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1 Introduction

The CERES experiment studies the production of low-mass electron pairs in
p p
proton-proton, proton-nucieus, and nucleus-nucleus eollisions at the CERN

SPS.

Vertex and track reconstruction in the experimeni is based on the information
of two silicon drift detectors SDD-1 and SDD-2 [1] situated about 9 cm behind
the extended, segmented target (see Fig. 1). They cover the full spectrometer
acceptance of 8° to 15° for all target disks. The specific target used for the
160 GeV/u Pb beam is segmented into 8 individual disks of 600 pin diameter
and 25 pm thickness, equidistantly spaced along the beam direction by 2.9
mum each. This target design allows a larger interaction rate while keeping the
photon conversion prebability within the spectrometer acceptance low {X/Xo

= 0.37%).

We are dealing here with two sets of hits from each detector. The target
and SDD doublet are located in a low magnetic field region and the particle
trajectories are straight lines connecting the corresponding tits in SDD-1 and
SDD-2.
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Fig. 1. Geometry of the SDD doublet and segmented target. The acceptauce of the

CERES spectrometer is indicated

2 Least Squares Formulation of the Problem

Let (zi1,yn), 41 = 1,....ny and (T2, %), 42 = 1,....ny be the measured points
from SDD-1 and SDD-2, respectively, with some number of background points
among them. In this case the conventional least-square miethod (LSM)



for estimating the vertex coordinates x,, y, and z, can be based on minimizing
the functions
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where ¢} and e are residuals and w; are the weights assigned. The value ¢/ is a
measure for the deviation of a SDI-1 hit with coordinates x;q, y;1, 2,y from the
line which passes through the vertex (., y,, 2,) and its corresponding SDD-2
hit with coordinates z3, yiz, 22, in the SDD-1 position
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The value € is a measure for the deviation of a vertex point i, 4,. 2, from
the straight line, given by the corresponding hits from SDD-1 and SDD-2 in

the =, position of the vertex
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The fundamental LSM assumption is that the residuals, or the deviations from
the measured point, are normally distributed. However, this is true only in the
case of a clean sample which is not contaminated with background. The dis-
tribution of residuals including a background fraction ¢ can be approximated
as 1 the gross-error model invented by J. W. Tukey:

fle) = (1 =€)d(e) + eh(e) (:

ot
Ry

with a normal distribution ¢(e) = exp(—e?/20%)/7v2n and a background
h{e), which is assumed to be uniform (h{e} = hy in some interval of the
width o <« 1/hg). The background level ¢ varies considerably dependiug on
the experimental environment. It is evident that in this case the weight of
distant background points in the LSM functions (1) and (2) is inappropriate
and leads to unnecessary large errors in the estimated parameters «,, y, and
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z.. A possibility to cut-off large residuals is to introduce a new parameter and
take only residuals simaller than this parameter into account. However, in such
a case the obtained result would be strongly influenced by the initial values
of x,.y, and z,.

3 Summed Gaussian Weights

To avoid the problems mentioned above, the LSM function can be replaced by
another one, which introduces a smooth cut-off for distant hits. In particular,
in [2] it was proposed to minimize the following {unction

L(-’ll‘wva:li) = —Z(ﬂ.L’p[—ciz/QO’z] (6)

which has l:een used up to now for determination of the vertex for CERES
data. A suitably chosen ¢ is assumed to be constant for all data points. The
reason for the choice of function (6) can be illustrated by the expansion of L,
which shows the similarity between this estimation and an unweighted least
square method with w; = (20’2)_1 for small ¢;,
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while for larger ¢; the corresponding summands L; decrease exponeutially,
suppressing the influence of strongly deviating hits. As one can see, the second
terrn in the previous expansion corresponds to the function which follows from
the unweighted least square method. Since the residuals for the hits that truly
belong to the particle track are normal-distributed the obtained minimum
can, to some extent, be interpreted on the basis of a x? distribution. Looking
for the minimumn of function (6) and differentiating it with respect to each
coordinate of the vertex one obtains a system of non-linear equations. The
function itself cannot be linearized without loosing its properties. Therefore,
a traditional function minimizing package had to be used. The initial values
for r, and y, are set to 0, which should be the position of the center of target
disks in the xy-plane. In order to obtain a starting value =% for the extended
target, prior to fitting, a scan is performed by stepping a + 2 cm region (in z)
around the center of the target. The found minimum of L defines the starting
value for z.
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4 Robust Method for Vertex Reconstruction

As was mentioned hefore we are dealing with a contaminated data set of
peints in a sense that zome poines {Toutliers™) lie far from the track to be
reconstructed. Such outlisr< can spoil the estimates of vertex coordinates r,.
Yo and z, if their weights w; are compatible with the weights of useful poiuts.
For this case we propose the robust estimation of i, ¥, and z, hased on the
iterative reweighted least square estimation of x,, ¥, and z,.

