude in the momentum space generically as
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T (P1, P2, q) = i
∫

dnx eiqx〈P2|TJ
(

x

2

)

J
(−x

2

)

|P1〉, (4.3)

where J denotes a current and n is again the (integer) space-time dimension. At large
momentum transfer q = (q1 + q2)/2 the process is dominated by the contributions from the
light cone and we can define the following generalized Bjorken region [45,23]:

ν = Pq → ∞, where P = P1 + P2, Q2 = −q2 → ∞, (4.4)

with the scaling variables

ξ =
1

ω
=

−q2

Pq
, η =

∆q

Pq
, where ∆ = P2 − P1. (4.5)

In the forward case ξ is identical to the Bjorken variable xBj , and η vanishes. For non-forward

Compton scattering in the Breit frame η is approximately given by cosφ = −(~∆~q/|~∆||~q|)
[45,23]. Formally, η interpolates between different processes, for instance the two-photon
production of one hadron requires η = 1.

It is straightforward to derive the conformal predictions for the two-photon processes in
the generalized Bjorken limit by inserting the conformally covariant OPE into the scattering
amplitude (4.3):

T (ω, η,Q2) =
∫

dnx ei{qx− 1

2
∆x} ∞∑

k=0

C̃k(µ)
(

1

x2

)

2lJ−lk+k

2

(−i)kxα1 . . . xαk × (4.6)

∫ 1

0
du [u(1 − u)](lk+k)/2−1〈P2|Oco

α1...αk
(ux)|P1〉.

The expectation value 〈P2|Oco
α1...αk

(ux)|P1〉 is a symmetric and traceless tensor, which can
be built from the vectors Pαi

and ∆αi
. With respect to the Fourier transform, where we

keep only the leading terms in Q2, we already set ∆x = ηPx as well as ∆αi
= ηPαi

:

〈P2|Oco
α1...αk

(ux)|P1〉µ = Pα1
. . . Pαk

eiuη(Px)〈P2|Oco
k (0)|P1〉µ(η). (4.7)

These reduced expectation values are polynomials of order k in η and depend on the fac-
torization scale µ. Such off-diagonal matrix elements are universal and appear not only in
two-photon processes, but also in exclusive electroproduction of mesons [46,47]. They are
(conformal) moments of the off-forward parton distributions introduced in [48,24–26]. Jain
and Ralston pointed out that in QCD the first moment (given by the matrix element of a
current) is related to elastic form factors [49]. A first non-perturbative calculation of the
off-forward parton distributions in the bag model has been done recently [50].

Inserting the reduced expectation values (4.7) into Eq. (4.6) provides:

T (ω, η,Q2) =
∫ 1

0
du
∫

dnx ei{qx+η(u− 1

2)Px}
∞
∑

k=0

C̃k

(

1

x2

)

2lJ−lk+k

2

× (4.8)

(−ixP )k[u(1 − u)](lk+k)/2−1〈P2|Oco
k (0)|P1〉(η).

Employing the representation
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ei{qx+η(u− 1

2)Px}(−i)k(xP )k = (−η)−k d
k

duk
ei{qx+η(u− 1

2)Px} (4.9)

and after a Fourier transformation, using the definition of the hypergeometric functions

2F 1

(

α, β

γ

∣

∣

∣x

)

=
1

B(α, γ − α)

∫ 1

0
du uα−1(1 − u)γ−α−1(1 − ux)−β, (4.10)

the desired result reads

T (ω, η,Q2) =
∞
∑

k=0

(

Q2
)−p

Ck
(

ηω;Q2/µ2
)

(

2ω

1 + ηω

)k

〈P2|Oco
k (µ2)|P1〉(η), (4.11)

where the exponent of Q2 is given by p = (n+ lcank − k − 2lcanJ )/2. The µ-dependence of the
coefficients Ck(ηω;Q2/µ2) is governed by the renormalization group equation (3.46). They
are known up to the normalization

Ck(x; 1) = ck(1 + x)−
n+lk−k−2lJ

2 2F 1

(

(k + lk)/2, (n+ k + lk − 2lJ)/2

k + lk

∣

∣

∣

∣

∣

2x

1 + x

)

, (4.12)

where lk = 2dcan+k+γk. From the properties of the hypergeometric functions, the symmetry
relation Ck(x) = (−1)kCk(−x) follows. The overall normalization can be computed in the
forward case ck = Ck(0). The reduced expectation values 〈P2|Oco

k (µ2)|P1〉(η) satisfy the
diagonal renormalization group equation (3.47), which means that the η-dependence remains
invariant under evolution and only the normalization will change.

