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Abstract

A neural network is used to determine the impact parameter in 4°('a+ 4°Ca
reactions. The effect of the detection efficiency as well as the model de-
pendence of the training procedure have been studied carefully. An overall
improvement of the impact parameter determination of 25 % is obtained us-
ing this technique. The analysis of Amphora 1°Ca+4°Ca data at 33MeV per
nucleon using a neural network shows two well separated classes of events

among the selected ”complete” events.
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Experimental heavy ion data become more and more difficult to analyze without the help
of theoretical calculations. A key parameter of such calculations is the impact parameter
which is strongly correlated with the violence of the reaction. Unfortunately, the impact
parameter remains difficult to extract experimentally despite intensive experimental works
[1-5].

Numerous attempts have been made to extract this quantity by analyzing the correlation
between a single observable and the violence of the collision. For example, the charged
particle multiplicity [3], the perpendicular momentum [1], the neutron number [4]etc...
have been extensively used. It turns out that, all these single observable methods. very
efficient for peripheral reactions, failed for central collisions due to the saturation of the
considered observables in the energy range under consideration here (between 20 and 100
MeV per nucleon).

With the availability of 47 detectors, it would be of interest to use as much information
as possible by combining several different observables. Some works on this direction have
been undertaken by Llope et al [5] by looking studying auto-correlation between different
observables in order to maximize the efficiency of the central collision selection. Recently, an
other promising step in this direction has been made using neural networks [6-8]. Indeed,
using simulated *"Au+ '7Au events, David et al [7] have obtained an improvement by a
factor of 4 in the determination of impact parameter compared to more conventional method
in central collisions

The purpose of this paper is to explore the neural network capabilities to help analyze
the Amphora 35MeV per nucleon *°Ca+ 4°Ca data [10]. The paper is organized as follows.
We fist start with a short review on neural network then focus on the training procedure.
After an illustration of the performance of the neural network in the section 2, we present

the analysis of 4°Ca+%°Ca data in section 3 and finally conclude in the fourth section.



I. INTRODUCTION TO NEURAL NETWORK
A. General Description

Let us start with a succinct review on neural networks(NN). For dctails and general
background, the reader is referred to [11]. By definition a neural network is an ensemble
of highly connected cells. A cell is an entity which has one or several weighted (w;) inputs,
I;, an activation threshold 6 and gives an output according to a certain activation function
f. Such a cell is represented on the top of Figure 1. The output, S, of the cell is generated
according to:

S = f(Zw,-I,- +0).

For a multi-layer network, the activation function of each layers can be different. For a
sake of simplicity, we have restricted ourselves to a three layers feed forward network. The
first layer, which corresponds to the input layer, is composed of threc cells, the median
layer is called the hidden layer and contains 5 cells and finally the last one is a single cell
output layer. Input cells receive the data from the outside (here the value of the physical
observables) and the output cell gives the result (here an estimate of the immpact parameter).
The activation functions used for each layers of our network are displayed on the bottom of
Figure 1.

The use of neural network is a two step process: a learning stage {ollowed by an ap-
plication stage. During the learning phase, the different parameters of the network (0, w)
are determined. This is done with the help of a sample for which inputs and the expected
output are perfectly known (a learning sample).

The parameters are then adjusted in order to minimize, according to the different weights
and thresholds, the difference D between the calculated output, Outyn and the known one,

£ for the whole training ensemble. The function D is defined in our work as

n

D(wi, 0:) = 0.5(3_(I¢* — Outfy)?)

p=1



where n is the total number of elements of the training sample. The dctails of the whole

minimization procedure can be found in ref [7].

B. The training procedure

In our case,it is not possible to make a learning sample. A theoretical model has then
to be used to generate this sample. In this work, two different models have been used to
generate the learning sample:

A dynamical transport model, QMD [12], coupled with Gemini [13]. This hybrid model
has already been very successful in reproducing many features of the 9°Ca+%°Ca reaction at
35MeV per nucleon [10].