Rl

i Optimnal choico of the weight function in the weighted least square

Siuce the residuals e, are non-Gaussian distributed we use a more gencral

.
{

approach, Legthe maximum fikelthood (ML) miethod. An analugous approach

was suctessiully used by P. Huber 3] and leads to the so-called M-estimates of

the parameters in question. But we carry oul our approach in a different way.

Keeping in mind that the corresponding ML-functional is strongly non-linear

(leading to considerably computing difficulties), we transforin the functiona!
partial derivatives in a view, which allows to reduce the problem 1o optimal

clisice of the weight function in the weighted least square sumn. The logarith-

mic likelihood function for measured deviations e; distributed according to

equation (57 1s

T flen = S0

{s)
o0 =01
ter differeniiating cq. (8) with respect to . v, and z, avd dividing by
; 1 i 2 i
1 = e 7277 exp( - e 207,
we ghtaim o conventionnd LSM svstam of normal equations
(9)
(i




where with t we denote the ratio «/a. The only parameter

¢ = {l — ()_Ifﬂ'}lg 2

is the ratio of the mean mumber of noise hits to the mean munber of useful hits
within an interval ov27. Thus it is determined by the contamination of data
not in the whole range of the sample but within its essential part where all
nselul observations are conecentrated. Like i1 our case. the value of ¢ is often
ronghly known in experimental models. The factor (1 4+ ) is wtroduced 1o
fulfil «(0) = 1. The approximation of v, (1) by a fourth order polvnomial

[eads to the Tamons Tukey's hi-squared weights [1]

» 2
(= (e V] < o
wil) = fer < e (11

U otherwise

Hereo with e we denote Tukeyv's vonstant,

1.2 Calevlation of verter coordinates with robust approach
To tind the vertex coordinates ooy, and =) we need to solve the LSM system

{9) for either of the residuals /5 or ¢ given with eq. (3) and (1), respectively,

Dealing with function L'(w,, 4. z.). Le. with e residuals we get a svstem of
equations which is not simple to solve becanse they contain a term {2, — 2, in
the denominator. To avord this problem function L'(w .y, 2,0 can be linearized
by multiplying it with an approximately constant term {25 — 2,). s0 we can
deal with the function

Ly =) = S f\’f, (12)

where o) = (2 = 2.}

I this case, evaluating ¢, from equation system (9) with ¢/, one has to solve
the corresponding system of linear equations:

A, + Bz, = ("
|2 (13)
Blor.o+ Ey, + Gz, =1

Ay, + Iz,



where we denote

A

i

S wi(zn — 20 B = S wilrg — 20)(za ~ o)

("= Y wfrateg — vz = ma) + celin = a)’)

E' = wdya ~ yal(ze — zu)

F' = S wilzalyn — vz — 2a) + yalze — 2a))

(= Yowlleg = ra2) + -y’

H =5 wlzglrg — ci) A+ rilzy — zal(aa = Zi) + 2ol — yo)'+

yielzie — 2 )(ya — vi2)-

From the equation system (13) we have

jf“:u"—BaWAa
|

o = (F' — E'2,)] A"

where

qo= (AH — E'F - BO)JAG - B - E7).

Dealing with ¢”, residuals we go straight to the solution. In this case oue

should solve the following system of linear equations

Az, + Bz, = P"
Ay, + D'z = Q" (15)
B”.L'U + D’/y1/ + F”Z,_, — RN’

where we denote

, Ly —
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PII — 31{ BII + (VHY QI/ — 21 DII + Ell; RN — 311;1" *_ (;I’.

2y is the z-position of the SDD-1.
From the equation systemn (15) we have

T, = [B"(Zl _ :v) + (VII]/AAH;
yo = (D"(z — 2,) + E"}/ A"

where

2, o= o + (AH(;II _ DHE// _ BII(/"—’I)/(A/I[FII . B/12 __ DI,ZJ.

The weights in the above expressions are computed iteratively using Tukey’s
weight formula

(1= (e /(cr » 5D if ] < g v 6D
w;, =
0 otherwise

k) . . . . -~ .
where e,(v Vis the residual of either of the deviaticns e} or €”; obtained at the

k-th iteration, and 6%~V is the estimate of variance which is evaluated as [3]
A(K)2 _ N, AR (k)2 (k)
&) —Lwi €; )/sz .