B. QCD predictions

The conformally covariant OPE for two electromagnetic currents can now be applied in
the same manner to predict different two-photon processes and their scattering amplitudes.
In the conformal limit the same Wilson coefficients appear for quite different processes at
leading twist-2. The process dependence comes from the non-perturbative expectation values
of the conformal operators. For instance, the coefficient (Ei

k) C
i
k appears in both polarized

DIS and the two-photon production of (pseudo) scalar mesons at large momentum transfer
as well as in the kinematical decomposition of the hadronic tensor for DVCS or for hadron
production. Employing the conformal OPE (3.48) and performing steps analogous to those
in the previous Subsection leads to the prediction for the trace and the antisymmetric twist-2
part (proportional to the ǫ-tensor) of the different hadronic tensors in the conformal limit,
which is, up to trivial kinematical factors, given by:

{

F (ω, η,Q2)

g1(ω, η,Q2)

}

=
∞
∑

k=0

∑

i

{

iCk (ηω;Q2/µ2)
iEk (ηω;Q2/µ2)

}(

2ω

1 + ηω

)k {〈P2|iOco
k (µ2)|P1〉(η)

〈P2|iRco
k (µ2)|P1〉(η)

}

, (4.13)

where the coefficient functions read
{

iCk(x; 1)
iEk(x; 1)

}

=

{

ick
iek

}

(1 + x)−1− 1

2
iγk

2F 1

(

k + 1 + 1
2
iγk, k + 2 + 1

2
iγk

2k + 4 + iγk

∣

∣

∣

∣

∣

2x

1 + x

)

. (4.14)
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Without restrictions the obtained predictions are valid at LO. Thus, also the evolution
equations for the off-diagonal parton distribution amplitudes are solved easily in terms of
the conformal moments [44]. In NLO the correction due to the β-function appears originally
only in the off-diagonal matrix elements of the anomalous-dimension matrices. From the
NLO calculation of the pion evolution kernel [16–19] and also from the conformal constraints
(3.17), this correction is known for the non-singlet channel. Beyond this order it is expected
that also the coefficient functions will be off-diagonal, because of the conformal symmetry
breaking proportional to the β-function.

In the forward case, i.e. η = 0, the conformal expansion is related to the moments in
DIS by a dispersion relation:

{

F (ω,Q2)

g1(ω,Q2)

}

=
∞
∑

k=0

∑

i

ωk
{

ick〈P |iOk(µ
2)|P 〉

iek〈P |iRk(µ2)|P 〉

}

, (4.15)

where the additional factor 2k has been absorbed into the reduced expectation values [com-
pare with (4.7)]. Thus, the overall normalization iCk(0; 1) = ick and iEk(0; 1) = iek can be
taken from the calculations in unpolarized [51–53] and polarized [54] DIS, respectively, and
are known up to order α2

s.
A further special case is η = 1, where the conformal expansions give, up to a kinematical

prefactor, the amplitudes for the production of pseudo-scalar and scalar mesons by virtual
photons. Here complete NLO calculations were performed in the non-singlet channel and
can now serve as a consistency check.

V. RADIATIVE CORRECTIONS TO MESON TRANSITION

FORM FACTORS

A. Transition form factors and conformally covariant OPE

The photon-to-meson transition form factor, measured in γ⋆(q1)γ
⋆(q2) → M(P ), is given

at large momentum transfer as a convolution of the hard-scattering amplitude T (ω, x, αs)
and the meson distribution amplitude (DA) φ(x,Q2) [55],

Γαβ = ǫαβµνq
µ
1 q

ν
2F (ω,Q2), F (ω,Q2) =

N

Q2
T (ω, x, αs(Q

2)) ⊗ φ(x,Q2). (5.1)

