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An examination is made of the quantum scalar field theory 
with the interaction depending on derivatives. A covariant 
expression is obtained for the S-matrix in the form of the 
interaction Lagrangian. It is shown that the theory is invariant 
in respect of local transformation of the field variables. The 
changes in the results after regularisation are investigated. 

1. INTRODUCTION 

The expression fox the S-matrix of scattering in the 
quantum scalar field theory, with the density of the interaction 
Lagrangian Lint depending on derivatives, was, as we know, first 
investigated in the classical papers by Umezawa and Takahashi (1). 
They showed that if the density of the self-action lagrangian of 
one scalar neutral field is Lint (φ, φµ) where φµ = ∂φ/∂xµ, the 
S-matrix of scattering can be determined by the formula 

S = T*{exp i ∫ L(x)d4x}. (1) 

Here, T* is the chronological derivative after discarding the non-covariant 
additions occurring as a result of temporal regularisation 
of the field operator φµ (T* is sometimes called the "Wick" 
derivative to distinguish it from the "Dyson" T-derivative (2)). 

In the present paper we draw attention to the fact that 
the expression (1) for the S-matrix of scattering is, strictly 
speaking, true only when Lint is linearly dependent on φµ. 
Even when there is a quadratic dependence of the density of the 
interaction Lagrangian on the derivatives, the correct determination 
of the scattering matrix does not coincide with (1) but is obtained 
by the substitution of Lint in (1) by a certain effective 
Lagrangian density Leff, which differs from Lint by a term proportional 
to the space volume of the momenta: 

L3ΦΦ = Lint - iδ4(0) ln√1 + c(φ), (2) 
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where c(φ) is the coefficient of proportionality in the dependence 
of Lint on φµφµ. As we show, the terms added, which are, as it were, 
of a non-Hermitian character, serve to compensate the specific 
divergences in the theory with the derivatives and must definitely be­
taken into account. In the case of a more complex dependence of 

Lint on the derivative it is not possible to find Leff; however, 
calculations based on the perturbation theory reveal that the terras 
which are added to Lint are not only non-Hermitian as in (2) but 
also non-covariant. Let us note that for the special case of the 
interaction of charged vector particles with an electromagnetic 
field, Lee and Yang found a formula similar to (2) in which, 
however, a non-covariant expression appeared under the sign of a 
logarithm (3)· 

The correct determination of the S-matrix of scattering 
for the density of a Lagrangian depending quadratically on the 
derivatives has a direct relationship to the study of non-linear 
transformations of the field functions. As we know, first Chisholm 
(4) and then, more strictly, Kamefuchi, O'Raifeartaigh and Salam (5) 
showed that the physical substance of the theory, i.e. the canonical 
equation of motion, the commutation relations and the energy-momentum 
tensor do not change during arbitrary local transformation of the 
field functions. From this also follows the invariance of the 
scattering matrix, provided that in the transformation theory, in 
which the Lagrangian density is inevitably quadratically dependent 
on the derivatives, use is made of the correct determination of the 
S-matrix of scattering in terms of Leff (2). 

However, Kamefuchi et al. in their paper (5) started from 
the assumption that in the original theory the density of the 
Lagrangian interaction did not contain any terms which were 
quadratically dependent on the derivatives. In the present paper, 
we show that this restriction is superfluous for determining the 
equivalence of the theories. This result may be of interest, for 
example, for phenomenological non-linear Lagrangians in the theory 
of chiral symmetry, where the presence of derivatives in the 
interaction is inevitable in any parametrization. 
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It should be stressed that the conclusions we express in 
this work, are, like indeed the results obtained by the authors 
cited, obtained in the non-regularised theory and are of a somewhat 
formal nature on account of ultra-violet divergence. All theories 
with lagrangians dependent on derivatives (with the exception of the 
linear dependence) relate to the re-normalised type. We have therefore 
carried out a special discussion of the changes which occur when 
regularisation is effected. As it happens, the additional terms in 
(2) disappear, and formula (1) is correct, for a density of the 
interaction Lagrangian Lint(φ, φµ) which depends arbitrarily on the 
derivatives. However, for the regularised theory there is no simple 
theorem for Chisholm's equivalence, since regularisation in the 
transformation theory should be effected according to a strictly 
defined non-trivial formula which is determined by the regularisation 
method of the initial theory. 