For our calculations we have varied the constant ¢z and obtained the best
resolutions of vertex coordinates for e ~ 3. Instead of scanning the & targets
to determine the initial parameters, as it was done for the Gaussian summed
weights (SGW), the center of the target region with £, = y,(” = ¢ and 2,
was used as the starting value fur the first iteration.

5. Calcalation Resuits

In this section we compare the results for the vertex reconstruction obtained
with the Summed CGaussian Weights (SGW) approach and the robust ap-
proach.The underlying sample cousists of 4600 Pb + Au events. In the fol-
lowing, the results for the SGW method were obtzined by using e! residuals
in function (6), the results for the robust approach were obtained by using
e residuals in equation system (9). It should be noted that the usage of ¢
residuals leads essentially to the same results.
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Fig. 2. Reconstructed z-coordinates of the vertices fitted with eight Gaussians cor-

responding to cight target disks obtained with the SGW approach
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Fig. 3. Recoustructed z-coordinate of the vertices fitted with eight Gaussians corre-
sponding to cight target disks obtained with the robust approach

Figures 2 and 3 show the vertex z-coordinate distribution for the case of the
SGW and the robust method. respectively. As one can see from the resilting
histograms, both distributions reflect nicely the target region. Fach of the
disks is clearly seen as a peak in the distribution. All peaks have Gaussian
form, which is illustrated by the fitted Gaussians.

The different resolutions obtained by fitting cach of the peaks individually are
shown in Table 1 for both cases. The robust approach gives a slightly better
resolution for each disk. This was confirmed by tests of both methods with
Monte-Carlo generated data, which also resulted in a better resolution ol all
vertex coordinates, obtaned with the robust approach.
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Fig. 5. Reconstructed y coordinates of the vertires obtained with the SGW and the

rebiist approach fitted by Gaussian
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Table 1-

z-resolutions obtained with SGW and robust fit

disk No. | rms (SGW) [um] | rms (robust) [jun]
1 307 264
2 322 287
3 361 289
1 427 329
5 Ax6 344
6 396 337
7 409 372
x 461 ! 395
? 1800 [0./SGW) = 0 (rabust) § 1800 B (SGW) = g (robust)
1600 (H 1600
1400 |- 1400 |-
1200 1200
1000 - 1000 -
800 &0
609 \ 600 -~
El
400 - ? \ 400 -
200 - | 200 -
o -400 -l:’ﬂ (; 20‘0 400 ° -;0 ; 2‘“
Ar (pm) A (mrad)

Fie. 7. Local track accuracy of the silicon drift detectors, radial and azimuthal
residuals in SDD-1 for tracks defined by the vertex and a hit in SDD-2 (SGW: solid
line, robust: dashed line)
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Local track accuracy of the silicon drift chambers, radial and azimuthal resid-
nals in SDD-1 for tracks defined by the interaction vertex and a hit in SDD-2.
arve shown in Fig. 7. Results obtained with both algorithms are shown. As can
be seen from the figure, bhoth approaches lead to almost the same distributions
ol Ar and Ay residuals (. >~ 6 mrad. o, >~ 100 gm). The track resolution
results from the combined effect of the intrinsic resolution of the chambers.
the vertex resolution and the multiple scattering.

6 Conclusion

We presented results on vertex reconstruction for CERES data obtained with
SGW approach and robust approach. Both algorithms give good results clearly
reflecting the target region profile. The vertex x-v coordinate resolutions ob-
tained by both methods are almost the same. the z-resolution is somewhat
improved by robust method.

The advantage of the robust approach. as an iterative method. is its insensi-
tivity to the choice of initial values for the parameters in guestion. Starting
lrom the middle of the segmented target we come to Lthe right position after
~ 5 iterations. The robust fitting approach allows to reconstruct the vertex
coordinates without using standard general purpose packages for minimiza-
tion. This results 1 a considerable inerease in speed. a very important factor
for the time consuming mass-production stage of the analysis of huge data
samples.
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Arakunwes oo ip. E10-96-444
HoBbIit MCTO, OCHOBAHHBIT Ha ATMOPHTMe POGICTHONY HTHPOBAHNA
LIS PEKOHCTPYRIGEE BCPHIHNBL BIHMOICHCTBHA B skctiepiMeHTe CERES