The kinematical variables are defined as before by ω = Pq/Q2 and q = (q1 − q2)/2. The
factorN is determined by the underlying flavour structure, e.g. for the π0 meson N = e2u−e2d.
The hard-scattering amplitude is given perturbatively by

T (ω, x, αs) = T̂ (0)(ω, x) +
αs
2π
T̂ (1)(ω, x) +O

(

α2
s

)

+ {x→ 1 − x}, (5.2)

T̂ (0)(ω, x) =
1

1 + ω[(1 − x) − x]
, (5.3)

V (x, y;αs) =
αs
2π

[V (0)(x, y)]+ +
(

αs
2π

)2

[V (1)(x, y)]+ +O
(

α3
s

)

, (5.4)

V (0)(x, y) = CFθ(y − x)
x

y

(

1 +
1

y − x

)

+

{

x→ 1 − x

y → 1 − y

}

, (5.5)
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where the +-prescription is defined as [V (x, y)]+ = V (x, y) − δ(x− y)
∫

dzV (z, y).
The given formulas coincide at leading order with the prediction of the conformally

covariant OPE (4.13) for g1(ω, η = 1, Q2). To make this correspondence explicit, we expand
the distribution amplitude in terms of the eigenfunctions of the evolution kernel, which is
actually given by the conformal spin expansion

φ(x,Q2) =
∞
∑

k=0

(1 − x)x

Nk

C
3

2

k (2x− 1)〈P |Okk(µ
2)|0〉red|µ2=Q2, Nk =

(k + 1)(k + 2)

4(2k + 3)
. (5.6)

Taking into account the definition of the Gegenbauer polynomials

(1 − x)x

Nk
C

3

2

k (2x− 1) = (−1)k
2(2k + 3)

(k + 1)!

dk

dxk
[x(1 − x)]k+1, (5.7)

the transition form factor (5.1) reads

F (ω,Q2) =
N

Q2

∞
∑

k=0

2(2k + 3)

(k + 1)!

∫ 1

0
dx [x(1 − x)]k+1 d

k

dxk

(

1

1 + ω[(1 − x) − x]
+ (5.8)

1

1 + ω[x− (1 − x)]

)

〈P |Okk(µ
2)|0〉red|µ2=Q2.

Performing the differentiation and using the definition of hypergeometric functions (4.10),
Eq. (5.8) coincides – up to different normalization factors for the composite operators – with
the conformal OPE prediction (4.13) to LO:

F (ω,Q2) =
N

Q2

∞
∑

k=0

B(k + 1, k + 2)
2(2ω)k

(1 + ω)k+1 2F 1

(

k + 1, k + 2

2(k + 2)

∣

∣

∣

∣

∣

2ω

1 + ω

)

× (5.9)

〈P |Okk(µ
2)|0〉red|µ2=Q2 + {ω → −ω}.

B. Consistency check at next-to-leading order

Now we are able to perform the consistency check of the existing NLO calculations. The
αs-correction to the hard scattering part was computed by del Aguila and Chase [56] in
the OPE approach and by Braaten [57] (these papers contain also the corrections to the
scalar meson and the longitudinal component of the vector meson transition form factor,
respectively) as well as by Radyushkin et al. [58] in the hard-scattering picture. The results
are derived in the MS scheme and the occurring γ5 ambiguity in dimensional regularization
was resolved with different methods. The results are in agreement. To show the structure
most clearly, we rewrite their result in the following form:

T̂ (1)(ω, x) = T̂ (0)(ω, z) ⊗
[

[V (0)(z, x)]+ ln
Q2

µ2
− 3

2
[V b(z, x)]+ − 3

2
CF δ(z − x)

]

+

T̂ (0)(ω, z) ln {1 + ω(z̄ − z)} ⊗ [V (0)(z, x)]+ + T̂ (0)(ω, z) ⊗ [g(z, x)]+,

g(x, y) = CF θ(y − x)
ln
(

1 − x
y

)

x− y
+

{

x→ 1 − x

y → 1 − y

}

, (5.10)

V b(x, y) = CF θ(y − x)
x

y

1

y − x
+

{

x→ 1 − x

y → 1 − y

}

,
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where only the renormalization scale was identified with the factorization scale µ, so that
latter remains explicit. The solution of the evolution equation in the conformal limit is
known and given by the conformal spin expansion