An event generator based on a statistical model, EUGENE [14]. This model combines a
massive transfer entrance channel with a statistical de-excitation and therefore does not

contain deep inelastic processes.

The choice of these two models was motivated by the fact that they are very different in
their philosophies and then will give a good estimate of the neural network capabilities. We
also required the models to reproduce correctly the Z-distribution obtained in the °Ca+%°Ca
experiment at 35 MeV per nucleon {10].

The Z-distributions obtained for the two models are displayed in fig 2. The black points
correspond to the experimental data, the shaded histogram to the Eugene simulation and
the other histogram to the QMD results. It has to be noted that as in the experiment, only
complete events are taken into account in both calculations. That means that to be selected
an event have to have a multiplicity greater than 10 and 85 % of the total charge have to be
measured after passing through the filter. According to the geometry of our detector [15],
this implies that we are already dealing with central events. As it can be seen in fig 2 a
fairly good agreement with the experimental data is obtained in both cases. This can give

us some confidence in using these calculations to generate a learning sample for our neural



network.
We then generate sets of learning sample composed of 1000 events uniformly distributed

between 0 fm and 8 fm. The three inputs of our neural networks arc the charged par-

PZ/2m

ticle multiplicity (CP), the perpendicular momentum (Ppe,p), and E,; = 5 7am

. They
correspond to the most efficient combination of the available experimental observables for

40Ca+1°Ca at 35MeV per nucleon [9].

II. BEHAVIOR OF OUR NEURAL NETWORK

To compare the performance of the Neural Network (NN) with other commonly used

methods, an observable is defined:

- 1
Deviation = N > |B2MP _ puar|

i=1

which gives an estimate of the dispersion over the overall range of impact parameter. B*"
stands for the impact parameter value determined using one of the following observables
NN, CP, Pperp, Erot. For methods other than the neural network, let us explain the way the
impact parameter is extracted. Using the training sample, the total distribution of a given
observable (var) is cut into ten equal size bins for which the average imipact parameter is
calculated. Then, using a fit of a polynomial expression of these points, an impact parameter
value B¥%"is associated to each value of the observable.

We have reported the results of such a comparison for Ca+Ca reactions as a function of
the incident energy in figure 3.

For all energies, the neural network gives the lowest Deviation. It is the most accurate
of the methods used here. It can be seen also that as the incident encrgy increases, the
impact parameter determination becomes better. This is true for all the different methods.
Nevertheless, the neural network always allows an improvement around 25% compared to
the others.

In figure 4, the recognition capability of our neural network is given for a theoretical case

(no filter was applied). In this figure, the neural network output value Outxy is displayed

3



as a function of the corresponding QMD impact parameter, Boap for the *°Ca +%° Ca at
70MeV per nucleon. The correlation between these two quantities is very good above 1.5
fm. For very central collisions, Outyy saturates due to the saturation of input observables.
It can also be noticed that the dispersion around the mean value increases with decreasing
impact parameter.

In most previous neural network works, model calculations have been used without taking
into account any experimental filter. The effect of such filter is far from negligible and has
the tendency to increase the apparent fluctuations. The Amphora detector filter has been
applied to study this effect. The result is presented in figure 5. As expected, the recognition
by the neural network is poorer than without the filter. This clearly shows the necessity to

use a network trained as closely to the experimental condition as possiblec.

ITI. APPLICATION ON REAL DATA

The learning stage finished, it is possible to apply the neural network on real data.
In figure 6, the neural network output obtained for both trained network is displayed for
each selected experimental event(complete event). The shaded histogram corresponds to
the Eugene trained network whereas the other histogram corresponds to the QMD trained
network.