Tpeicrasie e pesyIhTaTsl pUGaCTHONO HOAXO1 U4 HAXOKACHIN BCPUITHBE BIAHMOJACHCTRIS . 0CHO-
BAHHOIO  HA MOTOC HARMCHBUINX  KBLIPATOB  C© HCPCRAMICIHCMBIMIT RCCAMIL, (LI OKCHCPHMCHTA
CERES/NAJ4S na yoxopurete SPS s LIEPH no anyuctiio croasuoscione 160 1H5B/u Ph+ Au w npo-
BOJIMTCH CPABHCHHE HOBOTO ATTOPHIMA € CYUICCTBYIOULHM, OCHOBAHHBIM Hil MHHEMIBRU CYMMapHbIX

FAyCCOBbIX BECOB.

B oxcnepumerte CERES/NALS yiv1eT 100 IHHIPHYSCKNY KPEMHHCBBIX APCHDORBIN ¢ TCKTOPOB
(SDD) HeROIBIOBLICA L1 BOCCTAHORICHHA BEPUIHHLL M BHCUITHETO TPCKHITLL YT0 HO3BO TH IO CYHICCTBCHHO
VAU TS 2PACKTHBHOCTD HAXOAICHNS SCPCHKOBURHX Kuen B RICH-1eteropax, a rakae 118 nojus-
acenns oia.

[Tpe.L1OKCHHBIT  HOMCXOYCTONYHBBIH  (LITOPHTM  PClaeT  HpolieMy  BOCCTAHORICHMS  BCPUIHHK
HPH BOTLIHX SArPYIKAX L ICTCRTOPOB HOHOBBMIT cpalbaThiBaHisMit. Boliee Toro, B CIyuadx y1bTpape st-
BHCTCKIX CTOIKHOBCHII THRCTHX HOHOB, K¢ MHOXCCTBCHHOCTD [LOCTHIACT dn ),/ dn == SO0, shicoxa

BCPROATHOCTL ICPCKPLITHA XHTOB (B e IeRTOpax) or GIIHIRMX HITH HUPCCCRAKHIHNCGH TPCKOB. ”pCALlU}KL‘H-

HLUT A TTOPHTM PCLIACT YKABAHMHBIC BLIIC (TPOGICMBL CBI3AHHBIE ¢ OONBIIMI JAIPYIKAMH {IPH BHICOKOM
GLICTPOACHCTRHYL

Pofactiasd MTCPUTHBHAN HPOUCIYPA, MO KPAUTHCI MCPe, B HECKOTBKO Pt ObICTPee, MeM HOIXOIL,
HCHOIB3YIOUIHE JIONOTHHTE IBHBIC H1ALCTH ITPOIPAMM LIS MM UUUL 00CCIICHHBAY TAKYRY AC TOMHOCT
B BOCCTAIORTCHHI BCPIIHEBL BIAHMOICHCTBHA.

Pabota suinosinesa 8 JlabGopatopin Bucokix sueprnit OHAH.

Mpenpant OGHEMHCHHOIO HHCTHTYTR sUiepHAX HecTeoranmi, Jy0na, 1996

Agakishiev G et E10-96-414

A New Robust Fiting Algornithm for Vertex Reconstruction in the CERES Experniment

We report on the application of a robusi approach based on 2 reweighted least squares method
for vertex reconstruction for the CERES/NAJS experiment at CERN SPS for the case of 160 GeV/iu
Pb+ Au collisions and compare its perfoninance with the presendy  wsed  algorithm based
on the mimmization of summcd Gausstan weights,

In the CERES/NAJS experiment a doublet of cylindrical silicon drift detectors (SDD) ix used
for vertex reconstruction and tracking. The tracks identified in the SDD doublet are projected into the first
RICH and serve us ring candidates, significantly increasing the ning finding efficiency in the RICH
detector. Close backgreund parrs from photon conversion and close Dalitz pairs can be rejected
by resolving the tracks in the SDD's or by £/ dx

The verex reconstruction algorithm has to cope with a background-contuminated  environment.,
Furthermore, i the case of ultrarelativistic heavy-1on collisions where high cvent muluplicities occur
tdn o/ dn 22 390), the probabrluy of confusing hits from close o fersecting teaeks s high
The aigorithm needs to provide the precise vertex location even at high occupancies, at i reasonable
speed. Car findings are that the robust iterative procedure preseited hore i about an order of magmitude
faster than approaches using standard nunimization packages.

The investizaton has been perfermed at the Laboratory of High Encrgies, JINR
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