φ(x,Q2) =
∞
∑

k=0

ϕef
k (x, αs)〈P |Okk(µ

2)|0〉red|µ2=Q2, (5.11)

where the eigenfunctions of the evolution kernel can be written as

ϕefk (x, αs) = (−1)k
2 (3 + 2k)

(k + 1)!

dk

dxk

[

x1+k(1 − x)1+k
(

1 +
αs
2π

Fk(x) +O(α2
s)
)]

. (5.12)

The αs-correction was obtained by the leading order calculation of the special conformal
anomaly matrix for parity-even operators and employing the formula (3.25) for the trans-
formation matrix B̂:

Fk(x) = (γ
(0)
k + β0)

[

1

2
ln
(

x(1 − x)
)

− ψ(2 + k) + ψ(4 + 2k)
]

+ CF





ln2
(

1 − x
x

)

2
−

1+k
∑

i=1

(

−1

i
+

1 + δ1i
2 + k

)

(

φ(1 − x, 1, i) + φ(x, 1, i)
)

+ 2





(3 + 2 k)
(

ψ(2 + k) − ψ(1)
)

(1 + k) (2 + k)
+ ψ′(2 + k) − π2

4







 , (5.13)

where ψ′(z) = dψ(z)/dz and φ(x, 1, i) =
∑∞
k=0 x

k/(i + k) are the Lerch transcendent. This
result coincides with the calculated evolution kernel in NLO [16–19]. The authors used
the naive MS scheme in which γ5 is anticommutative, implying that the evolution kernel
for pseudo-scalar mesons is the same as for scalar ones. For convenience we rewrite the
αs-correction as a convolution:

ϕefn (x, αs) =
(

δ(x− y) +
αs
2π
c(1)(x, y) + · · ·

)

⊗ (1 − y)y

Nn
C

3

2
n (2y − 1), (5.14)

where5

c(1)(x, y) = (I − P)

(

β0

2
S(x, y) − S(x, z) ⊗ V (0)(z, y) − [g(x, y)]+

)

.

Furthermore, the shift operator S(x, y) is implicitly defined by

S(x, y) ⊗ (1 − y)y

Nn
C

3

2
n (2y − 1) =

d

dρ

((1 − x)x)1+ρ

Nn
C

3

2
+ρ

n (2x− 1)|ρ=0, (5.15)

5The definition of c(1)(x, y) in [22,59] contains a misprint concerning the sign of g(x, y).
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I is the identity and the operator P projects onto the diagonal part of the expansion of a
function f(x, y) with respect to C

3/2
i ; i.e. Pf(x, y) =

∑∞
i=0(1−x)x/NiC

3/2
i (2x−1)fiiC

3/2
i (2y−

1), where fij with 0 ≤ i, j ≤ ∞ are the expansion coefficients.
The hard-scattering part and the evolution kernel were computed in the same scheme.

The convolution of the hard-scattering part (5.10) with the solution (5.14) for β = 0 yields:

F =
N

Q2

∞
∑

k=0

(

T (0) +
αs
2π

T (1)
)

⊗ (1 − x)x

Nk

C
3

2

k (2x− 1)〈P |Okk|0〉red. (5.16)

The off-diagonal part of g(x, y) in the hard-scattering amplitude and the eigenfunctions
cancel with each other and only the diagonal part is left. After decomposition of the term
T̂ (0)(ω, z) ln {1 + ω(z̄ − z)} into a diagonal and an off-diagonal part6 the αs correction to
the hard-scattering amplitude reads symbolically

T̂ (1)(ω, x) = T̂ (0)(ω, z) ⊗
[

[V (0)(z, x)]+ ln
Q2

µ2
− 3

2
[V b(z, x)]+ − 3

2
CF δ(z − x) +

P[g(z, x)]+

]

+ PT̂ (0)(ω, z) ln {1 + ω(z̄ − z)} ⊗ [V (0)(z, x)]+ + (5.17)

(I −P)
[

T̂ (0)(ω, z) ln {1 + ω(z̄ − z)} − T̂ (0)(ω, y) ⊗ S(y, z)
]

⊗ [V (0)(z, x)]+.