2 SCATTERING MATRIX FOR LAGRANGIANS 
DEPENDING ON DERIVATIVES 

We shall start from the assumption that in any field 
theory the correct determination of the S-matrix of scattering 
derived from the formal scattering theory is its determination by 
the density of the Hamiltonian 

S = T exp{- i ∫ Hint(x)d'x} (3) 

where Τ is the usual temporal regularisation, whilst the operator 
of the density of the interaction Hamiltonian Hint is selected in 
the representation of the interaction. As we know, formula (3) can 
be obtained from an adiabatic hypothesis or, more strictly, from the 
weak convergence of the field operators according to Lehman-Symanzik-Zimmermann 
(with the required number of additional factors ). 

Let us examine the theory of one scalar neutral field φ(x) 
with the density of the interaction lagrangian depending both on 
φ and on ∂µφ. In this case, the canonically coupled momentum 
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π(x) does not coincide with ∂cφ, Hint ≠ -Lint and the integral 
which figures in (3) is not relativistically invariant. This is, 
however, not the only non-invariance in (3). It is well-known that 
the average of the chronological derivation, for the vacuum, of the 
derivatives φµ contains a non-covariant local addition: 

<T{∂µφ, ∂νφ}>0 = <T*{∂µφ, ∂νφ}>0 - igµ0gν0δ4 (x - y), (4) 

where <T>0 is a covariant expression also for the free fields 
<T*{∂µφ, ∂νφ}>0 = i∂µ∂ν∆(x - y). 

Taking the δ -form term (4) into account will cause a change in 
the interaction shown in the exponent of (1). The formula for the 
scattering matrix may therefore be rewritten in the form 

S = T* exp{i ∫ L(x)d4x}. (5) 

Expression (5) is also a determination of the density of 
the effective Lagrangian Leff*). If Lint does not contain any 

derivatives then, of course, Leff = Lint. 

Let us find an explicit expression for Leff for the case 
when Lint depends on the derivatives in a fairly simple manner - such 
as a quadratic polynomial: 

Lint = a(φ) + bµ(φ)φµ + 
1 
c(φ)φµφµ. (6) Lint = a(φ) + bµ(φ)φµ + 2 c(φ)φµφµ. (6) 

Then, the canonically coupled pulse π = (i + c) + bcand 
the density of the interaction Hamiltonian is of the form: 

Hint(π, φ φ)= — a + 
b02 + bφ + 1 cφ2 - b0 π — c π2. (7) Hint(π, φ φ)= — a + 2(1 + c) + bφ + 2 cφ2 - 1 + c π — 2(1 + c) π2. (7) 

In the representation of the interaction, π must be replaced by . 
It will then be clearly seen that the density of the interaction 

*) Translators Note : L in the formulae means L e f f. 
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Hamiltonian is not a Lorents-invariant expression. Moreover, if the 
a, bµ and c coefficients depend on φ in a polynomial manner, then 

Hint will depend on φ in a non-polynomiial manner. 

Let us remove from the operator of the density of the 
Hamiltonian (7) the part of H'int which is not dependent on the 
temporal derivatives. 

H = H'int + H"int, (8) 

where H"int = - α - β and the designations a0 = b0/() and 
β = c/2(1 + c) have been introduced. 

To find Leff we shall use the following obvious formula. 
For an arbitrary functional 

T{Φ} = T{exp(— i ∫ d4x δ2 )φ}. (9) T{Φ} = T{exp(— 2 ∫ d4x δ 
)φ}. (9) 

In our case, Φ = exp(- i ∫Hint(x)d4x) and Hint is given by formula (8). 