The neural network outputs are always below 7 fm. This means that complete events
deal mainly with central events as expected. The QMD trained network gives higher impact
parameter value due to the fact that the QMD model contains deep inelastic processes
contrary to the Eugene model. A depletion occurs for very central impact parameter values.
This is coming from two facts: We are working with real data which means that events are
weighted according to 27bdb where b stands for the impact parameter. This makes central
events less abundant than peripheral ones. In addition, as shown in figure 4, the neural
network recognition failed in very central collisions and gives systematically an overestimated

impact parameter value. The combination of these two facts explains the shape of the spectra



at low Outyy. The maxima of both distributions are located around 3 {in.

It is interesting now to look at the correlation between the two network outputs for
our experimental events. In Figure 7 the averaged Eugene trained network output Outg,, is
plotted as a function of the QMD trained network output, Outgap. A quite good correlation
exists between the two outputs. A high Qutgump corresponds to a high Outg,,. This result
and the fact that the two distribution maxima are close are quite encouraging for the use of
a neural network in an experimental analysis.

A precise individual impact parameter determination at this energy by our network
does not seem reasonable. Nevertheless, we are going to separate the data into three groups
according to Qutyn. The limits of these groups are Qutyy < 3.2fm, 3.2 < Outyny < 4.4fm
and Outyny > 4.4fm and have been chosen to make three equally populated bins.

For these three different classes, the so called ”Campi-plot” has been generated. This plot
allows an exploration of the moments of the multiplicity distribution and lLias been suggested
as a useful means to identify a possible critical behavior in the de-excitation patterns. In
figure 8, such plots are displayed for all events as well as for the 3 Outy \ classes.

Two peaks occur on the experimental contour plot in the panel (a) of Figure 8. One is
located at large values of InZ,,,;and small values of InS; and the other is located at small
values of InZ,,,.and large values of InS). Plots obtained for the different cuts in Outyn show
quite distinct behavior. For the lower values of Outyy, only the low InS’, peak remains. On
the other hand for higher Outyn values, only the high InS] peak is present. This systematic
nice behavior shows that neural network can be very useful in data analysis by allowing the

grouping of events according to the correlation of several observables (here CP, P,,, and

Erat)-

IV. CONCLUSION

In this paper, a neural network has been used for the first time to determine the impact

parameter of real experimental events (°Ca+°Ca at 35 MeV per nucleon). Animprovement



of about 25% is obtained compared to commonly used methods. Applied to real data,
90Ca+1°Ca reaction at 35MeV per nucleon, the network provides a clear separation of the
different peaks obtained in the experimental Campi plots. At the same time, a careful study
of the influence of the model used for the training shows that in both cases the neural
network outputs are consistent together. This tends to indicate that the neural network can

be a valuable tool in data analysis.
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FIGURES

FIG. 1:Schematic view of a cell (upper drawing) and of our network(lower drawing).

FIG. 2: Z-distributions obtained for the complete events in *°Ca +%° Ca at 35 MeV
per nucleon. Experimental data are represented by black points, the Eugene calculation by
shaded histogram and the QMD calculations using full line. Calculations have been filtered.

FIG. 3:Energy dependence of the Deviation(see definition in the text) for Ca+Ca reac-
tions obtained from QMD+Gemini.

FIG. 4:Neural network output Qutyy as a function of the QMD impact
parameter,Boaxp for the 4°Ca +° Ca at 70MeV per nucleon.

FIG. 5:Effect of a filter in the Neural Network performances.

FIG. 6: Neural network output obtained for each selected experimental event. Eugene
trained network output are represented using the shaded histogram whereas QMD trained
network output are displayed by full line.

FIG. 7:Correlation between the Eugene trained network output and the QMD trained

network output.

e e | 2M(Z)
FIG. 8:Logarithmic distribution of Z,,, vs §; = Lozez 7 l-ach contour rep-
,Z#Zmazr 7} ( )
resents constant value units of relative %— where Y is the yield. The outside contour
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level is at level 10, and each inner contour represents a progression in yicld of 150.
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