The first two lines contain only diagonal terms, which provide the αs-corrections to the
overall normalization of the Wilson coefficients for the conformally covariant OPE. The off-
diagonal terms in the last line generate the shift of the canonical dimension by the anomalous
one. This can be seen by a straightforward calculation:

(I −P)
[

T̂ (0) ln {1 + ω(z̄ − z)} − T̂ (0) ⊗ S
]

⊗ [V (0)]+ ⊗ (1 − x)x

Nk
C

3

2

k (2x− 1) = (5.18)

γ
(0)
k

2

(2ω)k

(1 + ω)k+1

d

dρ
(1 + ω)−ρ2F 1

(

k + 1 + ρ, k + 2 + ρ

2(k + 2 + ρ)

∣

∣

∣

∣

∣

2ω

1 + ω

)

|ρ=0

.

Therefore, this term coincides with the conformal prediction for the structure of the Wilson
coefficients (4.14).

It remains to be shown that the normalization is consistent with the NLO calculation of
the non-singlet sector for the polarized structure function g1 measured in DIS. It is known
that the diagonal part of the pion evolution kernel coincides with the non-singlet splitting
kernel. This was analytically shown in [48,23] by taking the limit of an extended pion
evolution kernel:

P (z) = lim
η→0

1

|2η|γ
(

z

η
,
1

η

)

, γ (t, t′) = V

(

1 + t

2
,
1 + t′

2

)

|θ(t−t′)→ǫ(1−t)θ( 1−t

1−t′ )θ(
t−t′

1−t′ )
. (5.19)

6 Diagonal refers to terms that contribute only to the normalization of the partial waves in the

expansion (5.9), while off-diagonal terms cannot be represented in such an expansion with the

given hypergeometric functions.
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The extension of V (t, t′) into the whole t, t′-plane is unique and it is done in practice by
replacing the corresponding θ-functions.

As mentioned before, the off-diagonal part in Eq. (5.17) does not contribute to the
forward case. For the terms of the diagonal part that are given as a convolution with T (0)

the procedure (5.19) provides the following NLO corrections:

CF

∫ 1

0
dx

([

1 + x2

1 − x

]

+

ln
Q2

µ2
− 3

2

[

2x

1 − x

]

+
− 3

2
δ(1 − x) − 2

[

ln(1 − x)

1 − x

]

+

)

xk. (5.20)

Convoluting the remaining term, PT̂ (0)(ω, z) ln {1 + ω(z̄ − z)} ⊗ [V (0)(z, x)]+, first with the
Gegenbauer polynomials and then extracting the diagonal part gives:

− CF [ψ(k + 1) − ψ(1)]

[

3

2
+

1

(k + 1)(k + 2)
− 2ψ(k + 2) + 2ψ(1)

]

. (5.21)

Putting (5.20) and (5.21) together, the whole NLO contribution to the overall normalization
follows:

ek = 1 +
αs
2π
CF

(

ln
Q2

µ2

[

3

2
+

1

(k + 1)(k + 2)
− 2S1(k + 1)

]

+ 2S1,1(k) − (5.22)

2S2(k) +
[

1

k + 1
+

1

k + 2
+

3

2

]

S1(k) +
3

k + 1
− 9

2

)

,

where Sm(k) =
∑k
i=1(1/i)

m and Sm,n(k) =
∑k
i=1(1/i)

mSn(i). Taking into account the differ-
ent definition of moments in DIS, i.e. k → k−1, the obtained normalization (5.22) coincides
with the Wilson coefficients in longitudinal polarized DIS computed in Ref. [54] in the ’t
Hooft–Veltman–Breitenlohner–Maison (HVBM) scheme7 [60,61].