Let us change over to discrete space, and transform that 
part of the functional Φ which depends on in the Fourier manner 
in respect of 

Φ() = ∫ Π dξi 
e- i 

Σ 

ξii Φ(ξi), (10) Φ() = ∫ Π dξi 
e- i i ξii Φ(ξi), (10) Φ() = ∫ Π √2π e- i i Φ(ξi), (10) Φ() = ∫ 

i √2π 
e- i i Φ(ξi), (10) 

where, as can easily be verified 

(ξi) = √ 
1 exp{ -i (α + ξ)iβik(α + ξ)k}e- i ∫ Hint(x)d4x. (11) (ξi) = √ — det(2iβik) exp{ -4 (α + ξ)iβik(α + ξ)k}e- i ∫ Hint(x)d

4x. (11) 

For a correct correspondence of the normal and variational 
derivative terms it was necessary to replace β by the limit of 
non-local interaction βik when βik → βiδ(xi - xk). Now there is 
no difficulty in computing the variational derivative in (9), and 
after reverting to continuous space we find from (5) 

L = Lint - iδ(0) ln √1 + c(φ). (12) 
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In discussing the result obtained let us note, in particular, 
that expression (12) obtained for the density of the effective 
Lagrangian is clearly relativistically invariant. In this way the 
two non-covariances, - one in the density of the Hamiltonian and the 
other in the T-derivation, fully compensate each other. 

If in (l2) we assume that c ≡ 0, i.e. that the density of 
the interaction Lagrangian depends in only a linear manner on φµ, 
we obtain the intuitively anticipated result Leff = Lint. If, 

however, c ≠ 0, then Leff differs from Lint by a term which, at 
first sight, is quite strange, and even meaningless. On a closer 
examination, however, the sense of the additional term in Leff 
is fairly apparent. The fact is that after expansion of the T*-derivation 
in expression (5) closed rings appear from the coupling 
of ∂µφ with ∂µφ. Any such ring diverges as the fourth power 
of the momentum. It can easily be checked that this divergent term 
is, in accuracy, of equal magnitude, and is opposite in sign to the 
corresponding term in the scattering matrix resulting from expansion 
of the logarithm. 

In fact, let us first examine a ring of n couplings of 
<T*{φµ, φν}>0 with uncoupled operators C(φ). If there is a large 
virtual momentum of the ring we can disregard, in comparison with it, 
external momenta. Then, all the internal lines have the same momentum 
k, and in each vertex the factor k2 will appear, which for large 
values of k, cancels out one of the denomxnators m2 - k2. There 
appears, therefore, a divergence of the fourth order, of the form 
δ4(0)(1/2n)(-1)n, where the factor 1/2n appears owing to the equivalence 
of all the external lines of the ring and the two φµ in each 
vertex. Let us compare this contribution with that from the first 
term of the expansion of the scattering matrix (5) in pawers of the 
logarithm in (12), proportional to δ4(0). If we expand the 
logarithm into a series, we obtain in the nth order of the perturbation 
theory exactly the same expression with the opposite sign. In this 
way, the divergence concerned disappears. Diagrams with the 
additional couplings can be obtained by replacing, as above, the 
pair of free operators by their coupling. This replacement can 
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be effected at the same time also in the corresponding term arising 
from the logarithm. It is clear that the result will differ only 
in sign, and consequently such divergences will also disappear. 
Finally, in the diagrams with two or more rings from the couplings 
<T*{φµ, φ}>0 will appear divergences proportional to (δ4()), 
where is the number of such rings which in precisely this manner 
will be cancelled with the contribution from the terra of the 
expansion of the scattering matrix in powers of the logarithm. 

In this way, the additional term in (12) serves to 
remove the divergence in the closed circles due to the singular 
nature of T*. 