Finally, we show that also the NLO calculation for the transverse helicity amplitude T++

in the c.m. frame of the transition form factor for the non-singlet scalar mesons [56] coincides
with the NLO corrections to unpolarized DIS. It is sufficient to consider the difference to
the pseudo-scalar case, which can be written as a convolution of the hard scattering part
with a diagonal kernel [56]:

T̂ (0)(ω, z) ⊗ αs
2π

(

[V (0)(z, x)]+ − [V b(z, x)]+ − CF
2
δ(z − x)

)

, (5.23)

which has the eigenvalues αs

2π
CF/((k + 1)(k + 2)). Thus, the only difference to the pseudo-

scalar case appears in the normalization given by these eigenvalues. In the notation of the
DIS hadronic tensor, the considered helicity amplitude corresponds to the generalization of
F1 to non-forward processes. The difference of the corresponding DIS Wilson coefficient
[51–53] and ek in Eq. (5.22) is precisely αs

2π
CF/((k + 1)(k + 2)) in NLO.

7In the HVBM scheme the anticommutativity of γ5 in the non-singlet sector is restored effectively

by a finite renormalization. In this case, it is equivalent to the naive γ5 prescription, which was

used for the calculation of the NLO correction to the pion transition form factor.
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C. A first view beyond NLO

It has been shown to LO that the measured pion transition form factor at large momen-
tum transfer [29,30], where one photon is almost real, supports the asymptotic distribution
amplitude or even more narrow ones [62–64]. So it is phenomenologically very interesting
to study the higher-order corrections to this distribution amplitude. In LO the asymptotic
distribution amplitude ϕas(x) = 6x(1−x) does not evolve with Q2, but it is well-known that
this property is spoiled in the MS scheme to NLO [65,59] by the mixing of the operators. In
the conformal limit of the theory the conformal normalization conditions restore the non-
evolution of the asymptotic distribution amplitude. The pion transition form factor for this
amplitude is given by the first term of the conformal OPE (4.11):

Q2F (ω,Q2) =

√
2fπ
3

2

1 + ω
2F 1

(

1, 2

4

∣

∣

∣

∣

∣

2ω

1 + ω

)

c0(αs), (5.24)

where the expectation value of the first operator, given by the axial current, provided the
pion decay constant fπ = 130.7 MeV. The coefficient c0(αs) is normalized to 1 at LO. For
the case that one photon is almost real, i.e. ω = 1, we get

Q2F (1, Q2) =
√

2fπc0(αs) = 0.185 c0(αs) GeV. (5.25)

The predictive power of the conformal OPE tells us that the coefficient c0(αs) is the value
of the Bjorken sum rule, which is calculated up to order α3

s [66,3]. For three active flavours
the numerical result reads8

c0(αs) = 1 − αs
π

− 3.58333
(

αs
π

)2

− 20.21527
(

αs
π

)3

+O
(

α4
s

)

. (5.26)

Now we can give a rough estimate of the higher-loop corrections, which reduce the LO
prediction at a scale of Q2 = 2 GeV2, where αs is assumed to be 0.35, by about 18%,
coinciding very well with the experimental results at this scale [29,30]. Note that the α2

s

correction to the coefficient function of g1 is given in Ref. [54] and, therefore, the next-to-
next-to-leading order (NNLO) prediction for the photon-to-pion transition form factor can
be also given in the conformal limit for arbitrary DA’s.

Now let us consider the effects coming from the conformal symmetry breaking, which is
manifested in the off-diagonal part of the Wilson coefficients and the anomalous dimension
matrix. In the conformally covariant subtraction scheme considered here these terms are
induced by the renormalization of the coupling and have to be proportional to the β-function.
In NLO only the first coefficient of β/g = −αs/(4π)β0 +O(α2

s) with β0 = 11− 2nf/3 enters
in the anomalous dimension matrix (or in the evolution kernel) and the off-diagonal term
related to it was correctly predicted by the conformal constraints 3.17. On the other hand it
is obvious that in this order, this off-diagonal term can be simply calculated from the two-
loop diagram contributing the nf -dependent part to the gluon vacuum polarization (quark
bubble) [69,70]. In NNLO terms proportional to the β-function appear in both the Wilson

8The α4
s-correction has been estimated to be negative too [67,68].
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coefficients and the evolution kernel. While the off-diagonal part to the Wilson coefficients
can be obtained in the same manner as described, the special conformal anomaly should be
known in order α2

s to treat the evolution of the DA in the correctly.
Although, the nf -dependent part of the Wilson coefficients in NNLO can be obtained

from the result given in [70,71], we only discuss here the conformal symmetry breaking in
NLO. Because of this breaking the asymptotic distribution amplitude will evolve also in the
conformal subtraction scheme. Thus, let us first study the fixed αs regime, where a term
proportional to β0 arises in the αs corrections to the eigenfunctions (5.13) responsible for the
evolution of the asymptotic distribution amplitude. A renormalization group transformation
absorbs this term into the hard scattering part:

cfix
0 (αs) = 1 − αs

2π

(

2 +
β0

6

)

+O
(

α2
s

)

. (5.27)

Note that this β0 term was predicted from the β-function by the conformal constraint (3.17)
and represents the first term of the series β/g (1/3 +O(αs)). For the above values the β0

term provides a reduction of about 8%, so that the whole net reduction in NLO is of about
19.5%. Because of a partial cancellation between the different conformal symmetry breaking
terms [59] for the lowest moments, this reduction is similar to that in the MS scheme, where
the correction to the hard scattering amplitude is 1 − 5αs/(3π).

Now we consider the real case, where the coupling constant is running. Then, the
evolution of the asymptotic distribution amplitude is only avoidable if the matrix B̂(αs),
which diagonalizes the anomalous dimension matrix is renormalization-group-invariant, i.e.
B̂(αs(µ), µ) depends explicitly on µ. Here we proceed in the manner proposed in [20,65],
which was explored in more detail in [59]. Note that already a renormalization group trans-
formation was done to diagonalize the kernel for fixed αs, so that the evolution kernel is
different from that in the MS scheme. Generally, the non-perturbative input can be taken
from sum rules, lattice or model calculations at a lower scale. Assuming that the “input”
6x(1 − x) is given at a scale of Q ∼ 1 GeV the evolution provides an additional negative
effect of almost 2% for Q2 = 2 GeV2 and of almost 3.5% for Q2 = 8 GeV2. The resulting
prediction is 0.148 at Q2 = 2 GeV2. A more detailed analysis including other distribution
amplitudes will be given elsewhere.

VI. CONCLUSION

In this article we reviewed an appropriate technique, developed previously, based on
the true conformal Ward identities and conformal constraints, to analyse conformal sym-
metry breaking in a massless quantum field theory due to the renormalization of the UV-
divergences. Since we are dealing with Ward identities for the basis fields to define the
anomalous terms of gauge-invariant operators the conformal symmetry is also spoiled by
the gauge fixing. However, finally we are interested in predicting physical quantities from
which these terms should be absent. This point of view allows us to understand conformal
symmetry and its breaking in quantum field theories without further conformal assumptions
that led in the past to conflicts between conformal predictions and explicit calculations. This
approach is also sufficient to reanalyse more directly the failure of the conformal prediction
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from the light-cone expansion of a non-local operator for the eigenfunctions of the pion
evolution kernel in gauge field theory.

We employed this technique to prove that a factorization scheme exists in which the
conformal covariance of composite operators holds true in the conformal limit of the theory.
The transformation from an arbitrary scheme to the conformal scheme is given by the
special-conformal anomaly matrix. Consequently, the essential assumption to construct the
conformally covariant OPE of two local currents can be fulfilled by requiring appropriate
normalization conditions. This OPE provides powerful scheme-independent predictions,
which were used for exclusive two-photon processes in the generalized Bjorken region; also,
restricted to the conformal limit, for simplicity we did not consider the full kinematical
structure of the hadronic tensor. Since these predictions are scheme-independent they hold
true in any scheme; however, it is not a trivial task to see this in the explicit calculated
expressions beyond the LO.

At this stage it is not clear how to obtain, in an economical way, the terms proportional
to the β-function that are missing in the conformal limit. It seems to be worthwhile studying
if the non-decomposable irreducible representations that allow us to include the β-function
in the conformal symmetry interpretation also have predictive power. This would avoid
having to formally rely on the hypothetical conformal limit. A second point of view is to use
the common irreducible representations and to consider the conformal symmetry-breaking
terms as perturbation proportional to the β-function. It is very interesting that in the case of
the Crewther relation the β-function can be absorbed by the BLM scale-fixing prescription
into the scale of the coupling constant [7,72,8].