3. EQUIVALENCE OF THE THEORY WITH REGARD TO 
LOCAL NON-LINEAR FIELD TRΑNSFORMATIONS 

The result obtained enables a correct approach to be used 
when examining the following problem, which in recent years has 
become popular owing to the study of the non-linear interaction 
Lagrangians. Let us pose an interaction Lagrangian Lint(φ) which 
contains no derivatives. Let us effect an arbitrary local 
replacement of the field function φ = f(Ψ); the total Lagrangian 
L'(Ψ) = L(φ) can then be broken down into a free part Lfree (Ψ) and 
the field interaction L'int (Ψ, Ψµ) which, however, will now 
depend on the derivatives. As can easily be found, L'int will have 
the form of (6), while 

a = Lint + 
1 m2(Ψ2 - f2), a = Lint + 2 m2(Ψ2 - f2), 

bµ = 0, 
c = f'2 - 1. 

The question is raised as to whether it is permissible 
to write in new variables the S-matrix in the standard form (5) with 

Leff = Lint A positive answer to this question is indeed given 
by the contents of the above-mentioned theory of Chishοlm, Kamefuchi, 
Salam and O'Raifeartaigh. It follows from our reasoning that this is 
absolutely justified, provided that when the S-matrix is calculated 
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from formula (1) the integrals containing divergences of the type 
<δ4(0)>0 are discarded. 

The correct proof of the theory of equivalence in paper (5) 
was based on the assumption that the initial interaction Lagrangian 
does not depend on the derivatives. We shall now show that this 
restriction is too strong and that the theorem of equivalence is 
correct also in the particularly important case when the interaction 
is quadratically dependent on the derivatives. Proof of the 
equivalence of the theory consists in establishing the invariance of 
the commutation relations, the canonical equations of motion and the 
energy-momentum tensor. In contrast to the classical theory it is 
necessary to ensure the correct arrangement of the non-commutative 
values. 

Let us pose the Lagrangian 

L = 
1 
c(φ)φ2 + G, (13) L = 2 c(φ)φ2 + G, (13) 

where G depends on φ and on the space derivatives from φ. 
It is clear from physical considerations that π, and, incidentally, 
the operator φ, must be Hermitian, and for this they must be 
expressed by the anticommuiators from the commutative values. We 
shall therefore write the density of the interaction Lagrangian 
in the form 

L = 1 {c(φ), φ2} + G, (14) L = 4 {c(φ), φ2} + G, (14) 

where {} denotes an anticommutator, and we shall follow the rules 
of differentiation defined in (5). To this density of the interaction 
Lagrangian corresponds the canonically coupled field momentum 

π = 
1 
{c(φ), φ}. (15) π = 2 {c(φ), φ}. (15) 

By inverting (15) it can easily be found that 

= 
1 { 1 , π}. (15a) = 2 { c(φ) , π}. (15a) 
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We shall now effect transformation of the field variables, go that 
the new variable φ2 depends only on the initial variable φ, 
but not, on its derivative φµ. 

φ → φ1 = φ¬(φ), (16) 

then in the transformation theory 

L = 1 {ci(φ), } + ci. (17) L = 4 {ci(φ), } + ci. (17) 

We will note that for the arbitrary value (φ) expanded into a 
power series 

= 1 {} (18) = 2 
{} (18) 

is fulfilled, in which the prime denotes the derivative for φ. 
From (17) it follows, taking into account (18), that = c. 

We shall now calculate directly the commutator of the new 
canonical variables π and φ and find proof that it coincides with 
the commutator π and φ. It follows from the density of the 
Lagrangian of (17) that π = 1/2{c, } or, if (18) is taken into 
account, that 

π1 = 
1 
{c1{}}}. π1 = 4 {c1{}}}. 