In NLO conformal symmetry-breaking terms do not appear in the Wilson coefficients.
The β-dependence of the anomalous-dimension matrix is predicted by the conformal con-
straints for the dimensional regularized theory in the MS scheme; however, the renormaliza-
tion group transformation to the conformal scheme provides an additional β-dependence of
the anomalous-dimension matrix in terms of the special-conformal anomaly matrix computed
in the MS scheme. This can be applied in a straightforward manner to predict the evolu-
tion in the singlet channel to NLO only by a one-loop calculation of the special-conformal
anomaly matrix.
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APPENDIX:

Here we carry out the calculation providing Eq. (3.30). For this reason, we first show
the identity:
[

â, B̂
]

kk′
= a(k, k′)Bkk′ = −

{

γ̂c(k′)B̂
}

kk′
, a(k, k′) = 2(k − k′)(k + k′ + ν1 + ν2). (A1)
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Let us mention that by iteration and taking into account Bkk = 1, Eq. (3.25) follows. In
accordance with the definition (3.23) of the matrix B̂ we introduce the notation

Bkk′ =
∞
∑

i=0

{

Γ̂(k′)i
}

kk′
, Γ̂0 = 1̂, and Γmn(k

′) = Lk′γND
mn = − γND

mn

γm − γk′
(A2)

as well as the inverse operator L−1
k′ : L−1

k′ γ
ND
mn = − (γm − γk′) γ

ND
mn . From the conformal

constraints (3.18) we obtain formally:

[

â, Γ̂(k′)
]

= −γ̂c(l) + Lk′K̂(l) + Lk′γ̂c(l)L−1
k′ , (A3)

where K̂(l) =
[

γ̂ND, γ̂c(l)
]

. Note that the l-independence of the r.h.s. is ensured by the

constraints (3.28) and that the last term on this side induces for
[

â, Γ̂(k′)
]

kk′
the contribution

{

Lk′ γ̂c(l)L−1
k′ 1̂

}

kk′
= γ̂ckk′(l)δkk′, so that

[

â, Γ̂(k′)
]

k′k′
= 0 is identically fulfilled for k = k′.

Repeated application of
[

â, Γ̂(k′)i−1Γ̂(k′)
]

=
[

â, Γ̂(k′)i−1
]

Γ̂(k′) + Γ̂(k′)i−1
[

â, Γ̂(k′)
]

then implies the following form:
[

â, Γ̂(k′)i
]

= −γ̂c(l)Γ̂(k′)i−1 − R̂(i−1)(k′, l) + R̂(i)(k′, l) + Γ̂(k′)i−1Lk′ γ̂c(l)L−1
k′ , (A4)

with R̂(−1) = 0. For
[

â, Γ̂(k′)i
]

kk′
the last term in the r.h.s. is proportional to γc(l)k′k′ and,

because of the property γc(k′)k′k′ = 0, it can be avoided for l = k′. Obviously, employing
Eq. (A4) we get the identity (A1):

[

â, B̂
]

kk′
=
∞
∑

i=0

[

â,Γ(k′)i
]

kk′
= −

∞
∑

i=1

({

γ̂c(k′)Γ̂(k′)i−1
}

kk′
+ R̂

(i−1)
kk′ − R̂

(i)
kk′

)

= −
∞
∑

i=1

{

γ̂c(k′)Γ̂(k′)i−1
}

kk′
= −

{

γ̂c(k′)B̂
}

kk′
. (A5)

With the help of relation (A1) the desired calculation is easy:

{

B̂−1 [â(l) + γ̂c(l)] B̂
}

kk′
=
{

B̂−1B̂
}

kk′
a(k′, l) +

{

B̂−1
[

â, B̂
]

+ B̂−1γ̂c(l)B̂
}

kk′

= a(k, l)δkk′ +
{

B̂−1 [γ̂c(l) − γ̂c(k′)] B̂
}

kk′
(A6)

= a(k, l)δkk′ + 2(k′ − l)
{

B̂−1γ̂B̂
}

kk′
,

where we used γ̂c(l)− γ̂c(k′) = −2(l−k′)γ̂. Since the matrix B̂ diagonalizes the anomalous-
dimension matrix the last line is identical with Eq. (3.30).
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