Then, the commutator 

[π1, φ1] = 
1 
4c1φ1'[φ, φ1] = c1φ1'2(φ, φ). (19) [π1, φ1] = 4 4c1φ1'[φ, φ1] = c1φ1

'2(φ, φ). (19) 

Whence, taking into account the coupling between c and c1 
and (15a) 

[π1, φ1] = [π, φ]. 
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It is now necessary to check the invariance of the 
equations of motion. The equation of motion following from the 
initial Lagrangian is of the form 

{c, } = 2G' - c', (20) 

where 

G' = ∂G/∂φ — ∂(∂G/∂φ), s = 1, 2, 3. 

After transformation of the field variables we have 

∂0(∂L/∂) = ∂0 
1 

{c{∂φ/∂, }}, ∂0(∂L/∂) = ∂0 4 {c{∂φ/∂, }}, 

which, when using the identities proved by Kamefuchi et al. (5), ∂/∂ = 
= ∂φ/∂1 and ∂0(∂φ/∂φ) = ∂/dφ and also that the equation of 
motion (20), gives the desired result ∂0(∂L/∂) = ∂L/∂φ. 

The invariance of the energy-momentum tensor Tµν need 
not be proved, since the method proposed in (5) for proving its 
invariance does not make use of the restriction c ( φ ) = c-number. 

4. APPLICATION OF REGULARISATION 

As has already been stated in the Introduction, all of our 
arguments have concerned the non-regularisation theory. The 
application of regularisation will profoundly change the results 
obtained and, in particular, all of the non-covariant terms will 
disappear from the theory. Let us apply a regularised field with a negative metric and mass µ. To removal of regularisation 
corresponds µ → ∞. The density of the total Lagrangian 
of the system of the interacting φ and fields 

L = L - Lx + Lint(φ + ), (21) 

where Lφ and Lx are free Lagrangians of the fields φ and respectively. This method of regularisation ensures the covariance 
of the contraction. It is convenient to change over from the 
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variables φ and to the new variables φ + = Ψ+ and φ — = Ψ-. 
The intensity of the interaction Lagrangian, which depends on the 
derivatives in an arbitrary manner, can then be written 

and the density of the free Lagrangian will be 

L = 1 Ψ+µΨ-µ -
1 (m2 - µ2)(Ψ+2 + Ψ-2)-

1 
(m2 + µ2)Ψ+Ψ-L = 2 Ψ+µΨ-µ - 8 (m

2 - µ2)(Ψ+2 + Ψ-2)-4 (m
2 + µ2)Ψ+Ψ-

The canonically coupled field pulses are of the form 

π+ = ∂L/∂+ = 
1 

- + ∂Lint/∂Ψ, (22) π+ = ∂L/∂+ = 2 - + ∂Lint/∂Ψ, (22) 

π- = ∂L/∂- = 
1 

+. π- = ∂L/∂- = 2 +. 
The density of the total Hamiltonian of the system 

H = π++ + π-- — L, 

where all the temporal derivatives and must be expressed 
by the canonically coupled momenta π+ and π- from system (22). 
By cancelling such terms, we find that 

H = 2π+π- - Lfree' - Lint(Ψ+, µ; Ψ+), (23) 

where must te substituted by 2π-, and L'free denotes the part of 
the free Lagrangian which contains no temporal derivatives. If we 
subtract from (23) the density of the free Hamiltonian, we find that 
the density of the interaction Hamiltonian 

Hint = - Lint(Ψ+, µ; Ψ+)|. 

It is necessary subsequently to change over to a representation of 
the interaction to whichh the substitution π-→ ½Ψ+ corresponds. 
In this way we finally find that the density of the interaction 
Hamiltonian in the interaction representation 

= Lint(Ψ+, μ; Ψ-), 
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i.e. it differs from the density of the interaction Lagrangian only 
in sign and contains no non-covariants. 

It is remarkable that the coupling for Ψ+ also contains 
no non-covariant terms 

<T{∂Ψ+, ∂νΨ}>0 = <T{∂, ∂νφ}>0 + <T{∂µX, ∂νX}>0 =  
= i∂µ∂ν(∆c(m, x) - ∆c(μ, x)). 

This being taken into account, the scattering matrix is determined 
by the usual formula (1) and now all of the chronological derivatives 
of T* and T coincide. It must be stressed that when regularisation 
is removed, i.e. during the limit transition µ → ∞, there appear in 
the above theory, among other divergences, also the already-mentione 
divergencies, which are proportional to <δ4(0))n and were previously 
completely renoved by the logarithmic addition in Leff. Consequently, 
the removal of the regularisation does not change our theory into a 
non-regularised one. It denotes, of course, that the limit transition 
depends substantially on the manner in which regularisation is effected. 

In itself, this occurrence should not cause surprise since 
we are dealing with theories relating to the un-renormalised type 
when the limit µ → ∞, as a rule, does not exist. Nevertheless, 
there is, among our theories, a certain class in which the limit 
µ → ∞ is well-defined. They are the theories obtained as a 
result of renormalisation by a non-linear transformation of the 
field function. In this case, the scattering matrix determined in 
accordance with the rules of the present paragraph would, in the 
limits of µ → ∞, lead to irremovable divergences proportional 
to (δ4(0)), which certainly do not exist in the original theory. 
This immediately places some doubt over the correctness of the 
theorem of Chisholm et al. in the regularised theory. The fact is, 
of course, that in a local transformation of the field functions 
in the regularised theory it is necessary simultaneously to 
transform also the regularising field. Consequently, in the 
transformation theory, the dependence on the regularised field cannot 
be chosen arbitrarily and, in particular, in such a simple manner 
as in (2l) but is fairly complex and does not correspond to a 
usual simple regularisation. 
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Let us, for example, apply to the original theory a 
regularisation in accordance with (21). Let us transform the fields 
Ψ+ ana Ψ- in an arbitrary local raanner 

Ψ+ = Ψ+(η+), 
(24) 

Ψ- = Ψ-(η-, η - ) , 
(24) 

then, as we can easily check, it is not possible to make the density 
of the interaction lagrangian depend only on η+ also in the 
transformation theory. Generally speaking, there appears a 
dependence both on η- and on η+µ. The dependence on η-µ 
can be excepted, but the dependence on η- definitely remains. 
In fact, in the terms of the new field variables η+ and η-

Lint = 1 ∂Ψ 
η+µ 

∂Ψ-
η+µ + 

1 
( 
∂ψ+ ∂ψ-

-1)η+µη-µ- (25) Lint = 2 ∂η+ η+µ ∂η+ η+µ + 2 ( ∂η+ ∂η- -1)η+µη-µ- (25) 

- 1 (m2 — μ2) [ψ2+ (η+)+ ψ2- (η+,η-) — η2+ - η2-] --

8 (m2 — μ2) [ψ
2+ (η+)+ ψ2- (η+,η-) — η2+ - η2-] -

- 1 (m2 + μ2) [ψ+(η+) Ψ- (η+, η-) - η+η-] + Lint ( ∂Ψ+ η+μ; ψ+(η+)). -
4 (m2 + μ2) [ψ+(η+) Ψ- (η+, η-) - η+η-] + Lint ( ∂η+ 

η+μ; ψ+(η+)). 

The dependence on η-µ disappears if it is required that 

∂ψ+ ∂ψ- = 1, T. e. ψ-(η+, η-) = ∂η+ 
η-+F(η+). ∂η+ ∂η- = 1, T. e. ψ-(η+, η-) = ∂ψ+ η-+F(η+). 

Then, however, a term occurs from the first component of (25) which 
depends linearly on η-, is proportional to ∂2η+/∂Ψ+2 and 
therefore disapears only in the trivial case when η+ depends linearly 
on ψ+. 
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